
 

 

Data Analysis using NHIS-EPA Linked Files: Issues with 

using Incomplete Linkage 
 

 

Rong Wei
1
, Van Parsons, Jennifer Parker and Yulei He 

 

National Center for Health Statistics, Hyattsville, MD 20782 
 

 

Abstract 
The National Health Interview Survey (NHIS) collects individual health outcome data 

that represents the civilian non-institutionalized population of the United States.  As the 

NHIS is based on a complex survey design which includes survey weighting and 

clustering factors, it is recommended that analyses should be implemented using methods 

which make use of available design variables.  A special situation arises for analyses 

using NHIS-EPA (Environmental Protection Agency) linked data, a database available at 

the National Center for Health Statistics (NCHS) that geographically links NHIS data 

covering years 1985 to 2005 to EPA pollutant data.  The available linkage only partially 

covers the geography sampled by the NHIS, and the “representativeness” of the linked 

NHIS-EPA component to the nation may be questionable.  The present study focuses on 

issues related to the analysis of the linked NHIS-EPA data in a model-based framework 

that preserves many of the NHIS survey design features, but avoids some of the design-

based structural complexities resulting from large amounts of missing data.  First, 

comparisons of the linked and un-linked components of the NHIS are made to establish a 

possible “non-representativeness” of the linked component.  While perhaps not 

representative of the nation as a whole, the EPA-linked data can still be viewed as a 

valuable source of information regarding associations between health and air pollutants.  

Random effects and Bayesian models which account for the survey design are presented 

as means to study associations between NHIS health and EPA pollutant variable when 

restricted to the partial NHIS-EPA data.     

 

Key Words: air pollutant, health status, linked complex survey data, mixed effects 

model, model-based analysis 
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1. Introduction 

To study associations between health outcomes and air quality, data from the National 

Health Interview Survey (NHIS) covering years 1985 – 2005 were geographically linked 

to air quality data from the Environmental Prevention Agency (EPA).  This linkage is 

discussed in Parker et al. (2008a), and this resource database is only available in the 

NCHS Research Data Center.   These two independent designs for data collection have 

different structures in terms of national geographic coverage and in the nature of 

sampling.  The NHIS is a probability sample considered representative of the population 

and of the geographical coverage of the population, while the available EPA collected 

data cannot be considered as geographically complete nor population representative in 

nature.   Linkage-eligibility due to different data collection purposes leaves unlinked data 

in both data sources.   

 

Design-based analyses for NHIS-EPA associations have been previously studied, e.g., 

design-based logistic regression (Parker et al. 2009) and sample weighting adjustment 

methods (Judson, Parker and Larsen, 2013). An assumption that the missing linkage-

eligibility cases were at random was embedded in those studies. On the other hand, due to 

limited geographical coverage, these association analyses can be complicated by a 

potential “non-missing at random” structure of the EPA linked data. In addition, from the 

epidemiological perspective, estimation of associations between health measures and air 

quality variables using simple regression models might be further improved by 

accounting for NHIS design features in Bayesian analyses.  

 

 

One of the purposes of this work is to provide data users some additional operating 

characteristics of this data resource and suggest some model-based procedures, e.g., 

random effects and Bayesian models.  First, we consider the “representativeness” of the 

linked NHIS-EPA population component.    As a specific case, we consider whether a 

general health measure is “equal” between the linked EPA part and corresponding 

unlinked part.  Second, even if the linked and unlinked components have different 

characteristics, epidemiological focused analyses on the linked component are still 

valuable.  We discuss how survey design features, i.e., sampling weights and sampling 

clusters, can be incorporated into a model-based association analyses.   As our goal is to 

provide guidance to data users, we suggest both random effects and Bayesian models 

easily implementable in popular software packages. 

 

 

2.    Data and linkage eligibility 

 

For the NHIS data, the health status given by NHIS respondents are dichotomized as 

“healthy”   (“excellent”, “very good” and “good”) and “unhealthy” (“fair” and “poor”), 

and this variable is used as the health outcome in this study.  Covariate variables for 

health status are four race/ethnic groups (Hispanic, non-Hispanic white, non-Hispanic 

black and others), two genders (male and female) and age (centered at 45 years old).  The 

health status, covariates, and design features are complete with no missing values (a 

relatively few units with unknown health status variables are discarded).  We refer to this 

essentially full NHIS data, before linkage, as the “complete data”.   

