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Abstract 
The intracluster correlation coefficient is often used to model the design effect associated 

with cluster sampling. Typically, the average cluster size is inserted into the design effect 

formula even though the cluster size will vary in practice. Cluster size variation is 

particularly a problem when the design effect for domain estimates is desired and the 

domain of interest is not evenly distributed over all sample clusters. Should an alternate 

way of computing the intracluster correlation be developed or is some other simple 

solution available to resolve this problem? This paper presents an alternate, but simple, 

model for accounting for both clustering and the variation in cluster sizes. 
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1. Overview 

 
In advance of sample design and selection appropriate cost and variance models are 

required in order to develop an efficient design that meets all (or most) of the stated 

objectives.  The objectives are usually translated into required survey estimates and upper 

bounds on the standard errors associated with those estimates. 

Model-based thinking is required to develop models that can predict the standard errors 

that should result from a particular design.  This is in contrast to robust estimation 

procedures used to actually estimate the standard errors when the survey data are finally 

available.  

Even though good models may have several components, this paper focuses on the design 

effect associated with clustering.  In particular, it addresses the clustering effect when the 

cluster sizes vary.  Total cluster size can vary if approximate size measures are used and 

the final allocation to the cluster is set to satisfy specified sampling rates.  Unit 

nonresponse within clusters can also contribute to unequal sized clusters.  Most surveys 

support not only aggregate population estimates, but also estimates pertaining to a 

number of specified domains.  Aggregate population cluster sizes can be controlled to 

some extent and may be fairly stable.  Domain cluster sizes cannot be so easily controlled 

and may have a large variance. 

This paper explores the use of the coefficient of variation (CV) of the sample cluster size 

as a way of modeling the cluster design effect.  In order to focus on clustering effect, 

other aspects of the overall design effect are ignored and variance models are simplified 

whenever possible. 
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2. Definitions and Notation 

Modeling the clustering effect on the variance is simplest when cluster sizes are equal 

and become less simple when incorporating variable cluster sizes. 

2.1  Equal Cluster Sizes   

The design effect is just the ratio of the variance obtained when recognizing the 

clustering effect (and other features of the sample design) to the base variance, ��, that 

would have been obtained under a simple one-stage, with replacement, equal probability 

design.   

���� = ���	
��/��                                                        (1) 

Often the base variance is defined as arising from simple random sampling and would 

require incorporating a finite population correction factor into the base variance.  Usually 

the finite population correction is ignored or assumed to be close to 1.0 as long as the 

overall sampling rate is low.  With these assumptions, �� = �� �⁄ .   

 

A model of the design-based variance can be written in terms of the variance components 

and sample size parameters for a clustered sample with equal-sized clusters as 

���	
�� = ���

��
+ ���

����
                                                            (2) 

where  ��� and ��� are the first and second stage variance components, �� is the number 

of clusters, and �� is the number of elements in each cluster.  For simplicity the design-

based variance is shown for with replacement sampling at both stages.  The cluster size, 

��, is treated as fixed in the standard setup. 

 

The definition of the intracluster correlation coefficient, or ICC, follows Kish’s (1965, 

pp. 161-162) definition which would be an approximation by some strict interpretations, 

but is most useful for getting back to variance component representation of the design-

based variance. This form of the intracluster correlation coefficient is:   
                                                      � = ���

�������
 and  �� = ��� + ���                                     (3) 

The design-based variance can then be expressed as: 

���	
�� = ��

� �1 + ���� − 1�� where  � = ����.                          (4) 

Using this form of the design variance and inserting it into equation (1) yields: 

   ���� = 1 + ���� − 1�                                                       (5) 

Note that equation (5) is a commonly-used presentation of the cluster design effect as 1 

plus the ICC times the quantity of the cluster size minus one. 

1
 

2.2 What Happens If Cluster Sizes Vary? 
A common practice is to su 

bstitute the mean cluster size into equation (5): 

                                                ���� = 1 + ��� � − 1�                                                     (6)   

                                                 
1
 A more rigorous form of the intracluster correlation coefficient allows −1/��� − 1� ≤ � ≤ 1. 
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where ��
 =  number of elements in cluster i  ( not equal for all i ), and the mean is 

calculated as 

            � � = ∑ ��
/��
��

#�  .                                                       (7) 

This approach is considered acceptable if the cluster sizes do not vary greatly.  In general, 

this practice will underestimate the clustering design effect. Some practitioners have 

considered an alternative definition of the ICC to resolve the problem.  I would advocate 

against that approach.  

