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Abstract
In order to estimate the number of occupied households, US Census Bureau conducts many surveys.
As a result, we get different estimates of the number of occupied households from these surveys.
While each survey is useful, differences among the estimates they produce are sometimes very large.
To resolve these differences, we propose in this study a hierarchical Bayesian method to obtain
a more reliable estimate of the number occupied households by combining estimates from these
surveys. Exploiting the repetitive nature of the surveys, we propose a time series model. We apply
our method to the estimates from Current Population Survey (CPS)/Annual Social and Economic
Supplement, CPS/Housing Vacancy Survey, American Community Survey, and American Housing
Survey between 2002 and 2011 to produce a more reliable estimate of the number of occupied
households. We implement our objective Bayesian method by Gibbs sampling.

Key Words: Current Population Survey, Gibbs Sampling, Noninformative Priors, Time Series

1. Introduction

One topic in the 2012 Federal Committee on Statistical Methodology (FCSM) Statistical
Policy Seminar is about Dueling Official Statistics: minimizing differences through cross
agency, understanding sources of differences, and reducing user confusion with joint data
releases. In the Federal Government, many surveys produce different estimates for the same
variable. For examples: Current Population Survey (CPS)/Annual Social and Economic
Supplement (ASEC), CPS/Housing Vacancy Survey (HVS), American Community Survey
(ACS), and American Housing Survey (AHS) produce the number of occupied households.
Another example is that CPS/ASEC, CPS/HVS, and AHS produce vacancy rates. Every
time, we release our survey reports. The public auditors may be confused when they see
estimates are substantially different for the same variable across surveys. What is a reliable
official statistics people can use? Hogan (2012) gave some suggestions on ”Reducing User
Confusion with Joint Data Releases and User Education”. Cresce at el. (2013) proposed
a residual calibration method to reduce the different estimates Household numbers among
4 surveys: CPS/ASEC, CPS/HVS, ACS, and AHS. In this paper, we will model one of
most basic demographic concepts: households (occupied housing units) through hierarchi-
cal Bayesian method. In Table 1, we report the household estimates from 2002 to 2011,
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obtained by the Current Population Survey (CPS), the Housing Vacancy Survey (HVS),
the American Community Survey (ACS) and the American Housing Survey (AHS). Dif-
ferences among the survey estimates are noticeable in Table 1. Estimates obtained by the
CPS are consistently high over the years and the estimates from the HVS and the AHS are
typically low. In order to combine the estimates obtained by these surveys, we propose and
discuss various hierarchical Bayesian (HB) models. In this paper, we study and compare
the combined estimates obtained from these HB methods.

Table 1: Estimates of households, obtained in different surveys (numbers in 1000s).

Survey 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

CPS/ASEC 111278 112000 113343 114384 116011 116783 117181 117538 119927 121084
HVS 104994 105636 106971 108667 109736 110173 110475 112295 112899 113533
ACS 107367 108420 109902 111091 111617 112378 113101 113616 114567 114992
AHS . 105842 . 108871 . 110692 . 111806 . 114907

Table 2: Standard errors of the estimates obtained in different surveys (numbers in 1000s).

Survey 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

CPS/ASEC 260 260 235 234 261 261 261 262 262 262
HVS 185 182 179 204 194 187 181 174 173 171
ACS . . . 144 146 144 147 161 163 180
AHS . 165 . 218 . 231 . 238 . 396

2. A Hierarchical Bayesian model to combine several unbiased survey estimates

Let θ be a population characteristic of interest and suppose estimates of θ are available from
m different surveys. Moreover, suppose that these surveys are repeated over time, annually
or biennially. Thus some surveys may not have been conducted over every time point of
interest. While one or more surveys are conducted at every time point 1 to T , not all surveys
are done at every time point. Suppose the ith survey is conducted at time points belonging

to a set Si ⊂ {1, 2, . . . , T}. We assume that,
m∪
i=1

Si = {1, 2, . . . , T}, i.e., at least one of the

surveys is conducted every year. To estimate θt, the population characteristic of interest at
time t, we consider the following model:

yit = θt + eit, t ∈ Si ⊂ {1, 2, . . . , T}, (2.1)
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where, yit is the estimate of θt from the ith survey at the tth time point. We assume that
sampling errors eit ∼ N(0, σ2

it), t ∈ Si, i = 1. . . . ,m, are independently distributed. We
assume that σ2

it’s are known. Now, we propose the following random walk model for θt:

θt = θt−1 + e∗t , t = 1, 2, . . . , T, (2.2)

where, e∗t ’s are independently distributed with a truncated normal distribution truncated
above 0, with variance σ2

e∗ . We assume that σ2
e∗ and θo are unknown. Our proposed hierar-

chical Bayesian model for estimating the number of households is:

Model M1 : yit|θ0, θt, σ2
e∗

ind∼ N(θt, σ
2
it), t ∈ Si, i = 1, . . . ,m,

θt = θt−1 + e∗t , t = 1, . . . , T,

e∗t |σ2
e∗

iid∼ truncated N(0, σ2
e∗), (2.3)

with lower truncation point 0. In model M1, values of σ2
it’s are known. The values of θ0 and

σ2
e∗ are not available, so we assign the following noninformative prior to those parameters:

θo and σ2
e∗ are independently distributed with Uniform(0,∞).

Since we assume improper prior to some parameters in the model, the propriety of the
posterior distribution resulting from the model need to be ensured. Theorem 2.1 provides
sufficient conditions for the propriety of the posterior density for the model stated above.

From Table 2 we see that standard errors are not available from the American Commu-
nity Survey from 2002−2004. Also, the American Housing Survey estimates along with
the standard errors are missing at every alternative year from 2002−2011 (Tables 1 and 2).
Let us introduce indicator variables δit’s, such that, δit = 1 if data from the ith survey is
available at time t and δit = 0 otherwise, i = 1. . . . ,m and t = 1, . . . , T . We also define,

nt =
m∑
i=1

δit, t = 1, . . . , T .

Theorem 2.1 The posterior distribution resulting from model M1 will be proper if (a) nt >
0 for all t, and (b) the number of time points T > 3.

Since there are some missing yit’s along with σ2
it’s, we define the variable r such that, rit

= 0 if σ2
it is missing and rit = 1

σ2
it

otherwise. The following full conditional distributions
obtained below will be essential to perform a Gibbs Sampling.

(a) θT |θ0, θ1, . . . , θT−1, σ
2
e∗ , y ∼ truncated Normal with mean =

m∑
i=1

riT yiT + σ−2
e∗ θT−1

m∑
i=1

riT + σ−2
e∗

and variance = (
m∑
i=1

riT + σ−2
e∗ )−1 with lower truncation point θT−1.

(b) θt|θ0, θ1, ., θt−1, θt+1, ., θT , σ
2
e∗ , y ∼ truncated Normal with
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Figure 1: Proposed HB estimates based on model M1 and other survey estimates.

mean =

m∑
i=1

rityit + σ−2
e∗ (θt−1 + θt+1)

m∑
i=1

rit + 2σ−2
e∗

and variance = (
m∑
i=1

rit + 2σ−2
e∗ )−1 truncated

in (θt−1,θt+1); t = 1, . . . , T − 1.

(c) θ0|θ1, . . . , θT , σ2
e∗ , y ∼ truncated Normal with mean = θ1 and variance = σ2

e∗ trun-
cated in (0,θ1).

(d) σ2
e∗ |θ0, . . . , θT , y ∼ Inverse-Gamma (IG) with shape =T

2 −1, rate =
T∑
t=1

(θt − θt−1)
2

2
.

(If X ∼ Inverse-Gamma(α, β), then the pdf of X is f(x) ∝ x−α−1 exp{−β
x}, where α is

the shape and β is the rate parameter.)
We perform a Gibbs sampling to get the HB estimates of θt’s. Table 4 presents the

proposed HB estimates and posterior standard deviations of θt’s. Figure 1 shows the pro-
posed combined estimates and the survey estimates. From Table 3 we get the estimates of
θ0 and σ2

e∗ obtained by our method. In Figure 3, we plot histograms based on the simulated
values from the posterior distribution of σ2

e∗ . In Table 6 we provide some details about
the simulated values from the posterior distribution of σ2

e∗ . Table 5 and Figure 2 (b) show
that the posterior standard deviations associated with the Bayes estimates of θt obtained by
our method are considerably lower than the standard errors of the survey estimates. This
implies we achieve significant gain in precision by applying model M1.
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Table 3: Summary of the posterior simulations (numbers in 1000s).