  

The EPA data includes annual average measures of 6 EPA air pollutants which are 

particulate matters (fine (PM2.5) and large (PM10)), carbon monoxide (CO), sulfur 
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dioxide (SO2), ozone (O3), and nitrogen dioxide (NO2).  These are linked to NHIS 

respondents if monitors are present within 20 miles of the respondent’s housing unit 

Census block group.  These measures are used as air pollutant exposure variables.  Only 

partial EPA data for each of these six air pollutants are linked to NHIS data. We refer to 

NHIS-EPA linked data as the “partial data”.  The coverage of these two data systems 

varies by year, but as an example, the year 2005 data linkage eligibility is shown in  

Table 1.  As can be seen from this table, the availability of pollutant data varies by type 

of pollutant and coverage by county. For example, only a limited number of NHIS 

counties had lead measures, thus limiting the number of NHIS sample persons with 

complete data.   As the variable “county” is a cluster, that represents a sampled design 

structure, the totality of which represent the nation, these units are needed to explain the 

randomness of the data.  Any non-random missing counties present inferential problems 

resulting from data analyses. 

 

 
Table 1. Data linkage eligibility in NHIS-EPA 2005 

  Percentage of 2005 NHIS counties and individuals linked to EPA air 

data  

  
County(Total NHIS 844)

1
 

Individual(Total NHIS 98,649) 

Pollutant N % N % 

Ozone 627 74 79,767 80 

PM2.5 626 74 80,109 81 

PM10 462 55 66,776 68 

CO 393 47 62,283 63 

NO2 351 42 57,472 58 

Lead 113 13 21,243 22 

1/
County contains some sample linked to EPA data 

 

3.  Population differences between complete and partial data  

 

 

3.1 Health status on the partial data compared to the complete data 
 

The health status outcome “unhealthy” is compared between the “partial data” and 

“compete data” by treating the partial data as a domain within the complete data and 

using logistic regression techniques to test for a domain effect.   A generalized mixed 

effects model (using SAS PROC GLIMMIX) is applied separately to the complete data 

for each of the 6 air linkage-eligibility indicators respectively:  

 

Logit(unhealthy) = Race + Sex + Age + (single-Air –linkage- indicator) + County (3.1.1) 

JSM 2014 - Survey Research Methods Section

3205



 

 

 

This model was also applied to data with linkage indicators for all 6 air linkage-data 

presence: 

 

Logit(unhealthy) = Race + Sex + Age + (Simultaneous 6 air indicators) + County (3.1.2) 

The air linkage indicators are defined equal to 1 if health status and air data are linked, 

and equal to 0 if health status and air data are not linked;   the variable “County” is 

treated as being a normally distributed random effect.  For these models the design 

structure is partially covered by treating county as a one-stage clustering effect 

corresponding to PSU sampling and the covariates correspond to oversampling by race 

factors and poststratification variables.     

 

Examples of results for Ozone and PM10 indicators using models (3.1.1) and (3.1.2) are 

given in Figure 1. The models were run separately for each of the linked years in the 

NHIS linked data and are represented on the x-axis.  In general, we observed that the 

linkage parameter was highly significant under model (3.1.1).  When using multiple 

indicators in model (3.1.2) there may be a high degree of collinearity among the 6 

pollutant indicators, the magnitude of which may vary over the time intervals.   Thus, the 

significance levels for a specific variable may be diminished.  It should be noted that the 

pollutant effects could be confounded with other geographical variables linked to the 

available EPA data, e.g., urban/rural status.  The significance of the link-indicator is 

indicative of the differences of the health status on the populations represented by the 

partial data and represented by a full NHIS.    

 

3.2 Race, Gender and Age effects on Health Status using the complete data 

versus using only the linked EPA part data.  

 
The models of equation (3.1.1) without the indicator parameter were run separately on 

the complete data and on the partial data specified by each of the 6 air pollutants.   