  

Once a structure is fixed, recognize the variance components and the ICC as population 

parameters.  By structure, I mean the way the population and the frame are partitioned by 

strata, by clusters within strata, and by elements within clusters.  Sometimes the structure 

is apparent in the population as with schools and students within schools.  Other times it 

is part of the design process as with strata and clusters defined by contiguous land areas.  

In either case, I prefer to think of the variance components defined on this structure as 

population parameters.  Since the ICC is derived from the variance components, it is also 

a population parameter.   

The sample design then addresses the approach to selecting the cluster sample and 

achieving the planned sample size targets at each level.  Cluster size variation can be both 

planned and unplanned.  Domain cluster sizes are often the result of a screening process 

and application of fixed sampling rates causing them to vary much more wildly than the 

overall cluster sizes. 

Holt (1980) put forward an alternative calculation of the mean cluster size based on 

weighting over all ultimate elements in the sample.  Park et al (2003) incorporated Holt’s 

approach in a more general model which factors in design effects for stratification, 

clustering, and unequal weighting.  Chromy and Myers (2001) also considered a more 

complex model incorporating several factors into the overall design effect and used the 

CV methodology discussed in this paper at both the area cluster and the household level.  

Eldridge, Ashby, and Kerry (2006) develop a number of models for the design effect 

including one based on CV methodology discussed here; interestingly, their paper is in an 

epidemiology journal, not a statistics or survey methodology journal.   

Holt’s representation just uses the weighted average, �′�  , in the equation for the 

clustering design effect:  

                                                   ���	
�� = ��

� �1 + ����% − 1��                                        (8) 

Holt’s ��%  can be thought of as an average over the all n ultimate sample elements or as a 

weighted average computed at the cluster level: 

                                          ��% =∑ &
��

��

#�   and  &
 = ��
/���� ��                                   (9) 

With a little algebra, Holt’s weighted mean cluster size can also be expressed as function 

of the unweighted mean of cluster size and the coefficient of variation of cluster size.  

First, rewrite Holt’s weighted mean as: 

                                                   ��% = �
� ∑ ��


���

#�                                                          (10) 

Then, if we treat the target cluster size, � �, as known  

                                              �'��
� = ∑ ��(

� )��� ��
*�
(+�

��
                                                       (11) 
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and 

                                           �′� = �,*�
� �� ��

� �
= � �-1 + .���

� / .                                           (12) 

If we estimate the cluster size, � �, this solution is still a good approximation.  This form 

was also developed in the paper by Eldridge, Ashby, and Kerry for application to cluster 

randomized trials.  It can easily be inserted into the formula for the clustering design 

effect:   

  ���� = 1 + �0� �-1 + .���
� / − 11.                   (13)                                                       

The average cluster size is usually a clear objective of a survey design and, as a target 

value, would be known during planning.  The coefficient of variation for cluster size can 

be based on similar surveys, prior rounds of the same survey, or on reasonable 

assumptions about the expected distribution of cluster sizes.  

This general approach can be compared to the use of the CV of weights to model the 

unequal weighting effect.  Similar algebraic steps are used to express the unequal 

weighting effect in terms of the coefficient of variation of the weights. 

3. A Simple Example 

 

To illustrate that the approach works at least in one extreme case, consider a case where 

the variation in cluster size is by design.  This could arise in making regional estimates 

where a fourth of the sample clusters and a fourth of the total sample are allocated to one 

region.   Table 1 shows stratum 1 as the one coinciding with the domain of interest.  

 

Table 1. Stratified Sample Example 

Stratum Number of 

Clusters 

Average 

Cluster Size 

Domain 

Sample Size 

Squared CV of 

Cluster Size 

1 100 12 1,200 0 

2, 3, and 4 300 0 0 0 

Total 400 3 1,200 3.0 

 

If we consider stratum 1 by itself, the average cluster size is 12 and the CV is 0.  The 

clustering design effect is then just 

                                                           ���� = 1 + ��12 − 1�. 

If we were not aware of the stratification or chose to ignore it, we could compute the 

mean cluster size, the variance of the cluster size, and the squared coefficient of variation 

of cluster size over all 400 clusters are � � = 3, �'��
� = 27, 6�7 .���

� = 3.   Inserting these 

results in equation (13) would yield the numerical equivalent to analyzing only stratum 1 

data. 

���� = 1 + ��3�1 + 3� − 1�. 
This example illustrates that the design effect using the CV of cluster size works when 

we have an alternative way of computing the design effect.   
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4. When Should We Worry About Variable Cluster Size? 

 

When should we be concerned about using the design effect model that assumes equal 

cluster sizes?  If the ICC is low (near zero) and the CV of cluster size is low (near zero), 

the model utilizing average cluster size will be almost right.  In fact if either condition 

holds, ICC low or CV of cluster size low, the average cluster size model (equation (6)) of 

the cluster design effect will be close to correct.  

