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Abstract
Most survey designs contain revealing information about the geographic locality of the sampled

items. When combined with other sources, such information could violate the confidentiality of the
survey data. We propose the modification of existing methods for masking design information by
constructing combined strata variance estimators. In our approach variance estimation error is min-
imized conditionally on the realized PSU selection, which is often different from the optimal way of
selecting PSU with probability proportional to their size (PPS). Advantages of the proposed method
for combining strata over other methods are demonstrated by comparing relative deviations between
standard errors of the estimates of totals and means calculated using grouped and ungrouped strata.
Coverage of the finite population target variables by their estimated confidence intervals is analyzed
in a simulation experiment for different ratios between variability of the target variables and PSU
sizes. Optimal properties of the proposed method for grouping strata are validated in application to
real survey data.

Key Words: confidentiality, stratified clustered sampling, PPS sampling, variance estimation,
degrees of freedom.

Introduction

The idea of combining design strata and PSU for approximate variance estimation origi-
nated with replication methods for variance estimation, such as Jackknife (JK)and balanced
repeated replication (BRR); see McCarthy (1966), Wolter (1985), Lee (1972, 1973), Rust
(1984) and Nixon et al. (1998). The main initial goal was to reduce the large number of
replicates to accommodate the limited computer power of the day. Usually, a large number
of replicates is required when self-representing primary sampling units (PSU) were treated
by survey designers as strata and, sometimes, thousands of secondary sampling units (SSU)
were considered PSU. In such cases, application of the popular BRR method for variance
estimation becomes possible in the form of alternative BRR (ABRR) (Wolter (1985), pp
132-133). This method entails creating multiple variance strata by randomly pairing PSU
from the original strata. Rao and Shao (1996) have proved that ABRR is asymptotically
correct. Lu et al. (2006) proposed a consistent methodology for grouping variance strata in
order to simultaneously maximize degrees of freedom in the specified domains. In most of
the cited literature, the main criterion for finding the best method for combining strata and
PSU was maximizing the degrees of freedom calculated by a Satterthwaite approximation
using combined design information.
Mayda et al. (1996) proposed combining strata and PSU to protect confidentiality of the
public use microdata files released by the Canadian National Population Health Survey.
They compared coefficients of variations for totals, ratios and regression coefficients es-
timated for collapsed and uncollapsed survey designs using Jackknife replication method.

The findings and conclusions in this paper are those of the authors and do not necessarily represent the
views of the National Center for Health Statistics, Centers for Disease Control and Prevention.
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Their conclusion was that collapsing strata does preserve confidentiality without negatively
affecting the variance estimate. However, the authors suggested that variance estimated
from collapsed design could be unstable for rare characteristics and within small domains.
In this paper we further develop approaches for combining strata presented by Lu et al.
(2006) and apply them for masking the original survey design information in public use
microdata files (PUF) for confidentiality protection.We investigate how combining strata
and PSU changes estimated variances and how it affects the coverage of finite population
values. To the users of PUF, such information provides confidence in the usability of a
masked survey design for variance estimation. This question is closely related to the reduc-
tion of degrees of freedom associated with grouping strata. In fact, part of the expression
for the expected squared deviation between variances estimated from grouped and original
ungrouped designs obtained in this paper was used by Lu et al. (2006) for degrees of free-
dom calculation.
Variances in strata are presented as a sum of contributions from the variability of the target
variable between PSU and the variability of PSU sizes in a given sample. The squared
difference between variances of the totals calculated using grouped and ungrouped strata
and PSU d2

(
Ŷ
)

is estimated in Section 1 by taking expectation conditional on the PSU
sizes. One term of the resulting expression is similar to the result of Lu et al. (2006), but
variance per stratum explicitly reflects variability between PSU sizes. Other terms, absent
in Lu et al. (2006), depend on the particular way of combining PSU within paired strata. A
two-step algorithm for combining strata and PSU is proposed in Section 2 to minimize dif-
ferent terms of the expression for the squared difference between grouped and ungrouped
variance estimates of the totals. The first step establishes the optimal way of combining
strata and is a variant of algorithms proposed in Lee (1972, 1973) and Lu et al. (2006),
simplified for the needs of pairing strata for confidentiality protection. At the second step
PSU are optimally paired within combined strata to minimize another term of d2

(
Ŷ
)

. We
conduct simulations to compare the grouped and ungrouped variances of the means and to-
tals and also to compare the coverage properties of the corresponding confidence intervals.
Simulations are described and their results are presented in Section 3. Results of applying
the proposed algorithm to real survey data are discussed in Section 4. Conclusions about
the possibility of pairing strata and PSU for confidentiality protection and retaining utility
of the aggregated design for reliable variance estimation are presented in Section 5.

