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Abstract
A parametric bootstrap procedure is proposed for the mean squared error of the predictor based on
a unit level model. It is demonstrated that the proposed procedure has smaller bootstrap error than
a classical double bootstrap procedure with the same number of samples. Applications to a logit
model under different types of auxiliary information are discussed.
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1. Introduction

The estimation of prediction mean squared error (MSE) for small area models is compli-
cated, particularly in a nonlinear model setting. Double bootstrap is proposed as a method
to estimate the prediction mean squared error by Hall and Maiti (2006). They construct
nonnegative, bias-corrected MSE estimates using a double bootstrap procedure. They con-
sider area level models and a unit level binomial model with fixed known covariates. Pf-
effermann and Correa (2012) suggest a double bootstrap procedure in which the bias in
the estimator is estimated as a function of parameters and of a bootstrap estimator of bias.
Davidson and MacKinnon (2007) introduce a fast double bootstrap procedure for bootstrap
testing.

A number of papers consider sampling variability in the auxiliary variables. Ghosh,
Sinha and Kim (2006) consider an area level linear model with random auxiliary variable
mean, estimated jointly with the small area mean. Ybarra and Lohr (2008) consider an area
level linear model with auxiliary mean estimated with error. Datta, Rao and Torabi (2010),
following Ghosh and Sinha (2007), studied a nested error linear regression model with area
level covariate subject to measurement error.

We study unit level generalized linear mixed models under situations where the mean
of an auxiliary variable is subject to estimation error. We propose a parametric bootstrap
procedure for prediction mean squared error estimation and compare the proposed proce-
dure with a classical double bootstrap procedure using a simulation study. Estimation with
different types of auxiliary information is illustrated.
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2. Models

2.1 Unit level nonlinear model

Consider the unit level generalized linear mixed model

yij = g(xij ,β, bi) + eij , (1)

xij = µx + δi + εij =: µxi + εij , (2)

x̃ij′ = µxi + εij′ , (3)

i = 1, ...,m, where m is the number of areas and j = 1, ..., ni, where ni is the number of
units within area i. The vector (yij ,xij) is observed. In addition to xij , a vector of auxiliary
information, x̃ij′ , is also available where j′ = 1, ..., n′i, n

′
i is the number of additional

observations in area i. The vector of random variables (bi, δi, eij , εij) is unobserved, and
β is the vector of coefficients. Of interest is the small area mean of y

θi =

∫
g(xij ,β, bi)dFxi

(x), (4)

where Fxi
(x) is the distribution of x in area i. Also of interest is the prediction mean

squared error
αi = E(θ̂i − θi)2, (5)

where θ̂i is the predictor. The nature of the estimation-prediction problem is determined by
the distributional properties of the vector (bi, δi, eij , εij).

As an example of model (1), consider a Bernoulli response variable y, with realizations
yij for m different areas and ni different units within each area. To simplify the presen-
tation, we consider scalar xij for the remainder of our discussion. Let xij be independent
and identically distributed, following a distribution Fxi

, and let bi be independent and iden-
tically distributed, with a density fb with mean 0 and variance σ2b . The mean of y given
(xij , bi) is

g(xij ,β, bi) =
exp(x′ijβ + bi)

1 + exp(x′ijβ + bi)
, (6)

where xij = (1, xij), x̃ij′ = (1, x̃ij′) andβ = (β0, β1)
′. We assume that bi ∼ NI(0, σ2b ), δi ∼

NI(0, σ2δ ), εij ∼ NI(0, σ2ε ) and that the elements of (bi, δi, εij) are mutually independent.

2.2 Predictors of θi

We present predictions for θi, for different cases of auxiliary information, given known
parameters.