Posterior Posterior Simulated Quantiles
Parameter Mean sd 2.5% Median 97.5%

θ0 105756.25 995.92 105296.47 105993.36 106489.93
σ2
e∗ 2369485.65 1921155.29 1300676.22 1854130.76 2774842.83

Table 4: HB estimates and posterior standard deviations based on model M1 (numbers in
1000s).

Year θ̂t Posterior Year θ̂t Posterior
sd sd

2002 106909.21 103.48 2007 112110.28 92.93
2003 107002.75 93.73 2008 112877.75 103.76
2004 109300.26 141.15 2009 113443.00 97.42
2005 110688.17 94.65 2010 114823.40 107.55
2006 111775.22 103.65 2011 115433.41 107.08

2.1 Log Transformation

Since the values of household estimates are large and positive, we consider the following
transformation: let, y∗it = log(yit) and θ∗t = log(θt). Now, we can rewrite equation (2.1)
as,

y∗it = θ∗t + ϵit, t ∈ Si ⊂ {1, 2, . . . , T}.

We assume that sampling errors ϵit ∼ N(0, τ2it). Previously, we assumed that Var(yit|θt) =

σ2
it, where σ2

it’s are known. Now, τ2it = Var(y∗it|θ∗t ) = Var(log(yit|θt)) ≈
σ2
it

y2it
, using Taylor

series expansion. We obtain, the values of τ2it’s using this approximation. Similarly, as in
equation (2.2), we assume,

θ∗t = θ∗t−1 + εt, t = 1, 2, . . . , T,

where, εt’s are independently distributed with a truncated normal distribution truncated
above 0, with variance σ2

ε . We assume that σ2
ε and θ∗o are unknown. Now, with this re-

parametrization, the proposed hierarchical Bayesian model in Section 2 could be rewritten
as,

Model M2 : y∗it|θ∗0, θ∗t , σ2
ε

ind∼ N(θ∗t , τ
2
it), t ∈ Si, i = 1, . . . ,m,

θ∗t = θ∗t−1 + εt, t = 1, . . . , T,

εt|σ2
ε

iid∼ truncated N(0, σ2
ε), (2.4)
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Figure 2: (a) Proposed HB estimates based on models M1 and M2 (with and without log
transformation) and other survey estimates. (b) Posterior standard deviations of the pro-
posed HB estimates based on models M1 and M2, and the standard errors corresponding
to the other survey estimates.

with lower truncation point 0. We assume that, σ2
ε and θ∗o are independently distributed with

σ2
ε ∼ Uniform(0,∞) and θ∗o ∼ Uniform(−∞,∞).

The resulting posterior distribution from this model will be proper if the sufficient con-
ditions stated in Theorem 2.1 are satisfied. In order to estimate the parameters in this model,
we use Gibbs sampling technique. Full conditional posterior distributions could be obtained
by simple modifications of the full conditional distributions mentioned in Section 2. We run
5 chains and 10, 000 iterations for each chain. We discard first 50% observations of each
chain and compute our estimates based on the remaining observations. Table 7 shows the
summary of the posterior inference for σ2

ε . Histograms based on the posterior simulations
for σ2

ε are shown in Figure 4.
Using the estimates of θ∗t (say, θ̂∗t ), we can get the estimates of θt (say, θ̂t) by the trans-

formation θ̂t = E
[
exp(θ̂∗t )|y

]
. In Table 8 we present the estimates of θt and the posterior

standard deviations corresponding to the estimates. From Figure 2(a) we see that the es-
timates obtained by considering a log transformation almost coincide with the estimates
obtained without considering a transformation. This applies to the posterior standard devi-
ations as well (Figure 2(b)).
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Table 5: Posterior standard deviations and the standard errors (numbers in 1000s).