1. Error of variance estimation using aggregated survey design

1.1 How grouping strata and PSU changes variance estimators

To simplify our treatment we consider classic survey design, namely two PSU per strata.
Grouping of strata results in two or more original strata h ∈ 1 . . . H combined in one
grouped stratum g ∈ 1 . . . G with two PSU. Each aggregated PSU (gi), i = 1, 2 includes
one of the PSU from every original stratum. Variances estimated assuming grouped and
ungrouped survey designs should not be the same. We need to minimize their difference
for the given sample by choosing the optimal strategy for grouping strata h and PSU (hi).
If PSU were not sampled with probability proportional to size (PPS), the measure of size
Nhi =

∑
j∈(hi)whij is different between PSU of the same strata. Then, the familiar ex-

pression for the variance of the total Ŷ =
∑

swhijyhij estimated from the stratified sample
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with replacement (WR) with two PSU per strata:

v
(
Ŷ
)

=
1

4

H∑
h=1

(Yh1 − Yh2)2 (1.1)

where Yhi =
∑

j∈(hi)
whijyhij is weighted sum in PSU (hi), may be presented as the con-

tribution from two sources of variability. One originates from the stochastic variability
between weighted means in PSU ȳhi = Yhi/Nhi. Another is due to the difference between
PSU sizes in strata ∆Nh = Nh1 − Nh2 observed for the given sample. In these notations
(1.1) becomes:

v
(
Ŷ
)

=
1

4

H∑
h=1

N2
h (ȳh1 − ȳh2 + ∆Nh,relȳh)2 =

1

4

H∑
h=1

z2h (1.2)

where Nh = Nh1 + Nh2 is estimate of strata size, ȳh = (ȳh1 + ȳh2)/2 is mean of target
variable in strata and ∆Nh,rel = (Nh1 −Nh2)

/
1
2Nh is relative difference of PSU sizes in

strata.
Variance of the total estimated from the grouped design can be derived from (1.1) and (1.2)
and expressed using estimates in the original strata:

vg

(
Ŷ
)

=
1

4

G∑
g=1

(
Ŷg1 − Ŷg2

)2
=

1

4

G∑
g=1

∑
h∈g

(
Ŷh1 − Ŷh2

)2

=
1

4

G∑
g=1

∑
h∈g

zh

2

=

1

4

G∑
g=1

∑
h∈g

z2h +
1

4

G∑
g=1

∑
h6=h′∈g

zhzh′ = v
(
Ŷ
)

+ d
(
Ŷ
)

(1.3)

Variances estimated using grouped and ungrouped designs differ by d
(
Ŷ
)

. Conditions for
the optimal way of grouping strata will follow from the minimization of the squared value
of this term:

d2
(
Ŷ
)

=
1

16

G∑
g,g′=1

∑
h6=h′∈g
k 6=k′∈g′

[
(AhAh′ +DhDh′)(AkAk′ +DkDk′)+

(AhDh′ +Ah′Dh)(AkDk′ +Ak′Dk)+

(AhAh′ +DhDh′)(AkDk′ +Ak′Dk) + (AhDh′ +Ah′Dh)(AkAk′ +DkDk′)

]
(1.4)

where notations Ah = Nh (ȳh1 − ȳh2) and Dh = Nh(∆Nh,rel)ȳh are used for brevity.