Table 2 compares the modeled design effect when ignoring cluster size variability by 

using equation (6) (column with the CV of cluster size =0) with  design effects which 

account for cluster size variability (columns with CVs of cluster size ranging from 0.1 to 

2.0) using equation  (13).  Intracluster correlation coefficients (ICCs) of 0.01 and  0.05 

represents low clustering effects;  ICCs of 0.10 and  0.20 represent much larger clustering 

effect, but ones that are quite common in school surveys where cluster sizes are also 

likely to be large. The chosen CVs also represent low and high potential values.  Higher 

CVs will generally apply to small domains that would have low average cluster size even 

though the total cluster size is much higher as shown in Table 6 (Chromy and Myers, 

2001).   

The ICC = 0.05 and CV=0.3 combination shows that only modest increases in design 

effect occur by taking account of cluster variability with average clusters sizes of  1 and 

3;  much larger, but still reasonable,  increases occur with larger cluster sizes.  For CVs 

greater than 0.5, the equation (6) values are serious under projections of the clustering 

design effect for larger average cluster sizes. 

 

Table 2.  Model Design Effect Comparisons (Rounded to 2 Decimal Places) 

ICC 

Average 

Cluster 

Size 

CV of Cluster Size 

0 0.1 0.2 0.3 0.4 0.5 1 1.5 2 

0.01 1 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.04 

0.05 1 1.00 1.00 1.00 1.00 1.01 1.01 1.05 1.11 1.20 

0.10 1 1.00 1.00 1.00 1.01 1.02 1.03 1.10 1.23 1.40 

0.20 1 1.00 1.00 1.01 1.02 1.03 1.05 1.20 1.45 1.80 

0.01 3 1.02 1.02 1.02 1.02 1.02 1.03 1.05 1.09 1.14 

0.05 3 1.10 1.10 1.11 1.11 1.12 1.14 1.25 1.44 1.70 

0.10 3 1.20 1.20 1.21 1.23 1.25 1.28 1.50 1.88 2.40 

0.20 3 1.40 1.41 1.42 1.45 1.50 1.55 2.00 2.75 3.80 

0.01 10 1.09 1.09 1.09 1.10 1.11 1.12 1.19 1.32 1.49 

0.05 10 1.45 1.46 1.47 1.50 1.53 1.58 1.95 2.58 3.45 

0.10 10 1.90 1.91 1.94 1.99 2.06 2.15 2.90 4.15 5.90 

0.20 10 2.80 2.82 2.88 2.98 3.12 3.30 4.80 7.30 10.80 

0.01 25 1.24 1.24 1.25 1.26 1.28 1.30 1.49 1.80 2.24 

0.05 25 2.20 2.21 2.25 2.31 2.40 2.51 3.45 5.01 7.20 

0.10 25 3.40 3.43 3.50 3.63 3.80 4.03 5.90 9.03 13.40 

0.20 25 5.80 5.85 6.00 6.25 6.60 7.05 10.80 17.05 25.80 
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5. Average Cluster Sizes Smaller Than One 

It is not unusual for special domain sample sizes to be quite small and less than one per 

cluster.  Small average cluster sizes can also occur when screening for a person who 

meets certain specifications (e.g., females 15 to 35 years old).   Suppose the sample 

design allows selecting at most one eligible person per cluster (e.g., a household) and 

only a fraction, p<1, of selected persons meet the eligibility requirements.  Applying 

equation (6) would indicate that the cluster sampling design would have a design effect 

less than 1.  

1 + ��8 − 1� < 1. 
 Now consider equation (13) with � � = 8, �'��

� = 8�1 − 8�, 6�7 .���
� = �1 − 8� 8⁄ .   

1 + � ;8 <1 + �)=
= > − 1? = 1. 

In practice, the realized domain sample size itself is a random variable when applying a 

screening approach to a fixed total sample.  Controlling the cluster sample size will 

usually result in an unequal weighting effect, but that is not the topic of this paper.   The 

sample design may provide some allowance for the expected variation in the realized 

sample size of each target domain and design effects due to unequal weighting. 

6. Conclusions and Recommendations 

A few points summarize the lessons learned from examining alternative clustering design 

effect   models: 

1. Tracking both the ICC and CV of cluster size in existing surveys can be very 

helpful in designing future surveys. 

2. For a given frame structure, variance components and the ICC should be treated 

as population parameters. 

3. In most surveys, cluster size variability can only partially be controlled. 

4. Expect some cluster size variability and incorporate it into any model of 

clustering design effects during the planning process. 

5. Use the CV of cluster size as a convenient and somewhat portable measure for 

cluster size variability.   
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