Gender effect estimates on the Ozone and Lead partial data on response health status are 

shown in Figure 2a and 2b, respectively.  The gender effects appear consistently larger 

for the complete data.  As the partial data is embedded within the complete data, a test of 

significance becomes difficult to perform, but there is an indication of a difference.  Race 

and age effects were also studied and showed similar patterns with the effects for the 

complete data set dominating the effects for the corresponding partial data set. 

  

While our analyses are limited in scope, we feel that these analyses suggest that health 

measures and some demographic characteristics may differ by a non-negligible amount 

on the linked and unlinked populations. Finer levels of analyses using additional 

covariates may suggest types of analyses that yield comparable results on linked and 

unlinked data.  Our message is one must be cautious when making general inferences 

based on the linked data. 

 

4.  Association analysis 

 
To study the possible associations between health outcomes and air pollutant measures, 

only the partial data may be directly used.  Any design-based analysis considering all 

NHIS design factors are complicated by the patterns of missing linkage in the EPA linked 

data, and the design’s structural integrity may be compromised.  Thus, model-based 

alternatives that use survey features of weighting and clustering are suggested for 
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analyses.   The NHIS uses multiple sampling procedures, but to simplify a model-based 

approach, we consider a conceptual two-stage sampling structure:   county cluster 

sampling is the first random process followed by sampling individuals within sampled 

counties.  Using a very basic generalized mixed effects modeling approach, the county-

level clusters are treated as a random effect, and the individual response is treated as a 

binary variable. Design components of the NHIS may include differential sampling by 

race/ethnicity and weighting adjustments by race, gender and age distributions, so these 

three variables are included in the model as fixed covariates.   

 

Models may be constructed as weighted and unweighted at the individual level. The 

weighted model uses an individual weight (denoted wtsca in the model expressions 

below)   which is the NHIS survey weight, but scaled to a total effective sample size on 

the linked data. The individual weight is defined as 

   wtsca,i  ≡   ntotal  ( wi/∑j wj ) / (CV
2
(w) + 1), where w are weights for the individuals in 

the partial data, and ntotal is the unweighted total on the partial data.  

 

 These techniques are discussed in Section 4.4 of Korn and Graubard (1999) and were 

demonstrated for use on NHIS data in Wei and Parsons (2009) to help account for the 

complex design when using model-based approaches.     

 

Four models were applied and select SAS
®
GLIMMIX outputs are displayed in Figure 3. 

The four models and corresponding Figure 3 labels (weighting status, symbol, color) are: 

 

1) Covariate model:   (nw, +, green)  

 

Logit(unhealthy) = β1Race + β2Sex + β3Age + α(single Air pollutant) + County  

 

2) Sample-adjusted weighted model:   (w, , blue) 

 

Logit(unhealthywtsca) = α(single Air Pollutant) + County 

 

3) Covariate + Sample-adjusted weighted model:   (w, , red) 

 

Logit(unhealthywtsca)= β1Race+ β2Sex+ β3Age + α(single Air Pollutant) + County  

 

4) Simple model:  (nw, x, orange) 

 

Logit(unhealthy) = α (single Air Pollutant) + County 

 

where County ~ normal(0, σ
2
cnty) for all models. 

 

Note, Model 3) makes the most use of the survey design features of clustering, 

differential weighting by race/ethnicity and poststratification.  

 

Examples of results for the association study are given in Figure 3 using ozone- and 

PM10-linked data.  The T-values for ozone and PM10 effects associated with 

“unhealthy” status are shown in Figures 3a and 3c, respectively; and the variance 

estimate for σ
2
cnty of the random effects variable, county, are shown in Figures 3b and 3d, 

respectively.    
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As can be seen, the four models track each other fairly well. The relative orders of 

magnitude of the estimates for σ
2

cnty over the four models tend to create an ordering of 

models: (3) < (1) < (2) < (4), (red < green < blue < orange), which is plausible as the 

modeled covariates should account for much of the variability.    For the T-statistics the 

covariate models (1) and (3) track each other well as do the non-covariate models (2) and 