1.2 Expectation conditional on PSU sizes

Variance estimates (1.2) - (1.3) are expressed as statistics depending on two random vari-
ables defined at the PSU level: weighted mean of the target variable ȳhi and weighted PSU
size Nhi. In this paper we are interested in minimizing the difference between estimates
of the variance using grouped and ungrouped PSU and strata conditionally on the given
sample. We consider such an approach more relevant to practical situations when PSU are
combined for confidentiality protection after the particular sample was selected.
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Taking expectation over the distribution of target variable ȳhi we assume the following:

E (ȳhi) = ȳh (1.5a)

E [(ȳh1 − ȳh2) (ȳh′1 − ȳh′2)]/2 = δhh′σ2yh (1.5b)

where δhh′ = 1 if h = h′ and 0 otherwise. Then, conditional expectation of ungrouped
variance estimator(1.2) over the distribution of ȳhi is:

Eyhi

[
v
(

ˆ̄Y
)
|Nhi

]
=

1

4

H∑
h=1

2N2
h

[
σ2yh +

(
∆N2

h,rel/2
)
ȳ2h
]

=
1

4

H∑
h=1

2σ̃2h (1.6)

where the contribution from each stratum h to the variance estimator includes the sum of co-
efficients of variation of target variable and PSU sizes 2σ̃2h = 2N2

h ȳ
2
h

(
CV 2(ȳhi) + ĈV 2(Nhi)

)
.

CV (x) = StdErr(x)/E(x) denotes coefficient of variation of random variable x.
Conditional expectations of the individual terms contributing to the squared difference be-
tween ungrouped and grouped variance estimators (1.4) can be expressed using moments
of the distribution of ȳhi (1.5a-b) :

Eyhi

[
AhAh′AkAk′ |Nhi

]
= 4NhNh′NkNk′σ

2
yhσ

2
ykδgg′ [δhkδh′k′ + δh′kδhk′ ] (1.7a)

Eyhi

[
AhDh′AkDk′ |Nhi

]
= 2NhNh′NkNk′σ

2
yh(∆Nh′,relȳh′)(∆Nk′,relȳk′)δgg′δhk (1.7b)

Eyhi

[
DhDh′DkDk′ |Nhi

]
= NhNh′NkNk′∆Nh,relȳh∆Nh′,relȳh′∆Nk,relȳk∆Nk′,relȳk′ (1.7c)

Expectation of the rest of the terms in (1.4) is 0 because they include either an odd number
of multipliers Ah or these multipliers clearly belong to different strata of the same group
AhAh′ , h 6= h′. Using (1.7a-c), and after some straightforward algebra, expectation of
the squared difference between grouped and ungrouped variance estimators (1.4) could be
written as:

Eyhi

[
d2
(
Ŷ
)
|Nhi

]
=

1

2

 G∑
g=1

∑
h∈g

σ̃2h −
1

G

 G∑
g=1

∑
h∈g

σ̃2h

2

+
1

G

 G∑
g=1

∑
h∈g

σ̃2h

2

−
G∑

g=1

∑
h∈g

σ̃4h

+

1

2

G∑
g=1

∑
h6=h′ 6=k∈g

N2
hNh′Nkσ

2
h∆Nh′,rel∆Nk,relȳh′ ȳk+

1

16

 G∑
g=1

∑
h6=h′∈g

NhNh′∆Nh,rel∆Nh′,relȳhȳh′

2

−

− 1

8

G∑
g=1

∑
h6=h′∈g

N2
hN

2
h′∆N2

h,rel∆N
2
h′,relȳ

2
hȳ

2
h′ (1.8)
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2. Optimal algorithm for combining strata and PSU

The basic features of the proposed algorithm for combining strata and PSU can be easily
described in application to the simplest survey design assuming an even number of strata
H with 2 PSU in each stratum. Pairing of original strata will result in G = H/2 combined
strata each having 2 combined PSU.
The optimal algorithm for combining strata and PSU should minimize expectation of the
difference between grouped and ungrouped variance estimators (1.8) conditional on the
sampled PSU. The 1st term of this expression depends only on the grouping of strata. Min-
imizing this term is identical to maximizing degrees of freedom of variance estimators
discussed in Lu et al. (2006). However, in this approach, variances in strata σ̃2h explicitly
depend on the variability of PSU sizes (1.6). Minimization is achieved if the original de-
sign strata h are grouped to insure approximate equality of the combined variance in every
group

∑
h∈g σ̃

2
h. Application of the semi-ascending order arrangement (SAOA) algorithm

proposed by Lee (1972, 1973) will allow one to achieve this goal. It is particularly simple
in the case of grouping only two design strata for confidentiality protection:

1. Sort the H design strata in descending order of σ̃2h.

2. Rearrange the last H/2 strata in ascending order of σ̃2h.

3. Combine each stratum i ∈ 1 . . . H/2 with stratum (i + H/2) to form G = H/2
grouped strata.

After the grouping of strata is defined, some other terms of (1.8) can be minimized by the
proper grouping of PSU within combined strata. Minimizing these terms is simplified when
only two design strata are combined within each group, which is often sufficient for confi-
dentiality protection in practice. In such case the 2nd term disappears because it results from
grouping 3 design strata. The 3rd term includes squared sum of contributions from paired
design strata over all groups. Below we will assume that the means of the target variable ȳh
are equal between strata. The sign of the contribution to this sum from a group (h, h′ ∈ g)
depends on the relative sizes of the combined PSU. Combining larger (or smaller) PSU
together produces positive contribution, but combining larger PSU from one stratum to
smaller PSU from another produces negative contribution. To be specific, suppose that for
both paired strata the first PSU is larger than the second N(h,h′)1 > N(h,h′)2. Under these
assumptions we propose the following algorithm for grouping PSU to minimize the 3rd

term of (1.8).

4. Order all combined strata in descending order of their absolute contribution to the
sum of the 3rd term

∣∣NhNh′∆Nh,rel∆Nh′,rel

∣∣.
5. For the first combined stratum, pair PSU from both design strata with the same num-

bers (h1)↔ (h′1) and (h2)↔ (h′2), producing a positive contribution to the sum.

6. For the second strata, combine PSU with different numbers (h1) ↔ (h′2) and
(h2)↔ (h′1), producing a negative contribution to the sum.

7. Keep progressing over the ordered combined strata while checking the running sum
at each step. If this sum is positive, combine PSU with different numbers producing
a negative contribution, and vice versa. Then move to the next step.

Because of the descending ordering of the combined strata at Step 4, the absolute values
of contributions from the consecutive steps are decreasing. Such a process is guaranteed
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to minimize the 3rd term of (1.8) as much as possible for the given collection of combined
strata. The 4th term includes

(
∆Nh,rel∆Nh′,rel

)2 and does not depend on the particular
grouping of PSU within combined strata.

3. Variance estimation errors and coverage of the finite population totals and means:
simulation experiment

The extent of the deviation between standard errors estimated using grouped strata SE(g)

and ungrouped design strata SE(d) can be assessed by their relative difference:

R(g) =
(
SE(g) − SE(d)

)/
SE(d) (3.1)

The algorithm described in Section 2 is supposed to minimize this deviation for a given
sample. However, specific details of the survey design and the need to satisfy practical
requirements for confidentiality protection may require some relaxations from the optimal
algorithm. A conducted simulation experiment illustrates the effect of these deviations on
the estimated standard errors of the estimates of means and totals and on the coverage by
the associated confidence intervals.

3.1 Simulating synthetic finite population and sample selection

For the synthesized finite population we assumed a two-level clustered design with PSU
stratified in n = 36 strata. According to the mathematical formalism developed in Section
1, expectations of variance (1.6) and squared difference between grouped and ungrouped
variance estimators (1.8) over the distribution of target variable yhi depend on survey de-
sign through the dependence on the strata sizes in population Nh and the difference of PSU
sizes ∆Nh within strata.
Characteristics of the synthetic population and sampling were modeled after real survey
data: sample size in strata Mh and average PSU sample size (considering 2 PSU per strata)
mh = Mh/2, variance of PSU sample sizes mhi relative to the mean sampled PSU size
m(s) = 1/(2n)

∑
h,imhi over all strata v2(s) = 1/(2n)

∑
h,i (mhi/m(s) − 1)2. For each

strata we postulated weights of selecting PSU at the first level w(1)
h and units within PSU

at the second level w(2)
h to ensure that the weighted size of the strata in the simulated pop-

ulation was 10% of the strata size in real survey to keep in check the amount of computing
time. PSU selection weight w(1)

h was assigned values no less than 5 to ensure sufficient
variability of simulated samples.
Sample sizes in PSU were randomly generated for each strata from the normal distribu-
tion with mean value in that strata mh and relative variances v2(s) estimated for the whole

sample m(sim)
hi ∼ N

(
mh, (mhv(s))

2
)
. Extreme deviations from the mean were trimmed

by the lower 0.4mh and upper 1.6mh thresholds. The number of simulated population PSU
in strata h was 2w

(1)
h and the number of population units in every PSU was w(2)

h m
(sim)
hi .