2.2.1 Known Covariate Mean

Let µxi be known, and let the form of the distribution of x be specified. Then, given known
parameters, the minimum mean square error (MMSE) predictor of the small area mean of
y is

θ̂i = E
[
θ̂(b)|(xi,yi)

]
,

where
θ̂(b) =

∫
x
g(x,β, b)dFx(x)
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and

θ̂i =

∫
b θ̂(b)

∏ni
t=1 f(yit|bi)f(xit|µxi)fb(bi)dbi∫

b

∏ni
t=1 f(yit|bi)f(xit|µxi)fb(bi)dbi

. (7)

In some finite population situations, the entire finite population of x values may be known
and the integral expression for θ̂(b) in (7) is the sum over the population.

2.2.2 Unknown Random Covariate Mean

Given known parameters, the MMSE predictor of the small area mean of y is

θ̂i = E
[
θ̂(b, δ)|(xi,yi)

]
,

where xi = (xi,1, xi,2, ..., xi,ni),yi = (yi,1, yi,2, ..., yi,ni), and

θ̂(b, δ) =

∫
g(µx + δ + ε,β, b)dFε(ε)

and

θ̂i =

∫
b

∫
δ θ̂(b, δ)

∏ni
t=1 f(yit|xit, bi)f(xit|δi)dFδi(δ)dFbi(b)∫

b

∫
δ

∏ni
t=1 f(yit|xit, bi)f(xit|δi)dFδi(δ)dFbi(b)

. (8)

2.2.3 Unknown Random Covariate Mean, x̃i = (x̃i,1, x̃i,2, ..., x̃i,n′i) observed

Given known parameters, the MMSE predictor of the small area mean of y is

θ̂i = E
[
θ̂(b, δ)|(xi,yi, µ̃xi)

]
,

where
θ̂(b, δ) =

∫
g(µx + δ + ε,β, b)dFε(ε),

θ̂i =

∫
b

∫
δ θ̂(b, δ)

∏ni
t=1 f(yit|xit, bi)f(xit|δi)f(µ̃xi|δi)dFδi(δ)dFbi(b)∫

b

∫
δ

∏ni
t=1 f(yit|xit, bi)f(xit|δi)f(µ̃xi|δi)dFδi(δ)dbi(b)

. (9)

and µ̃xi = (n′i)
−1∑n′i

j′=1 x̃ij′ .

3. Bootstrap estimation

Let ψ be the parameter that defines the distribution of the sample observations. Let ψ̂ be
an estimator of ψ. Let α be a vector of parameters of interest and let α∗ be a parametric
bootstrap (simulation) estimator of α. For the models considered above, let αi be the MSE
of the prediction error for area i, as defined in (5). For the nonlinear small area model
with known µxi, the vector of parameters is ψ = (σ2b ,β, σ

2
ε ). For the nonlinear small area

models with unknown µxi, the vector of parameters is ψ = (σ2b ,β, σ
2
ε , µx, σ

2
δ ).

A sample generated with ψ and random number seed r is said to be created with data
generator (ψ, r), denoted DG(ψ, r). Let B1 bootstrap samples be generated using random
number seeds r1,1, r1,2, ..., r1,B1 . Let ψ∗k be the estimator of ψ from the kth bootstrap
sample generated using DG(ψ̂, r1,k). The bootstrap estimator of prediction MSE for area
i is

α̂∗i = B−11

B1∑
k=1

(θ̂∗i,k − θ∗i,k)2 =: B−11

B1∑
k=1

α∗i,k = ᾱ∗i , (10)
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where θ∗i,k is the true small area mean generated for the kth bootstrap sample, θ̂∗i,k is the
sample predictor of θ∗i,k and α∗i,k is the prediction squared error for the kth bootstrap sam-
ple. The estimator (10) is called the level-one bootstrap estimator.