Year Proposed method (M1) CPS/ASEC HVS ACS AHS
Posterior sd s.e s.e s.e s.e

2002 103.48 260 185 . .
2003 93.73 260 182 . 165
2004 141.15 235 179 . .
2005 94.65 234 204 144 218
2006 103.65 261 194 146 .
2007 92.93 261 187 144 231
2008 103.76 261 181 147 .
2009 97.42 262 174 161 238
2010 107.55 262 173 163 .
2011 107.08 262 171 180 396

Table 6: Details about the posterior simulations of σ2
e∗ .

Simulated values of Proportion
σ2
e∗ |y

< 106 0.10696
106 − 5× 106 0.82868

5× 106 − 9× 106 0.05176
> 9× 106 0.0126

Table 7: Summary of the posterior simulation for σ2
ε

Posterior Posterior Simulated Quantiles
Parameter Mean sd 2.5% Median 97.5%

σ2
ε 0.00019 0.00015 0.00006 0.00015 0.00058

Table 8: HB estimates and posterior standard deviations (numbers in 1000s).

Year θ̂t Posterior Year θ̂t Posterior
sd sd

2002 107012.90 103.46 2007 112166.94 93.08
2003 107100.13 94.67 2008 112943.28 103.66
2004 109426.22 140.62 2009 113486.02 97.81
2005 110739.88 94.46 2010 114901.45 107.21
2006 111831.94 103.30 2011 115523.07 108.31
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Figure 3: Histograms of the posterior simulations for σ2
e∗ (a) based an all simulated values

(b) after dropping upper 2.5% observations (c) after dropping observations larger than 106

(d) after dropping observations smaller than 106.
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Figure 4: Histograms of the posterior simulations for σ2
ε (a) based an all simulated values

(b) after dropping upper 2.5% observations.
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3. Some new models accounting for sampling bias

From Figure 1 we see that there is a considerable difference in the survey estimates of
households every year. To verify whether the surveys estimate the same quantity, we con-
duct hypothesis test to test the equality of µit = E(yit) among the surveys for each t, where
yit is the estimate of number of occupied household obtained from the ith survey at the tth

year, for i = 1 . . . ,m and t = 1, . . . , T . For each year the null hypothesis that the surveys
are estimating the same quantity was rejected convincingly. Motivated by this result we
introduce a bias term for each survey modify model M1 as follows:

Model M3 yit|θ0, θt, σ2
e∗ , αi

ind∼ N(θt + αi, σ
2
it), (3.1)

θt = θt−1 + e∗t ,

e∗t |σ2
e∗

iid∼ truncated N(0, σ2
e∗), (3.2)

with lower truncation point 0. Here, t ∈ Si, i = 1, . . . ,m and we impose the constraint∑m
i=1 αi = 0, and assume a flat prior Uniform(−∞,∞) for αi, i = 1, . . . ,m. We assume

the same priors for θ0 and σ2
e∗ as in model M1. We describe the results based on the model

M3 in Table 9. Also, we provide the estimates of the contrasts of the bias parameters along
with the posterior standard deviations in Table 11.

Table 9: Estimates and posterior standard deviations deviations obtained from two different
models (numbers in 1000s).

Estimates Posterior SD
Year M1 M2 M1 M2

2002 106909.21 107127.72 103.48 156.28
2003 107002.75 107768.22 93.73 113.87
2004 109300.26 109125.61 141.15 146.15
2005 110688.17 110893.35 94.65 96.35
2006 111775.22 111824.62 103.65 111.76
2007 112110.28 112505.36 92.93 96.71
2008 112877.75 113016.36 103.76 106.61
2009 113443.00 113921.37 97.42 97.85
2010 114823.40 115029.86 107.55 110.01
2011 115433.41 115780.69 107.08 108.23

Population size and the number of occupied households have a natural relationship. That
motivates us to use total population size as an auxiliary variable in order to improve the
survey estimates. We assume that number of households and the total population size are
linearly related. Let, xt denote the population size at time point t. Our proposed model
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considering xt as an auxiliary variable is as follows:

yit = θit + eit,

θit = ht + αi + bit,

ht = β0 + βxt + ηt, t ∈ Si, i = 1, . . . ,m, (3.3)

where αi is the bias associated with the ith survey, ht is the true number of households at

the year t. We impose an additive constraint
m∑
i=1

αi = 0 among the biases in the model.