We simulated binomial target variable yij for unit j in PSU i using the following normal-
binomial two-level distribution model:

logit (pi) = logit (p0) + vi; vi ∼ N
(
0, σ20

)
(3.2)

yij = Bin(pi)

Note that the simulated target variable was independent of stratum h in the population.
Random variability of the target variable between PSU significantly affects both expecta-
tions of variance (1.6) and squared deviation of the grouped variance estimator (1.8). Vari-
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ability of the target variable between PSU (1.5b) could be manipulated by changing the
standard deviation σ0 in (3.2). Three populations were simulated having target variables
with the same mean binomial probability p0 = 0.25 and three different standard deviations
σ0 = 1; 0.4 and 0.1, corresponding to the following coefficients of variation CV (ȳhi) =
0.62; 0.27 and 0.07. Variability between PSU sizes was the same for all populations with
coefficient of variation CV (Nhi) = 0.42.
From the simulated population, stratified clustered samples were drawn in two stages. At
the first stage, 2 PSU were selected with replacement in all 36 strata out of 2w

(1)
h population

PSU. At the second stage, there were m(sim)
hi units selected with equal probability without

replacement in every sampled PSU hi. Such sample selection provides for non-zero con-
tribution from variability between PSU sizes ∆Nh =

(
m

(sim)
h1 −m(sim)

h2

)
w

(1)
h w

(2)
h to the

estimated variance (1.2).

3.2 The difference between grouped and ungrouped variance estimates

In the course of simulations, Nsim = 1000 samples were drawn from one synthetic popu-
lation. Population means and totals and their standard errors SEmean and SEtot were es-
timated for every sample using the original design strata and the combined strata obtained
by different grouping methods. To investigate the importance of the different aspects of the
proposed algorithm for grouping strata, the following grouping methods were considered:

1. Grouping 1. Optimum algorithm proposed in Section 2.

2. Grouping 2. Strata were ordered by N2
hσ

2
yh instead of σ̃2h, ignoring the difference

between PSU sizes. PSU in the combined strata were grouped at random.

3. Grouping 3. Both design strata and PSU within strata were grouped at random.

4. Grouping 4. Strata were ordered by N2
hσ

2
yh. Within combined strata smaller PSU

of one design strata were preferably (with probability 0.8) grouped with larger PSU
from another design strata.

For all simulated samples, relative deviations between grouped and ungrouped estimates of
standard errors of the meansR(g)

mean and totalsR(g)
tot were calculated (3.1). Boxplot diagrams

of the distribution of these values over all samples are presented in Figure 1.
Relative deviations of the grouped-strata estimates of the standard errors of the means
R

(g)
mean were distributed very uniformly for all methods of grouping strata and variabili-

ties of the target variable (3.2). The proposed method (Grouping 1) did not offer much
advantage over less optimal methods. In all cases the medians of the distributions R(g)

mean

were located around 0, the interquartile range was found to be within ∼ ±10%, and most
of the observed relative deviations were localized within ∼ ±20%.
However, estimates of the standard errors of the total R(g)

tot demonstrated substantial sen-
sitivity to the method of grouping depending upon the relation between variability of the
target variable yhi and PSU sizes ∆Nh,rel. Three different cases were considered.
(a) Large variability of the target variable CV (ȳhi) ≥ CV (Nhi). Variability of R(g)

tot shows
small dependence on the method of grouping strata: Grouping 3 results in a wider in-
terquartile range and Grouping 4 produces noticeable negative shift of the median. Optimal
Grouping 1 is only marginally better than other methods.
(b) Intermediate variability of the target variable CV (ȳhi) ∼ CV (Nhi). R(g)

tot correspond-
ing to optimal Grouping 1 appears more tightly concentrated around 0 than for other group-
ings. Negative shift of the median for Grouping 4 becomes obvious.
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Figure 1: Distribution of the relative deviations between standard errors of the means
R

(g)
mean and totals R(g)

tot (3.1) estimated using different methods of grouping strata and the
estimates using design strata depending on the variability of the target variable yhi between
PSU (3.2): (a) σ0 = 1; (b) σ0 = 0.4; (c) σ0 = 0.1.

(c) Small variability of the target variable CV (ȳhi) ≤ CV (Nhi). Grouping 1 clearly dom-
inates other methods. Negative shift of the median for Grouping 4 becomes even more
pronounced. Random grouping of strata (Grouping 3) results in the largest spread of the
distribution of relative deviations. Ignoring the difference between PSU sizes (Grouping 2)
considerably increases the spread of relative deviations compared to Grouping 1.

