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Abstract 
There are two basic methods for the adjustment of non-interviews.  In both you adjust the 
interviews for the non-interviews by applying a factor that is sometimes described as the 
inverse of the probability of completing an interview.  One way to calculate the factor is 
directly as the ratio of the weighted count of eligible units (both completed interviews 
and non-interviews) with the weighted count of completed interviews.  This is often done 
within cells to reduce bias, where cells are groups of similar units. 
 
A different method is to model the probability of completing an interview using a general 
linear model.  One problem with a model is that the results may not be tied to the 
weighted totals of eligible units that includes both the completed interviews and non-
interviews.  That is, the resultant probability may produce weighted counts that are less 
than or greater than the weighted total of eligible units.   
 
This paper discusses using a logistic regression model that is constrained: either to the 
weighted totals of the eligible units, totals of the variables used in the model, or totals of 
other variables that normally would be used in calibration or a ratio adjustment. 
 
Key Words: calibration, noninterview adjustment, logistic regression. 
 
 

1. Introduction 
 
This paper considers using a propensity model to account for noninterviews in survey 
weights.  We add calibration constraints to the optimization so that the weighting 
adjustment accounts for noninterviews and is calibrated to known totals.  To deal with 
large weights that can result from a model, we consider inequality constraints and a 
modified link function to limit the magnitude of the weights.   
 
Our motivation is two-fold.  First, can we simplify the weighting and have one 
adjustment instead of two separate adjustments.  A single adjustment would be 
operationally easier.  Second, would a single weighting adjustment better reduce 
nonresponse bias.  Here, we assume that if two weighting adjustments are used, the 
impact of the first adjustment is diminished by the application of second. 
 
Several authors have considered using calibration and/or propensity models to account 
for nonresponse in surveys.  Folsom (1991), Folsom and Singh (2000) adjust for 
nonresponse with a model and calibrate to the variables used in the model.  Bethlehem 
(1988) and Lündstrom and Särndal (1999) and Särndal and Lündstrom (2005) have 
suggested calibration as a method of adjusting for nonresponse.  Kim and Kim (2007) 
and Kim and Riddles (2012) have explored logistic regression models with calibration 
and Kott (2004, 2006), Chang and Kott (2008), Kott and Chang (2010), Kott and Liao 
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(2012) have a series of papers that examine calibration as a means of accounting for 
nonresponse. 
 
1.1 Notation 
 
First we define s as the sample and r as the set of respondents from the sample ( sr  ).  
We define Ik as a Bernoulli random variable that represents that unit k is in the sample, 
i.e.,  
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We define the probability of selection for unit k as    1 kkk IPIE  and the design 

weight as 1 kkd  .  We also define Rk as a Bernoulli random variable that represents 
that unit k completes an interview, i.e.,  
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Then in terms of Rk and Ik , we define the probability of the kth unit completing an 
interview given that it is in the sample as    skrkPIRE kkk  |1| .  The 

parameter k , is often called the “response probability” or the probability of completing 
an interview. 
 
1.2 Review of Weighting Class Method 
The method often used to adjust survey weights for noninterviews is the weighting class 
method.  Auxiliary information xk is available for all sample units and has some 
association with response Rk.  Groups of sample units, often called cells, with similar 
probabilities of response k  are defined using xk.  Within each cell, an estimate of k  is 
calculated as  the ratio of weighted completed interviews or respondents with the sum of 
weighted completed interviews and noninterviews, i.e., 
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k
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1.3 Propensity Methods  
An alternative method for estimating k  is to model it directly with a propensity or 
logistic regression model.  Here instead of using the variables xk to form cells, we use xk 
in the model.   To estimate k , we calculate the maximum likelihood estimator (MLE) of 

k .  To do this we maximize the log-likelihood as in McCullagh and Nelder (1989, p. 
114) as 
 

     



rsk

k
rk

kk  1loglog|xβ  (1) 

 
where we relate the linear model βxk  to the response probability k  with the logit or 
logistic link function (McCullagh and Nelder 1989, p. 108), i.e.,   
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We know that  10  k  and thereby 
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1
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The logit link is one of several link functions we can use with a binary response variable.  
Figure 1 is a graph of the three common link functions.  The horizontal axis is the 
possible values of the link function on the interval (0,1) and the vertical axis is the value 
of the linear model βxk . 
 
 

 
Figure 1: Link functions for binary response variables 

 
 

Here   kpkjkkk xxxx ,...,,...,, 21x  is a p x 1 vector of auxiliary information that is 

associated with response/nonresponse for unit k.  Also,   pj  ,...,,...,, 21β  is the p 

× 1 parameter vector.   
 