In the model, eit ∼ N(0, Dit), bit ∼ N(0, σ2
b ), ηt ∼ N(0, σ2

η), independently. The sam-
pling variances Dit’s are known but the model variances σ2

b and σ2
η are unknown. Let,

µi = β0 + αi, i = 1, . . . ,m. Since,
m∑
i=1

αi = 0, 1
m

m∑
i=1

µi = β0.

We rewrite model (3.3) in the following form.

Model M4 : yit|αi, ht, bit ∼ N(ht + αi + bit, Dit), t ∈ Si, i = 1, . . . ,m,

ht =
1

m

m∑
i=1

µi + βxt + ηt,

ηt|σ2
η ∼ N(0, σ2

η),

bit|σ2
b ∼ N(0, σ2

b ), t = 1, . . . , T, i = 1, . . . ,m,

π(µ, β, σ2
b , σ

2
η) ∝ 1,

1

m

m∑
i=1

µi = β0, where µi = β0 + αi. (3.4)

where, µ = (µ1, . . . , µm)T , β ∈ R and σ2
b , σ2

η ∈ R+.

Theorem 3.1 The posterior distribution resulting from Model M4 will be proper if T > 4
and m(T − 1) > 5.

The joint pdf of y, µ, β, η, b, σ2
b , σ

2
η from model M4 is given by,

π(y, µ, β, η, b, σ2
b , σ

2
η) = C × exp

{
−1

2
(y −Xw − Z1η − b)TD−1(y −Xw − Z1η − b)

}
× 1

(σ2
η)

T
2

× exp

{
−1

2

ηT η

2σ2
η

}
× 1

(σ2
b )

n
2

× exp

{
−1

2
× bT b

2σ2
b

}
,

(3.5)

where, Z1 =
T⊕
t=1

1nt , nt =
m∑
i=1

= δit, where δit = 1 if data from ith survey is available

at time t and δit = 0 otherwise; n =
T∑
t=1

nt. Here, w = (µ1, . . . , µm, β)T and, the design

matrix is denoted by X .
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We denote the identity matrix of order nt × nt by Int .
In (3.5), y = (y11, . . . , yn11, y12, . . . , yn22, . . . , ynTT )

T , η = (η1, . . . , ηT )
T

D = diag(D11, . . . , Dn11, D12, . . . , Dn22, . . . , DnTT ),
b = (b11, . . . , bn11, b12, . . . , bn22, . . . , bnTT )

T .
Let us define, f = y − Z1η − b, g = y − Xw − b and h = y − Xw − Z1η. The full
conditional distributions obtained from (3.5) are given below,

(I) w|y, η, b, σ2
η, σ

2
b ∼ N((XTD−1X)−1XTD−1f, (XTD−1X)−1),

(II) η|y, w, b, σ2
η, σ

2
b ∼ N

(
(σ−2

η IT + ZT
1 D

−1Z1)
−1ZT

1 D
−1g, (σ−2

η IT + ZT
1 D

−1Z1)
−1

)
,

(III) b|y, w, η, σ2
η, σ

2
b ∼ N

(
(σ−2

b In +D−1)−1D−1h, (σ−2
b In +D−1)−1

)
,

where n = (
T∑
t=1

nt),

(IV)
1

σ2
η

|y, w, b, η, σ2
b ∼ Gamma

(
T

2
− 1,

ηT η

2

)
,

(V)
1

σ2
b

|y, w, b, η, σ2
η ∼ Gamma

(
n

2
− 1,

bT b

2

)
.

We implement a Gibbs sampler using these conditional distributions. Estimates of ht ob-
tained from model M4 and the standard deviation associated with the estimates from 2002
to 2011 are given in the first and third column of Table 10. From the fourth column of
Table 10, we see that the posterior standard deviations associated with the estimates are on
average larger than the sampling standard errors. This may be caused by using too many
parameters in the model.

We consider another model which is almost same as Model M4 but involves less number
of parameters.