3.3 Finite population properties of grouped and ungrouped variance estimators

Relative deviationsR(g) (3.1) quantify differences between standard errors estimated using
grouped and ungrouped strata. This is important for validating standard errors estimated
from public use micro data files with masked design information. Conducted simulations
also allow for investigation of finite population properties of different variance estimators:
deviation from the root mean squared error (RMSE) estimated over all simulations and
coverage of the finite population means and totals by the confidence intervals estimated
using grouped and ungrouped strata. Relative deviation between estimates of the standard

errors SEi for every simulated sample andRMSE =

√
1/Nsim

∑i=Nsim
i=1

(
Ŷi − Y

)2
can

be defined similarly to deviation between different variance estimates (3.1):

RRMSE
i = (SEi −RMSE)/RMSE (3.3)

Figure 2 presents results for the standard errors of the means RRMSE
mean and totals RRMSE

tot

estimated using grouped and ungrouped strata. Overall, the small negative shift may be
attributed to using a simplified variance estimator which neglected variance contribution
from the second stage of sample selection.
Standard errors estimated using original design strata (0) deviate somewhat less from RMSE
than all estimates using grouped strata. This is expected because grouping of strata results
in reduction of degrees of freedom which is a measure of precision of a variance estima-
tor. The proposed method (1) for grouping strata does not offer much advantage over other
grouping methods (2-4) for estimating standard errors of the totals, as was the case in Fig-
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Figure 2: Distribution of the relative deviations between standard errors of the means
RRMSE

mean and totals RRMSE
tot and RMSE over all simulations (3.3). Standard errors were

estimated using original design strata (0) and strata grouped by different methods(1-4) de-
pending on the variability of the target variable yhi between PSU (3.2): (a) σ0 = 1; (b)
σ0 = 0.4; (c) σ0 = 0.1.

ure 1. This is also expected, because, strictly speaking, the proposed method is optimal
for minimizing the difference between variance estimators (1.8) and not the error of the
variance estimator itself. One common feature of Figures 1 and 2 is the negative bias of
the standard error of the total for grouping method (4), when larger PSU from one strata
are preferably grouped with smaller PSU from another. This bias should be positive in the
opposite case of preferential grouping together larger (smaller) PSU from different strata.
These results closely correspond to the calculated coverage probability of the finite popu-
lation means and totals by the estimated confidence intervals presented in Table 1. Confi-
dence intervals were estimated from the t-distribution with degrees of freedom defined as
DFd = NPSU −NSTRATA, which in our simulations equals 36 for the original design and
18 for the design with paired strata and PSU.

Table 1: Coverage probabilities of finite population means and totals by the confidence
intervals estimated using original design strata and strata grouped by different methods.
Results presented for different variabilities of the simulated target variables yhi (3.2) be-
tween PSU.

Strata grouping method
Variability of target variable Ungrouped Grp 1 Grp 2 Grp 3 Grp 4

Coverage of the finite population means
Large variability (σ0 = 1) 0.948 0.952 0.948 0.941 0.950
Intermediate variability (σ0 = 0.4) 0.941 0.951 0.948 0.948 0.949
Small variability (σ0 = 0.1) 0.942 0.954 0.944 0.941 0.949

Coverage of the finite population totals
Large variability (σ0 = 1) 0.935 0.947 0.935 0.944 0.931
Intermediate variability (σ0 = 0.4) 0.940 0.942 0.950 0.942 0.926
Small variability (σ0 = 0.1) 0.946 0.955 0.953 0.945 0.909
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Coverage probabilities of both means and totals appear to be close to nominal 0.95 in all
cases, except for the coverage of totals when strata were grouped by method (4). Observed
undercoverage increased as variability of the target variable between PSU decreased. This
is in accord with the negative shift observed in both Figures 1 and 2.
Estimated confidence intervals depend on the assumed degrees of freedom (DF). That
is why the correct definition of DF is very important, particularly for small domains.
To define DF, Rust (1986) and Lu et al. (2006) used the Satterthwaite approximation
DF (v) = 2 [E(v)]2 /V ar(v), where v is the variance estimator. The simple definition
of DFd used above follows from this formula if the variance contributions from all PSU
and strata are equal. We calculated DF (v) for ungrouped and grouped variance estimators
for the whole sample and for domains defined by Census regions. Pairing of strata caused
a 50% reduction of DFd for variance estimators in all domains for all methods of grouping
strata. DF (v) were reduced to∼ 70% for all domains when methods (1,2 and 4) were used
for pairing strata. These methods require ordering strata by size (see Section 3.2) before
grouping. In method (3) strata were paired at random and DF (v) was reduced to ∼ 60%.
This corresponds to the wider spread of deviation between variance estimates observed for
method (3) in Figure 1. We can conclude that using the proper method of grouping strata
allows us to retain more DF.