In the double bootstrap, a sample of α∗∗i is generated using ψ∗ from the level-one gen-
erated sample. The bias in α∗i is estimated as the difference between α∗∗i and α∗i . Typically
a large number of α∗∗i is generated for each α∗i and the average used to estimate the bias as

∆̂α∗i
= B−11

B1∑
k=1

(B−12

B2∑
t=1

α∗∗i,k,t − α∗i,k), (11)

where α∗∗i,k,t is generated using DG(ψ∗k, r2,k,t), B1 is the number of level-one bootstrap
samples, B2 is the number of level-two bootstrap samples per level-one sample, and the
r2,k,t, k = 1, 2, ..., B1, t = 1, 2, ..., B2, are independent random numbers, independent of
r1,k. One form of the bias adjusted estimator is

α̃∗∗i = B−11

B1∑
k=1

2α∗i,k −B−11 B−12

B1∑
k=1

B2∑
t=1

α∗∗i,k,t. (12)

A simpler double bootstrap procedure suggested by Davidson and MacKinnon (2007)
generates a single α∗∗i for each α∗i . Let r2,1, r2,2, ..., r2,B1 be a second independent se-
quence of random numbers. Given the sequence of random numbers, define α∗∗i,k to be
calculated from data generated with DG(ψ∗k, r2,k). Then a (classic) double bootstrap esti-
mator is

α̃∗∗i,C = B−11

B1∑
k=1

(2α∗i,k − α∗∗i,k) = 2ᾱ∗i − ᾱ∗∗i . (13)

To construct an alternative bootstrap estimator, define α∗i,k,2 to be calculated from data
generated with DG(ψ̂, r2,k). Then a bias adjusted (double bootstrap) estimator is

α̂∗∗i = B−11

B1∑
k=1

(α∗i,k + α∗i,k,2 − α∗∗i,k). (14)

The quantity α∗∗i,k − α∗i,k is a one-degree-of-freedom estimator of the bias. One might use
r2,1 as r1,2, r2,2 as r1,3, etc. Then, a form of (14) becomes

α̃∗∗i,T = B−11

∑B1
k=1(α

∗
i,k + α∗i,k+1 − α∗∗i,k), (15)

where α∗i,k+1 is generated withDG(ψ̂, r1,k+1) and α∗∗i,k is generated withDG(ψ∗k, r1,k+1).
We call the estimator (15) a telescoping bootstrap because it is of the form (14) using
lagged values of α∗i,k. If the use of r2,k in place of an independent random number results
in positive correlation between α∗i,k and α∗∗i,k−1, then α̃∗∗i,T can have smaller variance than
α̃∗∗i,C of (13).

4. Simulations

In the simulation study we consider m = 36 areas with unit level observations xij in
three groups of 12 areas, with sizes ni ∈ {2, 10, 40}. The number of additional unit level
observations is n′i = 10, for each area i. Each sample, (y,x, x̃), is generated using model
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(1 - 3) with σ2b = 0.25, µx = 0, σ2δ = 0.16, and σ2ε = 0.36. The vector of coefficients for
the fixed effects is (β0, β1) = (−0.8, 1) and, for each unit, the probability that yij = 1 is

g(xij ,β, bi) =
exp(−0.8 + xij + bi)

1 + exp(−0.8 + xij + bi)
. (16)

The population mean of g(xij ,β, bi) is 0.334 with variance 0.029. An area with µxi = 0.4
has mean 0.412 with variance 0.028. Four hundred Monte Carlo samples were generated
satisfying the model.

The estimation models are:

• Model 1: Model (1-2), known auxiliary mean µxi

• Model 2: Model (1-2), unknown random auxiliary mean µxi

• Model 3: Model (1-3), unknown random auxiliary mean µxi, observed x̃

The models are fitted as generalized linear mixed models (GLMMs), using the glmer
function in the lme4 package in R. The true small area mean of y is given by (4) and the
predicted area means of y are given in (7 - 9), with estimated (µx, β0, β1, σ

2
b , σ

2
δ , σ

2
ε ). The

true variance of µ̃xi is used in f(µ̃xi|δi) of (9). The integrals in (4, 7 - 9) were approximated
using a K-point approximation to the normal distribution, with K = 20 as in Erciulescu
and Fuller (2013).

4.1 Refinement of Prediction MSE Estimators

We consider the bootstrap estimators of the prediction MSE of θi given in (10),(13),(15),
with B1 − 1 terms in the summation, because of the lagged values in the telescoping boot-
strap procedure.

