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Abstract
Rising costs, growing non-response and uncertain frame coverage stimulate growing interest in the
use of web surveys instead of representative samples for estimation of general population character-
istics. Previous research has demonstrated that weight adjustment by propensity score constructed
on demographic variables may be insufficient for balancing volunteer panels of web surveys se-
lected in nonrandomized fashion. This may result in biased estimates of national characteristics.
Assuming systematic dependence of propensity score and target variable on unobserved variable U ,
we derive dependence of bias on the model parameters associated with U . Asymptotic dependence
of relative bias on small values of model parameters associated with U was calculated using Taylor
series expansions. Plotted for a wide range of these parameters, relative bias was shown to vary be-
tween -1 and 1. Better understanding of the reasons for biased estimates will stimulate development
of methods for bias reduction.

Key Words: web panel, reference survey, biased estimates, nonrandomized experiment, propensity
score.

Introduction

In recent years there has been an increase of interest in using web surveys for estimating
general population characteristics. This innovative method of data collection helps avoid
the complications associated with traditional probability sampling and provides for cost
reduction and quick turnout, but could result in biased estimates. The reason for bias is the
impossibility of defining weights which would correctly project non-probability sample
data to the population of interest.
Similar problems occurred in the analysis of data from observational studies, where dif-
ferent medical treatments were non-randomly applied to participating patients. Straight-
forward estimation of treatment effect was impossible because groups of patients receiving
different treatments could differ systematically. Rosenbaum and Rubin (1983b) in their
seminal paper proposed estimating treatment effect conditionally on probability for a pa-
tient to be assigned to one of the groups. This probability, called the propensity score, was
modeled on patient characteristics available for the complete population. Conditioning on
the propensity score removed the difference between patients in different treatment groups,
allowing the treatment effect from each group to be projected to the rest of the population.
A justification for using web panels for producing national estimates relies on a similar idea
of projecting estimates from web panel data to the remaining population conditionally on
the propensity score, calculated as the probability of being included in the web panel. This
projection technique is implemented using weights defined as the inverse of the propensity
score. It’s fair to say that such an estimator of national characteristics from web panels is
closely associated with two well-known estimation techniques: (1) estimating the treatment
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effect from observational study data using propensity score and (2) the Horwitz-Tompson
estimator from random sample data.
The major problem with any estimation relying on propensity scores lies in the possibility
of bias if insufficient information is available for correctly modeling the propensity score.
In the case of observational studies, usually there is a lot of information available for a
limited number of involved patients. If participating doctors recorded all of the informa-
tion they used for making decisions on treatment assignment for each patient, one might
assume that the propensity score utilizing all of this information would provide for unbi-
ased estimation of treatment effect. At the same time, the probability of being on a web
panel is usually modeled for the general population, for which very little is known besides
basic demographic characteristics. In this case it’s very likely that important covariates are
missing from the propensity score model.
In another paper published in the same year Rosenbaum and Rubin (1983a) proposed a
parametric method for assessing sensitivity of estimating treatment effect to an unobserved
binary patient characteristic relevant to both treatment assignment and response. Applied
to observational study data, this method estimates treatment effect as a function of model
parameters associated with the aforementioned unobserved patient characteristic.
In this paper we investigate the effect of ignoring an unobserved covariate in a propensity
score model on estimates from a web panel data. In Section 1 a general expression utilizing
propensity score is derived for calculating the expectation of an outcome variable using
the distribution of a web panel data. An analogy is demonstrated between this expectation
and the Horwitz-Tompson estimator from stratified random samples. Assuming parametric
distributions for the outcome variable Y and web panel inclusion indicator Z depending on
observed and unobserved covariates (X,U), in Section 2 we calculate the relative bias of
the expectation of the outcome variable resulting from ignoring unobserved covariate U in
the propensity score model. Section 2.2 shows an asymptotic formula for relative bias for
small values of model parameters associated with an unobserved covariate. Relative bias
in a wide range of model parameters is plotted in Section 2.3. In the Conclusion we sum-
marize the findings of this paper and propose a strategy for minimizing bias of propensity
score estimates from web panel data. We advance arguments for the combined use of web
surveys and reference randomized surveys to expand data collection while reducing bias of
estimates from non-randomized samples.