Model M5 : yit|ht, αi ∼ N(ht + αi, Dit),

ht =
1

m

m∑
i=1

µi + βxt + ηt,

ηt|σ2
η ∼ N(0, σ2

η), t ∈ Si, i = 1, . . . ,m,

π(µ, β, σ2
η) ∝ 1,

1

m

m∑
i=1

µi = β0, where µi = β0 + αi. (3.6)

Notation used in model M5 has the same meaning as that defined before. The required
full conditional distributions for model M5 can be obtained with a little modification to the
full conditional distributions corresponding to model M4. We implement model M5 and
compute the estimates of number of households and the posterior standard deviations asso-
ciated with the estimates given in Table 10. From Table 10 we see that while the posterior
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standard deviations are considerably small for model M5, the point estimates obtained us-
ing model M5 are similar to the estimates obtained from model M4 to a large extent. In
Table 12 we estimate the bias for the surveys, where α1 represents bias for CPS/ASEC, α2

represents bias for HVS, α3 is the bias for ACS and α4 is the bias for AHS. In Table 13 we
show the bias adjusted survey estimates.

Table 10: HB estimates based on model M4 and M5 (numbers in 1000s)

Estimate Posterior SD
Year M4 M5 M4 M5

2002 107156.26 107136.87 251.31 151.33
2003 107840.94 107786.69 211.06 112.93
2004 109140.83 109129.91 241.40 142.17
2005 110703.93 110869.47 183.58 94.77
2006 111730.94 111796.26 206.31 109.90
2007 112477.30 112495.83 172.28 95.77
2008 113046.61 113024.20 197.38 107.80
2009 113923.89 113934.36 180.77 97.56
2010 115131.95 115032.04 204.64 110.53
2011 115974.39 115788.58 188.92 108.81

Table 11: Bayesian inference of the bias contrasts based on M3.

Posterior Posterior Simulated Quantiles
Parameter Mean sd 2.5% Median 97.5%

α1 − α2 6388.732 99.34 6190.98 6389.906 6579.72
α1 − α3 4421.02 105.97 4218.93 4420.899 4630.89
α1 − α4 6123.44 136.46 5861.28 6122.919 6389.846
α2 − α3 −1967.72 86.29 −2135.48 -1967.01 −1801.206
α2 − α4 −265.2917 123.41 −508.40 -264.15 −20.36
α3 − α4 1702.41 126.35 1459.79 1701.92 1944.453

4. Summary

In this paper, we first observe the number of households estimated by different surveys
differ considerably, which may create ambiguity among the researchers and impact deci-
sions of government organizations. Secondly, we study various estimation methods through

JSM 2014 - Survey Research Methods Section

4110



Table 12: Bayesian inference of the bias contrasts based on M5.

Posterior Posterior Simulated Quantiles
Parameter Mean sd 2.5% Median 97.5%

α1 − α2 6390.31 98.44 6200.86 6390.38 6583.22
α1 − α3 4416.34 102.90 4216.10 4416.27 4618.69
α1 − α4 6127.05 137.17 5859.32 6127.30 6395.12
α2 − α3 −1973.98 86.61 −2141.1 −1975.04 −1803.76
α2 − α4 −263.27 125.39 −505.33 -262.62 −12.56
α3 − α4 1710.71 128.53 1463.46 1710.32 1962.27

different models to combine estimates from different surveys. Model 1 assumes all the sur-
veys are unbiased. Model 2 uses Log transformation. Model 3 is a weighted average model.
Model 4 accounts for potential biases among the surveys and replaces the Random Walk
by a linear regression. Model 5 is almost same as Model 4, but involves less number of pa-
rameters. Our proposed methods successfully combine the survey estimates, which could
be helpful to the researchers. Finally, we considered bias in the model and performed an
exploratory analysis.We have shown that considerable gain in terms of precision can be
achieved using some of these methods, specially, models 3 and 5 fit our data better because
of survey bias. We should evaluate the precision by mean square errors instead of variance.

Table 13: Bias corrected estimates of households from 2002 − 2011 for three different
surveys based on model M5 (numbers in 1000s).

Survey 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
CPS/ASEC 107044.58 107766.58 109109.58 110150.58 111777.58 112549.58 112947.58 113304.58 115693.58 116850.58

HVS 107150.89 107792.89 109127.89 110823.89 111892.89 112329.89 112631.89 114451.89 115055.89 115689.89
ACS 107549.91 108602.91 110084.91 111273.91 111799.91 112560.91 113283.91 113798.91 114749.91 115174.91
AHS . 107735.62 . 110764.62 . 112585.62 . 113699.62 . 116800.62
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