The fact that σ2b ≥ 0, σ2δ ≥ 0 and that some unrestricted estimators of σ2b , σ
2
δ can equal

zero must be recognized in constructing estimators. We bound the estimator of σ2b with
0.003 and bound the estimator of σ2δ with 0.002. If σ̂2b,k = 0.003 or σ̂2b,k > 0.003 and
σ̂2∗b,k ≤ 0.003, we set α∗∗i,k equal to α∗i,k. That is, the estimated bias is zero for such samples.
The proportion of sample estimators of σ̂2b that hit the bound is 0.015, the proportion of
level one estimators of σ̂2∗b that hit the bound is 0.104.

The coefficient of variation for σ̂2b is about 0.64, approximately the CV of a Chi-square
with five degrees of freedom. The Monte Carlo relative bias of the estimator of σ̂2b based
on 400 samples was about −0.12, which is approximately equal to eighteen Monte Carlo
standard errors.

Using (13), one can obtain an unacceptable double bootstrap prediction MSE estimator,
where the estimated bias for a sample is greater than the estimate. In practice, one would
increase the number of bootstrap samples. Rather than build such a procedure into our
Monte Carlo algorithm, we defined bounds for the estimator. Thus, the final estimator is

α̂∗∗i,C = 0.77ᾱ∗i , if ᾱ∗i
−1ᾱ∗∗i < 0.77

= α̃∗∗i,C , otherwise ,
(17)
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where 0.77 is the 0.025 point of the chi-square distribution with 99 (B1 − 1) degrees of
freedom, and α̃∗∗i,C is defined in (13). The analogous definition holds for the telescoping es-
timator of (14). See Hall and Maiti (2006) for an alternative definition of the direct double
bootstrap estimates.

The proportions of sample estimators of α̂∗∗i,T that hit the bound defined in (17) are
0.0375, 0.0325 and 0.0175, for the areas of sizes 2, 10 and 40, respectively. Due to larger
variability in the classic double bootstrap estimators, the proportions of sample estimators
of α̂∗∗i,C that hit the bound defined in (17) are 0.0400, 0.0375 and 0.1000, for the areas of
sizes 2, 10 and 40, respectively.

4.2 MSE for Different Types of Auxiliary Information

Table 1 contains estimates of the α = MSE for three models exploiting different amounts
of auxiliary information. The simulation MSE standard errors are presented in parantheses
below the MSE values. The smallest MSE is for Model 1, where the auxiliary mean is
known. The small area mean predictor for Model 2 is the conditional expected value for-
mula given in (8). Notice that in the construction of the small area predictor for Model 3,
given in (9), the conditioning is also on the additional source of information, µ̃xi, available
for the areas. By including the ten additional unit level observations, the estimated MSE is
closer to the MSE of the known mean case than to the MSE for the case with no additional
information.

Table 1: MSE for Different Types Auxiliary Information
Size ȳ Model 1 Model 2 Model 3

2 101.91 9.18 13.23 10.74
(1.09) (0.18) (0.26) (0.21)

10 20.66 7.28 8.28 7.78
(0.27) (0.16) (0.18) (0.17)

40 5.17 3.69 3.82 3.74
(0.07) (0.07) (0.08) (0.08)

Model 1: known µxi , Model 2: random µxi, no x̃ , Model 3: random µxi, observed x̃

4.3 Monte Carlo Properties of Prediction MSE Estimators

The relative performances of bootstrap prediction MSE estimators under the different types
of auxiliary information are similar. Therefore, we only present properties of prediction
MSE estimators for Model 3, where the area mean µxi is random and auxiliary information
x̃ is available.