2. Proposed Propensity Method 
 
In this section, we show how we can add calibration constraints to a logistic regression 
model.  We also discuss how to limit the extreme values predicted by the model by using 
either inequality constraints or a modified link function. 
 
2.1 Noninterview Adjustments that Happen to be Calibrated 
One of the properties of the weighting class method is that within cells  
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Having the sum of the weights before and after the nonresponse adjustment be equal to 
each other is not necessary, but many people are comfortable with this result.  With a 
propensity model, this constraint is not usually met and the sum for the two totals can 
vary considerably.  We can add (3) as a constraint to the solution of the optimization of 
(1) and then the solution finds the MLE that is also consistent with (3).  We can 

generalize to calibration constraint involving a general auxiliary variable 0
kz  in three 

different ways.  We can calibrate the estimated totals of 0
kz  using only the respondents to 

estimated totals of 0
kz  using only the respondents, i.e., 
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or we can calibrate the estimated totals of 0
kz  to the calculated known total of 0

kz , i.e., 
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or we can calibrate the estimated totals of 0
kz  to a given total of 0

kz , i.e., 
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. (6) 

 

The differences between the calibration constraints (4), (5), and (6) are how 0
kz  is known.  

The calibration constraint (4) says that we know 0
kz  for all sample units – both 

respondents and noninterviews.  The calibration constraint (5) says that we know 0
kz  for 

all units in the universe of interest and (6) refers to a known total or benchmark that is 

given where we do not need to know 0
kz  for all units in the universe of interest.  See also 

Särndal and Lündstrom (2005; section 6.2) for further discussion on the types of known 
totals. 
 
To deal with the problem of extreme values θk, we can constrain the factors directly in the 
optimization of (1).  This means that we add the inequality constraint θk, ≥ bk to the 
optimization problem for each rk .   This insures that the estimated response 
probabilities do not become too small so that the adjustment factor is too large and 
thereby becomes an influential observation with respect to the variance.  In the sections 
that follow, we will refer to this type of constraint as the extreme value constraint (EVC).  
To solve the optimization problem – maximizing (1) with the inequality constraint 
requires the estimation of a parameter for each rk .  Computationally, the estimation of 
many parameters becomes burdensome.  The next section considers an alternative 
solution for applying the EVC. 
 

JSM2015 - Survey Research Methods Section

137



 

 

2.2 Methods with Built-in Bounds on the Noninterview Factor 
 
To deal with the problem of estimating small values of θk, we can modify the link 
function so that it does not have extreme values.  We define the probability of response as 
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With this new link function, we know that  1
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when ak = 1 and bk = ∞, sk . 
 

Figure 2 is similar to Figure 1, but it shows the values of the proposed k
~

 for ak = 1 and 
varying values of bk = ∞, 100, 10, 5, and 4. 
 

 

 
Figure 2: k

~
 for Varying Values of bk 

 

Using k
~

 instead of θk, we can deal with extreme values as in methods 2 and 3 but have 
less parameters in our objective function to minimize.   
 
2.3 Calibration Adjustments that Happen to Account for Noninterviews  
We now discuss two alternative methods that are similar to the methods already 
discussed that we will include in our comparison demonstration.  Both methods use θk, as 
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defined in (1) and both apply calibration constraints.  The first is a special case of the 
second, but the two methods involve different solutions. 
 
2.3.1 Folsom’s Method (1991) 
From Folsom (1991) and mentioned in Kim and Riddles (2012), find the parameter β 
with the calibration constraint 
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The probability of response is defined as  βxα- kek
 11  which is the same as (2) 

except it includes an explicit intercept term α in the linear model.   Folsom (1991) shows 
how (8) can be alternatively expressed as the p set of equations for which we solve for β 
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Note that xk is used in the model and in the calibration constraint and is defined as 
in (4) where zk = xk.    
 
2.3.1 Chang and Kott (2008) 
Chang and Kott (2008), which we will refer to as C&K from this point forward, 
generalize Folsom’s method so that it has variable xk related to nonresponse and variables 
zk that are known totals or benchmark variables.  The calibration constraint is as in (5).  