4. Application to survey data

Proposed methods for grouping strata were tested with application to actual survey data.
Standard errors of the means and totals were estimated using the original design and grouped
strata for 47 binomial survey variables of different nature and different variability between
PSU. Distribution of the coefficient of variation of the PSU means for these variables de-
fined as CV(ypsu) = StdErr(ȳpsu)/Mean(ȳpsu) is presented in Table 2. This distribution
overlaps with estimated variability of three synthetic variables generated in the simulation
study described above.

Table 2: Quantiles of the distribution of coefficients of variation CV(ȳpsu) of PSU means
for selected 47 survey variables.

Min 10% 25% 50% Mean 75% 90% Max

CV(ypsu) 0.11 0.26 0.36 0.49 0.74 0.82 1.72 2.78

For each of these variables we calculated relative deviations between estimates of the stan-
dard errors of the means R(g)

mean and totals R(g)
tot using grouped and ungrouped strata (3.1).

Distribution of these values over selected survey variables is presented in Figure 3.
Distributions of R(g)

mean and R(g)
tot for the real data could not be compared directly to similar

distributions calculated for the synthetic variables presented in Figure 1. However, obvious
similarities can be easily noticed. First, the proposed method (1) for grouping strata pro-
duces minimal deviations from the standard errors of the totals estimated using ungrouped
strata. Second, preferential grouping of large and small PSU realized in method (4) pro-
duces a consistent negative shift of the standard error estimates of the totals. Third, this
shift was not observed for the standard error estimates of the means. This comparison
provides confidence in the applicability of the developed methodology to real survey data.
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Figure 3: Distribution of the relative deviations between grouped and ungrouped estimates
of the standard errors of the means R(g)

mean and totals R(g)
tot (3.1) over 47 survey variables.

5. Conclusions

In this paper we propose an optimal algorithm for pairing strata and PSU for confidentiality
protection minimizing expected squared difference between grouped and ungrouped vari-
ance estimates of the totals (1.8). Expectations are taken over the distribution of the target
variable ȳhi conditional on the realized sample selection and are dependent on the sampled
PSU sizes Nhi.
In agreement with the theory, the simulations indicate that the advantages of the proposed
algorithm for calculating standard errors of the totals are more pronounced for small and
intermediate variabilities of the target variable in comparison with variability of PSU sizes.
At the same time relative deviations between grouped and ungrouped estimates of the stan-
dard errors of the means are uniform for all grouping methods across all variabilities of
the target variable. We explain this by the non-trivial relation between the variances of the
means and totals, see Wolter (1985), p.236. We expect that variances of other estimates,
such as regression coefficients and ratios, will also be robust to possible deviations from
the proposed method for grouping strata. Our understanding of the reasons for deviations
between grouped and ungrouped estimates of the standard errors was further validated by
application to real survey data.
The main question of this research was: how reliable are variances estimated using grouped
strata and PSU? Results of simulations presented in Figure 2 and Table 1 demonstrate in
most cases good and robust finite population properties of the standard errors and coverage
probabilities by the corresponding confidence intervals estimated using grouped survey de-
sign, after taking into consideration degrees of freedom reduction. Exceptions occur when
larger PSU are preferentially combined to smaller PSU from different strata, violating the
rules (4-7) of the algorithm described in Section 2. This results in significant bias of the
estimated standard errors and deviation from the nominal coverage probabilities. Com-
bining PSU at random, which is the case for grouping methods (2,3), may be acceptable
when the number of groups is large enough. But sometimes estimates may be required for
domains with a limited number of grouped strata, for example in Census regions. In this
case following the rules (4-7) of the proposed algorithm could be important for unbiased
estimation of standard errors.
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