Table 2 contains results for (α̂∗, α̂∗∗T , α̂
∗∗
C ) for the three area sample sizes, in groups of

five lines. The first line is the Monte Carlo estimate of the prediction MSE, α̂ , where the
MSE for a Monte Carlo sample is the average of squared prediction errors for the 12 areas
with the same sample size, and the samples are generated with the true values. The next
four lines are the bias relative to the mean, the coefficient of variation, the bias relative to
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the standard deviation and the bias relative to the standard error. The definitions are

RelBias = (α̂EST.,s − α̂.,s)/α̂.,s,
CV =

√
(400− 1)−1

∑400
ζ=1(α̂

EST
ζ,s − α̂EST.,s )2/α̂.,s,

Bias/sd = (α̂EST.,s − α̂.,s)/
√

(400− 1)−1
∑400
ζ=1(α̂

EST
ζ,s − α̂EST.,s )2,

Bias/se = (α̂EST.,s − α̂.,s)/
√

(400(400− 1))−1
∑400
ζ=1(α̂

EST
ζ,s − α̂EST.,s )2,

where ζ indexes the Monte Carlo samples, s denotes the sample size for a group of areas,
α̂.,s = (400)−1

∑400
ζ=1 α̂ζ,s is the average of the Monte Carlo prediction error estimators,

α̂EST.,s = (400)−1
∑400
ζ=1 α̂

EST
ζ,s is the average of the bootstrap prediction MSE estimators,

and α̂EST ∈ {α̂∗, α̂∗∗T , α̂∗∗C } is the bootstrap estimator averaged over the areas with same
sample size s. For example, α̂∗ζ,s = 12−1

∑12
i=1 α̂

∗
ζ,s,i, where α̂∗ζ,s,i is the ith area in the

set with sample size s. The estimated prediction MSEs have CV’s of about 40%, 31% and
20% for 100 bootstrap samples for sample sizes 2, 10, and 40, respectively.

In all cases the telescoping double bootstrap, denoted with a subscript T, has lower
MSE than the classic double bootstrap, denoted with a subscript C. The estimators α̂∗∗T and
α̂∗∗C have the same bias if the bound (17) is not used. The double bootstrap reduces the
absolute value of the bias for all the sample sizes. However, the absolute bias of the double
bootstrap is nearly 9% of the true value for sample size 2.

Table 2: Monte Carlo properties of prediction MSE estimators
(B1 = 100, B2 = 1 and 400 MC samples, Variances multiplied by 103)

size α̂∗ α̂∗∗T α̂∗∗C
2 V(θ̂ − θ) 10.7382 10.7382 10.7382

RelBias -0.1412 -0.0877 -0.0866
CV(α̂) 0.3939 0.4567 0.4592
Bias/sd -0.3584 -0.1920 -0.1886
Bias/se -7.1686 -3.8407 -3.7716

10 V(θ̂ − θ) 7.7769 7.7769 7.7769
RelBias -0.1300 -0.0661 -0.0633
CV(α̂) 0.3069 0.3619 0.3646
Bias/sd -0.4235 -0.1827 -0.1736
Bias/se -8.4703 -3.6534 -3.4724

40 V(θ̂ − θ) 3.7431 3.7431 3.7431
RelBias -0.0767 -0.0225 -0.0245
CV(α̂) 0.2047 0.2398 0.2442
Bias/sd -0.3748 -0.0938 -0.1003
Bias/se -7.4950 -1.8768 -2.0067

The variance of an estimator of the prediction MSE has two components. The first, that
we call the between, is the variance one would obtain if one used an infinite number of boot-
strap samples. The second, that we call within, is the variability due to the fact that our set
of bootstrap samples is a sample of samples. We estimate these two components using two
sets of bootstrap samples. That is, for each Monte Carlo sample, we generate two sets of
(B1 = 100, B2 = 1) samples. The sequences of random seeds r′1,k, r

′
2,k, k = 1, ..., B1 for

the second set are independent of the sequences of random seeds r1,k, r2,k, k = 1, ..., B1 for
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the first set. Let (α̂∗, α̂∗∗, α̂∗∗T , α̂
∗∗
C ) be the prediction MSE estimates for the first group of

bootstrap samples and let (α̂∗2, α̂
∗∗
2 , α̂

∗∗
T2, α̂

∗∗
C2) be the prediction MSE estimates for the sec-

ond group of bootstrap samples. The within variance component forB1 = 100 is estimated
by half of the mean of squared difference between the two prediction MSE estimates,

V arESTwithin =

(400)−1
400∑
ζ=1

(α̂ESTζ,s − α̂EST2,ζ,s )2

 /2.
The estimated between variance component is the difference between the estimated

total variance and the estimated within variance component,

V arESTbetween = V arESTtotal − V arESTwithin,

where V arESTtotal is the variance estimate for B1 = 100.