1. Bias of estimates due to an unobserved covariate

1.1 Justification for using propensity score for unbiased estimation from web panel
data

Suppose that we want to estimate the expectation of the random variable of interest Y over
the general population E (Y ). But data available for estimation comes from a web panel,
which is a non-randomly selected group of respondents. Let binomial random variable Z
represent an indicator for a person to be included in the web panel (Z = 1). The distribution
of Y for people on the web panel could be very different from the general population. In
a statistical sense this means that variables Y and Z are correlated. Using Bayes theorem
we can express the distribution of Y over the general population through the conditional
distributions of Y and Z. Assuming Z = 1 allows us to focus on the web panel data:

P (Y ) =
P (Y |Z = 1)P (Z = 1)

P (Z = 1|Y )
(1.1)

If an additional covariate X is observed for the web panel data, the expression above could
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be considered conditional on this covariate:

P (Y |X) = P (Z = 1|X)
P (Y |Z = 1, X)

P (Z = 1|Y,X)
(1.2)

Finding the expectation of the outcome variable Y using distributions conditional on X
involves taking the expectation over the distribution of covariate X . While expectation of
the left hand side of (1.2) is taken over the distribution of X in the general population, we
want to take the expectation of the right hand side over the distribution of X for the web
panel, namely P (X|Z = 1). This can be achieved by using Bayes theorem once again, this
time for variables Z and X:

P (X) =
P (X|Z = 1)P (Z = 1)

P (Z = 1|X)
(1.3)

From this expression it follows that:

EX [g(X)] = P (Z = 1)EX|Z=1

[
g(X)

P (Z = 1|X)

]
(1.4)

where g(X) is any function of X . With (1.4) in mind, expectations of both sides of (1.2)
result in:

EY [Y ] = EX [EY [Y |X]] = P (Z = 1)EX|Z=1

[
EY |X,Z=1

[
Y

P (Z = 1|Y,X)

]]
(1.5)

Here, the expectation of Y over the general population is expressed through the expectation
over web panel data. However, (1.5) is not practically applicable because the dependence of
inclusion indicatorP (Z = 1|Y,X) on Y is unknown. At this moment, we make the crucial
assumption that, conditionally on X , web panel inclusion indicator Z is independent of
target variable Y :

P (Z = 1|Y,X) = P (Z = 1|X) (1.6)

If indeed all systematic dependences of P (Z = 1|Y,X) were encapsulated in X , then
substituting P (Z = 1|X) in ( 1.5) would produce an unbiased expectation of Y :

EY [Y ] = P (Z = 1)EX|Z=1

[
EY |Z=1,X [Y ]

P (Z = 1|X)

]
(1.7)

Conditional probability P (Z = 1|X) is called the propensity score.

1.2 Analogy between propensity score estimator and Horwitz-Thompson estimator
for random samples

Expression (1.7) is in many ways similar to the Horwitz-Thomson estimator of the mean
from random samples:

ŷHT =
1

N

∑
i∈s

yi
πi

(1.8)

where πi are sample inclusion probabilities andN is population size. In both cases, we cal-
culate a weighted expectation (mean for HT estimator) over web panel (or random sample)
data to estimate expectation (mean) over the general population. The stochastic mecha-
nism of selecting a web panel can be compared to a Poisson sampling scheme, where each
sample element is selected independently with probability πi assigned by the sampler’s de-
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cision. Web panel elements can be also considered independently selected with probability
predefined by propensity score (1.6). The most obvious analogy exists between (1.7) and
the Horwitz-Thompson estimator for stratified simple random samples:

ŷstr =
1

N

∑
X=xi

Ni

ni

∑
j∈xi

yij (1.9)

where Ni is the population count for elements with X = xi and ni is the corresponding
sample count. The propensity score estimator ( 1.7) transforms exactly into ŷstr assuming
the following estimators for expectations and probabilities:

• EY [Y |Z = 1, X] = 1
ni

∑
j∈xi

yij ;

• EX|Z=1[g(X)] =
∑

X=xi

ni
n g(xi), where n is web panel size and g(X) is any func-

tion of X;

• P (Z = 1|X = xi) = ni/Ni ;

• P (Z = 1) = n/N .