To estimate the parameter β, C&K note that the Taylor series expansion of zz TT ˆ  can 

be expressed as    εβ-ββHTT zz  ˆˆ  where  βH  is a p × q matrix with elements  
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An estimator that comes directly from the Taylor series expansion is 
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C&K suggest a “partial minimization” which starts by defining   β-β βHTTU zz
ˆˆˆ   

and the estimates the parameter β by minimizing   UUvU  where we treat  Uv  as a 
constant.  The updating equation is given as 
 

                        zz TβTβUvβHβHβUvβHββ 
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C&K discuss several ways of defining the covariance matrix v(U).  For our comparison, 

we define it similar to (5) in C&K in terms of a two-phase variance of zT̂  as  
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which we alternatively express in compact matrix notation as    Z ΠΠZTv 2z  1
ˆˆ , 

where the p × nr data matrix is defined as concatenation of the vector zk for each rk , 
i.e.,   

rn21 zz|zZ |...|  and the nr × nr covariance matrices for the first and second 

phases of the sample design are 1Π  and 2Π , respectively.  The kth row and  th column of 

1Π  is defined as      kkkkk 1  and we can define the second phase 

covariance matrix simply as       θdiagIθ θ  πdiagΠ  1
2 ## .  For the purpose of the 

demonstration, we define the second order selection probability k  for unequal sys from 

a randomly ordered list as provided by Overton (1985).   
 
 

3. Demonstration of Proposed Propensity Method 
 
This section is devoted to a simple demonstration of the five methods using a small 
fictitious data set.  The example involves p = 3 variables that are expected to be related to 
nonresponse.  We also have q = 2 variables that we want to constrain to known totals.  
The data set had 32 sample units: 10 completed interviews and 22 noninterviews.  The 

dataset was constructed such that two sample units had that 1
k  > 4.0 when θk is 

estimated from a logistic regression model using xk and no constraints.   

We used the Newton-Raphson method to solve all of the optimization problems.  We did 
this by finding first- and second-order derivatives which were then used to define the 
updating equations.  The Newton-Raphson methods that we used can be found in a 
general text on optimization such as Nocedal and Wright (2006). 

 

Results are provided for all of the noninterview ajdustments discussed.  The results for 
the MLE with the built-in bounds is reviewed separately and after all the other methods.   

 

3.1 Constrained MLE 
Tables 1 and 2 provide the results of maximizing (1) with different constraints.  Table 1 
models with xk and calibrates on zk, where Table 2 models and calibrates with xk.  The 
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columns of Table 1 and 2 vary by the set of constraints or whether Folsom or C&K was 

used.  The first 10 rows of Tables 1-4 show the actual noninterview factor 1
k for the 10 

completed interviews.  The next three rows show the estimated model parameters beta 
and the final two rows show the estimated totals of on zk. The estimated totals in blue 
bold indicate that the estimated totals are consistent with the known totals.  When the 

EVC was applied, it constrained the factors such that 1
k ≤ 4.0. 

In Table 1, sample units 6 and 7 have weights larger than 4 for all methods except when 
the EVC was used.  We also note that the parameter estimates were all in the same 
neighborhood except with the CC & EVC.  It seems that using both sets of constraints 
can lead to an odd choice of parameter estimates and weights.  

 
Table 1: Factors for Methods Involving θk  -- Calibrating with zk and Modeling with xk   

Sample Unit No CC EVC CC & EVC C&K 
1 2.0000 2.0000 2.0000 1.6000 2.0000 
2 2.1785 1.8873 2.1625 3.9161 2.4667 
3 2.1785 1.8873 2.1625 3.9161 2.4667 
4 1.5707 1.1876 1.5953 1.0000 1.1237 
5 3.7336 6.4308 3.5807 4.0000 5.3403 
6 4.2215 5.8185 4.0000 4.0000 7.3660 
7 4.2215 5.8185 4.0000 4.0000 7.3660 
8 2.3237 2.1484 2.3215 2.1565 1.3661 
9 2.5600 2.0189 2.5362 3.9660 1.5370 

10 2.5600 2.0189 2.5362 3.9660 1.5370 
β1 -1.0056 -1.6921 -0.9480 -26.3450 -1.4680 
β2 0.7252 1.5537 0.6693 24.4250 2.4727 
β3 -0.1642 0.1196 -0.1506 -4.9347 -0.3830 

Est. Total z1 19,555 21,325 19,141 21,325 21,325 
Est. Total z2 25,120 28,675 24,483 28,675 28,675 

 
Table 2 adds Folsom’s method so we need to both model and calibrate with xk .  Three of 
the methods have the same exact solution:  CC, Folsom, and C&K.  We do not know why 
this is so, but we think it is because using the same auxiliary vector in both the model and 
the CC locks the solution.   
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Table 2: Factors for Different Involving θk  -- Calibrating with xk and Modeling with xk   

Sample Unit No CC EVC CC & EVC Folsom C&K
1 2.0000 2.0000 2.0000 1.6000 2.0000 2.0000
2 2.1785 2.5177 2.1625 2.5336 2.5177 2.5177 
3 2.1785 2.5177 2.1625 2.5336 2.5177 2.5177 
4 1.5707 1.7484 1.5953 1.4573 1.7484 1.7484 
5 3.7336 2.8601 3.5807 2.9352 2.8601 2.8601 
6 4.2215 3.8231 4.0000 3.6513 3.8231 3.8231 
7 4.2215 3.8231 4.0000 3.6513 3.8231 3.8231 
8 2.3237 1.9172 2.3215 1.7144 1.9172 1.9172 
9 2.5600 2.3921 2.5362 2.6999 2.3921 2.3921 