The variance components for the prediction MSE estimators (α̂∗, α̂∗∗T , α̂
∗∗
C ) are given in

Table 3 for (B1 = 100, B2 = 1). The entries in the table are averages over the Monte Carlo
samples and are multiplied by 106. The components may be functions of the parameters.

Table 3: Estimated variance components for variance of estimated prediction MSE
(Within is for 100 bootstrap samples. All variances have been multiplied by 106)

Source of Variation Size α∗ α∗∗T α∗∗C
Between 2 17.6962 23.5806 23.5806
Within 0.1982 0.4685 0.7362
Total 17.8944 24.0491 24.3168
Between 10 5.6088 7.6819 7.6819
Within 0.0897 0.2374 0.3576
Total 5.6985 7.9193 8.0395
Between 40 0.5617 0.7456 0.7456
Within 0.0252 0.0599 0.0898
Total 0.5869 0.8055 0.8354

The within variance for the double bootstrap is a function of the variance of α∗, the
variance of α∗∗ and the covariance between α∗ and α∗∗. The within variance component
for the prediction MSE estimators (α̂∗, α̂∗∗) and the corresponding within covariance com-
ponent are given in Table 4 for (B1 = 1, B2 = 1). Using the entries in this table, one
can calculate the variance of estimated prediction MSE forB1 level-one samples combined
with B2 level-two samples for each level-one sample,

V arwithin(α̂∗∗C ) = 4B−11 V arwithin(α̂∗)−4B−11 Covwithin(α̂∗, α̂∗∗)+B−11 B−12 V arwithin(α̂∗∗).

Table 5 contain estimates of the within variance components for α∗∗C for different dou-
ble bootstrap designs, that is for different combinations of B1 level-one samples combined
with B2 level-two samples for each level-one sample. The choice of (B1, B2) pair has an
effect on the estimated within variance of the bootstrap prediction MSE estimator. In Ap-
pendix A, we derive the optimal bootstrap design and prove that B2 = 1 is the optimal
choice for the number of level-two bootstrap samples.
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Table 4: Estimated Within Bootstrap Variance and Covariance of the MSE
(B1 = 1, B2 = 1) (×106)

Size V (α∗) V (α∗∗) C(α∗, α∗∗)T C(α∗, α∗∗)C
2 19.8237 36.2553 17.1754 10.4831
10 8.9691 14.9861 6.7807 3.7763
40 2.5174 2.8295 1.7268 0.9799

Table 5: Within Bootstrap Variance, Classic (×106)
Size V100,1 V1000,1 V5000,1 V100,50 V20,10 V50,4
2 0.7362 0.0736 0.0147 0.3809 2.0494 0.9285
10 0.3576 0.0358 0.0072 0.2107 1.1135 0.4904
40 0.0898 0.0090 0.0018 0.0621 0.3216 0.1371

Table 6: Within Bootstrap Variance, Telescoping (×106)
Size V100,1 V1000,1 V5000,1
2 0.4685 0.0469 0.0094
10 0.2374 0.0237 0.0047
40 0.0599 0.0060 0.0012

Table 6 contains estimates of the within variance components for α∗∗T for different dou-
ble bootstrap designs, (B1 = 100, 1000, 5000, B2 = 1).