1.3 Expectations under model with an unobserved covariate

Expectation with propensity score (1.7) is unbiased only if conditioning on observed co-
variate X provides for independence of Y and Z. Let’s assume that information in the
observed covariate X is insufficient to satisfy (1.6), and X must be complemented with the
unobserved covariate U :

P (Z = 1|Y,X,U) = P (Z = 1|X,U) (1.10)

Expectation (1.7) becomes:

EY [Y ] = P (Z = 1)EX,U |Z=1

[
EY |Z=1,X,U [Y ]

P (Z = 1|X,U)

]
(1.11)

To be more specific, suppose that covariate X is a multinomial variable, taking values
xi, i = (1 . . . I) with probabilities P (X = xi|Z = 1) for the web panel data. The un-
observed covariate U is assumed to be binomial with conditional probability distribution
P (U |Z = 1, X). Then the unbiased expectation of the outcome variable Y is:

yub = P (Z = 1)

I∑
i=1

P (xi|Z = 1)

1∑
u=0

P (u|Z = 1, xi)
E (Y |Z = 1, xi, u)

P (Z = 1|xi, u)
(1.12)

This expression utilizes a propensity score modeled on the unobserved covariate U mak-
ing it impossible to estimate from available data. We may consider estimation using the
observed marginal propensity score independent of U :

P obs(Z = 1|X) =
1∑

u=0

P (U |X)P (Z = 1|X,U) (1.13)

Here, the distribution of the unobserved covariate U conditional on X is defined on the
general population, while in (1.12) it’s defined on the web panel data. Using the observed
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propensity score will result in biased expectation of Y :

yb = P (Z = 1)
I∑

i=1

P (xi|Z = 1)

P obs (Z = 1|xi)

1∑
u=0

P (u|Z = 1, xi)E (Y |Z = 1, xi, u) (1.14)

To summarize, expression (1.12) is unbiased but impossible to estimate from the observed
data. Expression (1.14) is generally biased, but it can be estimated in practice. The goal
of this paper is to calculate relative bias relBias(yb) =

(
yb − yub

)
/yub assuming specific

parametric models for an outcome variable Y and propensity score. Studying analytic
dependence of relBias(yb) on model parameters associated with an unobserved covariate
U will provide information about the significance of this bias in various situations.

2. Parametric expression for relative bias

2.1 Parametric dependence on an observed and unobserved covariates

Let’s use the following notations for distributions of an observed multinomial covariate X
and unobserved binomial covariate U :

P (X = xi|Z = 1) = φi,where i ∈ (1 . . . I) and
I∑

i=1

φi = 1 (2.1a)

P (U = u|X = xi) = P (U = u|Z = 1, X = xi) = ϕi(u), (2.1b)

where u ∈ (0, 1) and
1∑

u=0

ϕi(u) = 1

From here we will consider the conditional distribution P (U |X) to be the same for a web
panel data (Z = 1) and the general population. We have found that this assumption does
not qualitatively alter the main conclusions of our study.
For a binary outcome variable Y and web panel inclusion indicator Z we assume Bernoulli
distributions conditional on (X,U) with logit link function:

P (Y = 1|Z = 1, X, U) =
exp(γi + δiu)

1 + exp(γi + δiu)
(2.2a)

P (Z = 1|X,U) =
exp(αi + βiu)

1 + exp(αi + βiu)
(2.2b)

Note that the distribution of Y is defined over the web panel data and the distribution of Z
is over the general population.
The model described above allows us to write parametric expressions for both unbiased
(1.12) and biased (1.14) expectations of the outcome variable Y :

yub(b) =

I∑
i=1

φiA
ub(b)
i , (2.3a)

Aub
i =

1∑
u=0

ϕi(u)

(
exp(γi + δiu)

1 + exp(γi + δiu)

)(
exp(αi + βiu)

1 + exp(αi + βiu)

)−1
(2.3b)

Ab
i =

(
1∑

u=0

ϕi(u)
exp(γi + δiu)

1 + exp(γi + δiu)

)(
1∑

u=0

ϕi(u)
exp(αi + βiu)

1 + exp(αi + βiu)

)−1
(2.3c)
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In this notation relative bias due to ignoring an unobserved covariate U is:

relBias
(
yb
)
=
yb − yub

yub
=

∑I
i=1 φiA

b
i∑I

i=1 φiA
ub
i

− 1 (2.4)

Analysis of this expression can be simplified by considering ratio ai = Ab
i/A

ub
i − 1 for a

specific value xi of the observed multinomial covariate X . Then summation (2.4) becomes
the weighted sum of ai:

relBias
(
yb
)
=

∑I
i=1 φiA

ub
i ai∑I

i=1 φiA
ub
i

(2.5)

Analysis of this weighted sum can be effectively reduced to analysis of individual ai.

2.2 Relative bias under small effect of an unobserved covariate

Relative bias depends on parameters (ϕi, βi, δi) associated with an unobserved covariateU .
Below we identify values of these parameters for which ai = 0 in (2.5) and give practical
interpretations of these conditions.
First, consider βi = 0. This corresponds to a negligible effect of unobserved covariate U
on propensity score (2.2b) for a given xi and zero contribution ai to relBias

(
yb
)
.