10 2.5600 2.3921 2.5362 2.6999 2.3921 2.3921 
β1 -1.0056 -0.6206 -0.9480 -1.9838 -0.6207 -0.6207
β2 0.7252 0.7071 0.6693 1.7605 0.7071 0.7071 
β3 -0.1642 -0.1472 -0.1506 -1.4311 -0.1472 -0.1472 

Est. Total x1 4,974 4,375 4,823 4,375 4,375 4,375
Est. Total x2 2,602 2,400 2,596 2,400 2,400 2,400 
Est. Total x3 4,437 4,300 4,316 4,300 4,300 4,300 
 

 
3.2 Constrained Logit Model 
Tables 3 and 4 provide the results of applying the constrained logit model of section 3.2.  
Table 3 only includes the constraint for extreme values and Table 4 constrains for 
extreme values and the calibration constrains on zk.  The columns of Table 3 and 4 vary 

the values of bk such that 1~
k ≤ bk.   

 

Table 3: Factors for k
~

 and the Constrained Logit Model 

 Constrained so that 1~
k ≤ … 

Sample Unit ∞ 100 10 5 4 
1 2.0000 1.9802 1.8182 1.6667 1.6000 
2 2.1785 2.1700 2.1158 3.5000 3.5000 
3 2.1785 2.1700 2.1158 3.5000 3.5000 
4 1.5707 1.5648 1.5033 1.0000 1.0000 
5 3.7336 3.7156 3.6357 5.0000 4.0000 
6 4.2215 4.2305 4.3256 5.0000 4.0000 
7 4.2215 4.2305 4.3256 5.0000 4.0000 
8 2.3237 2.3217 2.3295 5.0000 4.0000 
9 2.5600 2.5766 2.7728 5.0000 4.0000 
10 2.5600 2.5766 2.7728 5.0000 4.0000 
β1 -1.0056 -1.0369 -1.4210 -46.6732 -50.4049 
β2 0.7252 0.7345 0.8710 27.2002 26.7462 
β3 -0.1642 -0.1790 -0.3475 -2.1203 -2.9957 

Est. Total z1 19,555 19,561 19,790 30,100 21,325 
Est. Total z2 25,120 25,141 25,604 38,475 28,675 
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We see in Table 3 that applying more stringent constraints on the solution had an adverse 
impact – the  

 
Table 4: Factors for k

~
 and Constrained Logit Model with Calibration Constraints 

 Constrained so that 1~
k ≤ … 

Sample Unit ∞ 100 10 5 4 
1 2.0000 1.9802 1.8182 1.6667 1.6000 
2 1.8873 2.5066 1.9555 2.2294 3.9161 
3 1.8873 2.5066 1.9555 2.2294 3.9161 
4 1.1876 1.7418 1.1231 1.0000 1.0000 
5 6.4308 2.8464 5.7003 5.0000 4.0000 
6 5.8185 3.8247 6.0843 5.0000 4.0000 
7 5.8185 3.8247 6.0843 5.0000 4.0000 
8 2.1484 1.9108 2.0189 2.3265 2.1565 
9 2.0189 2.4005 2.1851 3.0960 3.9660 
10 2.0189 2.4005 2.1851 3.0960 3.9660 
β1 -1.6921 -0.6421 -2.3917 -10.3212 -51.9975 
β2 1.5537 0.7163 2.1474  9.4127  51.0775 
β3 0.1196 -0.4352 -0.1721 -0.7972 -4.9347 

Est. Total z1 21,325 21,325 21,325 21,325 21,325 
Est. Total z2 28,675 28,675 28,675 28,675 28,675 

 

In Table 4, we again see that that applying more stringent constraints on the solution had 
an adverse impact, but the calibration constrains seemed to help the optimization problem 
by helping the updating equations keep the solution close to the.   
 
Table 2 adds Folsom’s method so we need to both model and calibrate with xk.  Two 
things are interesting.  First, the additional CC seems to help the 
 

4. Conclusions 
 
Our goal was to combine the noninterview adjustment and calibration adjustment and 
thereby have a single weighting adjustment.  We have shown how a propensity model 
can be applied with different types of calibration constraints. The calibrated propensity 
adjustment makes sense because it finds weighting factors that satisfy the calibration 
constraints and makes the most sense as a noninterview adjustment.   

 
Any views expressed are those of the author(s) and not necessarily those of the U.S. 
Census Bureau. 
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