Consider the predictor MSE estimators for the areas of size ni = 2. Using the results in
tables 5 and 6, we conclude that increasing the number of bootstrap samples to B1 = 5000
reduces the within variance component to about 0.06% of the total variance for the classic
method and to about 0.04% of the total variance for the telescoping method. For the classic
bootstrap method based on a total of 200 samples, the estimated within variance component
is about 3% of the total variance for the design (B1 = 100, B2 = 1), about 4% of the total
variance for the design (B1 = 50, B2 = 4) and about 8% of the total variance for the
design (B1 = 20, B2 = 10). Also, for the classic bootstrap method based on a total
of 10000 samples, the estimated within variance component is about 0.3% of the total
variance for the design (B1 = 5000, B2 = 1) and about 2% of the total variance for the
design (B1 = 100, B2 = 50).

4.4 Equal Efficiency Bootstrap Designs

We give bootstrap sample sizes such that the bootstrap variance of the estimated prediction
MSE is the same under different bootstrap sampling procedures.

Table 7 contains the number of level-one bootstrap samples needed in the classic boot-
strap method in order to produce prediction MSE estimates as efficient as the prediction
MSE estimates produced using the telescoping bootstrap method with (B1 = 100, B2 = 1).
The last column in Table 7 contains the total number of bootstrap samples for each proce-
dure, for each design.
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Table 7: Equal efficiency bootstrap procedures, Model 3
Bootstrap Method/Design Size B1 Total
Telescoping (100, 1) 2 100 200
Classic (B1, 1) 159 318
Classic (B1, 50) 84 4284
Telescoping (100, 1) 10 100 200
Classic (B1, 1) 157 314
Classic (B1, 50) 90 4590
Telescoping (100, 1) 40 100 200
Classic (B1, 1) 150 300
Classic (B1, 50) 103 5253

5. Conclusions

We present a parametric double bootstrap procedure for estimation of the mean squared
error of the predictor for a unit level nonlinear model. We show that the fast double boot-
strap procedure, where the number of level-two bootstrap samples is B2 = 1, has superior
bootstrap efficiency relative to classic double bootstrap procedure with B2 > 1. The dou-
ble bootstrap reduces the prediction MSE estimation bias to about 50% of that of the level
one bootstrap. The double bootstrap increases the standard error of the prediction MSE
estimator by about 15 to 20% relative to that of the level one bootstrap.

We used a simulation study of a unit level binomial model to compare the impact of dif-
ferent levels of auxiliary information. The estimated minimum mean square error estimates
for the small area means were obtained by conditioning on the observations, including the
area means of the auxiliary information. The results indicate that the random model for
the covariates has potential to reduce the prediction MSE relative to that of the fixed model
when additional auxiliary information is available and included in the estimation.
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6. Appendix A, Optimal bootstrap design

The number and type of bootstrap samples can change the within sample variance, but will
have little impact on the between sample variance. The variance of the double bootstrap
procedure (14) that uses B1 level-one samples and B2 level-two samples is

V (α̂C) = 4B−11 V (α̂∗)− 4B−11 C(α̂∗, α̂∗∗) +B−11 B−12 V (α̂∗∗).

We would like to minimize V (α̂C) with respect to the restriction B1B2 + B1 = k,
where k is a constant representing the total number of bootstrap samples.

To consider this problem as a Lagrangian multiplier problem, let

L(B1, B2, λ) = 4B−11 V (α̂∗)−4B−11 C(α̂∗, α̂∗∗) +B−11 B−12 V (α̂∗∗) +λ(B1B2 +B1−k)

where λ the Lagrangian multiplier. The resulting system of three equations is:

0 = −4B−21 V (α̂∗) + 4B−21 C(α̂∗, α̂∗∗)−B−21 B−12 V (α̂∗∗) + λ(B2 + 1)

0 = −B−11 B−22 V (α̂∗∗) + λB1

0 = B1B2 +B1 − k.

The solution is

B2 =

√
V (α̂∗∗)

4(V (α̂∗)− C(α̂∗, α̂∗∗))
,

and

B1 = k

(√
V (α̂∗∗)

4(V (α̂∗)− C(α̂∗, α̂∗∗))
+ 1

)−1
For the parameters in the simulation study, B2 = 1 is the optimal choice.
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