Second, suppose that unobserved covariate U is homogeneously distributed ϕi(0) = 0
or ϕi(1) = 0 for all data elements with a particular xi. In this case also ai = 0. It is
reasonable to assume that bias will grow with heterogeneity of U , achieving maximum
value for ϕi(0) = ϕi(1) = 0.5.
Conditional expectation of an outcome variable on populationE(Y |U,X) is the expression
in squared brackets in (1.11). Its independence of an unobserved covariate imposes the
following relationship between model parameters:

(
exp(γi + δi)

1 + exp(γi + δi)

)(
exp(αi + βi)

1 + exp(αi + βi)

)−1
=

(
exp(γi)

1 + exp(γi)

)(
exp(αi)

1 + exp(αi)

)−1
(2.6)

This also provides for ai = 0 and zero relative bias (2.5). By rearranging terms in this
expression, it can be shown that relative bias is small when conditional expectation of an
outcome variable on a web panel data and propensity score equally increase or decrease
with U . When U has the opposite effect on these distributions, relative bias tends to in-
crease. Further analysis confirms this general conclusion, which could be useful as an
indicator of possible large bias for some of the estimates.
These simple findings facilitate obtaining an approximate analytical dependence of relative
bias (2.5) on model parameters in situations where dependence of the propensity score on
an unobserved covariate is small βi � 1:

βi � 1, δi � 1, ϕi(0)� 1 (2.7a)

ai =
ϕi(0)βi

1 + exp(αi)

(
δi

1 + exp(γi)
− βi

1 + exp(αi)

)
βi � 1, δi � 1, ϕi(0) ≈ 0.5 (2.7b)

ai =
βi

4(1 + exp(αi))

(
δi

1 + exp(γi)
− βi

1 + exp(αi)

)

JSM2015 - Survey Research Methods Section

239



Relative bias is proportional to small deviations of model parameters βi and ϕi(0) from
zero values, in agreement with previously obtained conditions for zero bias. The term
in brackets may be obtained from imposing a condition of zero derivative of conditional
expectation of Y over the general population dE(Y |U,X)/dU = 0 for U = 0, 1 and small
values of βi and δi. Note that ai is also inversely proportional to 1+exp(αi), which means
that bias is potentially larger for web panel elements with small observed propensity score
(1.13) .

2.3 Relative bias in a wide range of model parameters

The main reasons for biased estimates were explicitly demonstrated for small effects of an
unobserved covariate in the analytic expressions (2.7a-b). At the same time, expressions
(2.3a-c) allow us to calculate the contribution ai to relative bias for a given xi (2.5) for all
values of model parameters. Dependence of ai on parameter βi is presented in Figure 1.

Figure 1: Relative bias ai for a given xi depending on parameter βi. Parameter δi is set to
(−3,−1, 1, 3). Different values of parameter αi = (−2,−0.5, 1, 2) are marked by solid, dashed,
dotted and dot-dashed line types. Parameters γi = 1 and ϕi(0) = ϕi(1) = 0.5 were kept constant
in all cases.

As expected, relative bias ai = 0 for βi = 0. It changes between 1 and -1 for all other
values of βi. In most cases relative bias is negative. It becomes significantly positive only
for large and negative values of δi. It can be proven analytically that ai → 1 for moderate
αi and γi when both βi, δi → −∞.
The absolute value of negative relative bias always increases when parameter αi decreases
and becomes negative. This means a larger negative contribution to bias from web panel
elements with small “observed” propensity scores (1.13). For example, for any δi in the
whole region βi > 0 relative bias is very small for αi > 0 but becomes substantially
negative for αi < 0. The situation is similar for βi < 0, when both β and δi are not too
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negative.
Asymptotic expressions for ai in the limit βi → ±∞ can be easily obtained from the
general formula ( 2.3a-c):

β →∞; (2.8a)

ai →
2d exp(αi)(1 + exp(αi))

(1 + d exp(αi))(1 + 2 exp(αi))
− 1,where

d = 1 + exp(δi)(1 + 2 exp(γi))

β → −∞; (2.8b)

ai → [exp(δi)(1 + exp(γi))]
−1 − 1

For β → ∞ relative bias is driven by the value of exp(αi). Large positive αi corresponds
to almost unbiased expectation ai → 0. As αi becomes more negative, relative bias grows
in a negative direction.
In the limit βi → −∞, relative bias strongly depends on exp(δi). Expression (2.8b) shows
that ai → −1 for all αi when exp(δi) � 1. In the opposite limit δi → −∞, relative
bias ai → 1 for all values of αi. This unrealistic scenario was not plotted in Figure 1.
For moderately negative δi relative bias ai goes through the positive maximum and then
becomes negative again as βi further decreases.
The dependence of relative bias on model parameters presented in Figure 1 was calculated
for maximum heterogeneity ϕi(0) = 0.5 of an unobserved covariate U . Relative bias is
expected to decrease proportionally (2.7a-b) when ϕi(0) becomes smaller.

Conclusions and practical implications

In Section 1, we derived a general expression (1.5) for the expectation EY [Y ] of target
variables over population data utilizing the expectation of Y over web panel data divided
by web panel inclusion probability P (Z = 1|Y,X). Because the inclusion probability de-
pends on outcome variable Y , it cannot be calculated in practice. However, if auxiliary co-
variates X closely correlate with Y , the dependence of the web panel inclusion probability
on Y can be reduced and ultimately ignored (1.6). Such approximation reduces the “true”
inclusion probability to propensity score P (Z = 1|X), which allows estimating EY [Y ]
from web panel data (1.7). Bias of this approximation depends on how closely inclusion
probability P (Z = 1|X,Y ) can be approximated by propensity score P (Z = 1|X).
In Section 2.2 we demonstrated that when the effect of an unobserved covariate on the
propensity score (2.2b) is small (βi � 1), the resulting relative bias is also small and
proportional to βi (2.7a-b). It was also shown to be small when unobserved covariate U
is homogeneously distributed ϕi(0) � 1 for a given observed covariate xi and when the
population distribution of outcome variable Y is independent of U .
However, relative bias may substantially deviate from zero when the effect of an unob-
served covariate on the propensity score is significant. Dependence of relative bias ai for a
given observed variable xi in a wide range of model parameters was plotted in Figure 1.
Results of this paper suggest that bias of estimates from a web panel data might be small
when observed covariate(s) X used for modeling the propensity score are strongly corre-
lated with an outcome variable Y . For example, in the context of health surveys this means
that using only demographic covariates for calculating the propensity score may be insuffi-
cient, because it’s easy to imagine two groups of people who are demographically identical
but who have different health characteristics and propensity to join a web panel. These
differences may be due to characteristics other than demographic ones, such as cultural and
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social habits, genetic traits, etc.
Common life experience teaches us that generally one cannot count on a “free lunch”.
Planners of a probability survey may rely on stratification by demographic variables alone
because they apply the random mechanism of sample selection within predefined strata.
However, this method involves significant effort and expense related to correct definition
of survey frame, random sample selection and data collection activities.
When web panels are used for estimation of general population characteristics, even select-
ing a demographically “representative” web panel does not provide a guarantee of random-
ness, because people who agree to join a web panel may be substantially different from
the rest of the population. The solution in this case is to accumulate as much information
as possible about both the web panelists and the general population, which could be used
for modeling the propensity score. Importantly, this information must be closely correlated
with the outcome variables to be estimated from the web panel data.
It’s possible to work systematically to reduce bias of estimates from web panel data when
a web panel is used as a supplement to a regular probability survey, often referred to as a
reference survey. Survey planners must decide in advance how they are going to spread
questions between the web panel and the reference survey. There must be a carefully se-
lected limited group of questions Ys, shared by both the reference survey and the web panel.
These questions must be potentially strongly correlated with questions Yw slated to the web
panel only. Presuming a strong correlation between Yw and Ys, we can estimate the web
panel inclusion probability P (Z = 1|X,Yw) by the propensity score Ps (Z = 1|X,Ys).
Propensity score Ps can be estimated from data collected from the web panel and the refer-
ence survey. Resulting bias of estimates will depend on the degree of correlation between
Yw and Ys.
The list of shared variables Ys must be informative enough to substitute for Yw, but it does
not have to be very extensive. Our research suggests that it does not make sense to have
shared questions which assume a high degree of homogeneity of responses from certain
demographic groups. For example, it does not make sense to ask young people if they have
a chronic cancer condition, but it does make sense to ask this question of people above 65
years of age.
The statistical findings of this paper suggest that survey planners can use a combination of
web panels and reference probability surveys to work systematically on reducing bias of
estimates from web panels. Further research is needed to refine the implementation of this
methodology.
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