(4) track each other.  However, the T-statistics do not display consistent significant levels 

over the time interval.    Such behavior reinforces the notion that the linked NHIS-EPA 

data cannot be thought of as a “representative” design for some standard geographically 

time-linked population. As this paper is focusing on several simple models that may be 

first attempted by a typical data user, a careful analysis for a specific problem should 

involve careful covariate selection using perhaps sequential procedures and diagnostics to 

assess individual model fits. It should also be noted that the within-year tests are valid, 

but the linked geography may change in any time period.  For example, in the year 1996 

the NHIS was reduced by about 38%, and the annual EPA-linked counties may also 

change.   With changes of counties, it is quite possible that other geographical related 

variables are confounding interpretations of the regressions.  The nature of the NHIS-

EPA linkage by year needs to be considered when making inference, and data users are 

encouraged to carefully explore possible confounding in any given NHIS-EPA data set. 

 

5.  Bayesian methods 

Data users are increasingly using Bayesian methods for analyses.  For the partial data we 

performed an analysis on the year 2005 data linkage using a Bayesian adaptation of 

model (1) in section 4.   

  

Health Status ~ Bernoulli (p),    where p = probability (unhealthy) 

Logit (p) ~ normal (BX + α(Air), Σ) ,  

where B = vector of coefficients for race, sex and age, Σ is random effect of county; 

  

Priors: Empirical Bayes parameters B and Σ which are estimated from complete data set; 

α is non-informative, the variables B, α ~ normal and Σ ~ inverse gamma.  

 

The SAS/MCMC procedure was applied to 10,000 out of 20,000 samples. Examples for 

select pollutant α variable posterior distributions are given in Figure 4a (ozone) and 

Figure 4b (PM10).   An inspection of the quantiles for the posterior densities suggests 

that the PM10 pollutant is a significant factor on health status while ozone is not, i.e., at 

least 97.5% of the PM10 posterior probability is greater than 0.00169 while roughly 75% 

of the ozone posterior distribution is negative and 25% positive. Table 2 presents some 

comparisons between generalized mixed effects modeling using SAS GLIMMIX and 

SAS MCMC procedures.  In general the Bayesian- and the random effects-approaches to 

modeling appear to be fairly consistent with respect to inference. The PM10 effects and 

the other covariate effects all appear to be of the same order of magnitude in the 

comparison.  The ozone covariate comparisons looked comparable in magnitude except 

for the large difference for the ozone pollutant effect, -14.1 vs -0.8. This may be due to 

the Bayesian chain not having achieved a stationary state.  As this Bayesian study is 

somewhat exploratory, additional work is necessary.  
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6. Conclusions  

This study considers some model-based approaches that also contain NHIS design 

structures to complement some of the design-based approaches for analyzing NHIS-EPA 

linked data.   As the nature of the linkage creates a possibility that the inferential 

population is not “representative” of the U.S., some adaptation of standard NHIS design-

based methods may be required.  First, by a model-based analysis we showed that the 

populations inferred by the linked and unlinked NHIS may have different characteristics, 

suggesting that care must be taken when making a population inference.  Second, we 

considered some model-based approaches to association analyses between NHIS health 

variables and EPA pollutant variables.  The simple models suggested making use of the 

survey design information, and subject to choosing reasonable conceptual models, allow 

the analyst to study associations while capturing much of the correct stochastic structure 

of the data.  Caution is always advised as to the level of population inference.  
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Figure 1. T-statistic values for testing NHIS-EPA pollutant linkage domain effect 
                 for “unhealthy” status   
 
1a. Single ozone indicator   1b. Ozone indicator simultaneous with other 

indicators 

 
          Horizontal line at 2.00 clarifies t-test 
       significance region 
 
1c. Single PM10 indicator  1d. PM10 indicator simultaneous with other 
                                                                        indicators 

 
          Horizontal line at 2.00 clarifies t-test 
       significance region 
 
Figure 2.   Gender effect estimates for “unhealthy” status for complete NHIS data (red) and 
                  partial NHIS-EPA linked data (blue) 
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Figure 3.  Comparisons of four models that express associations between 
                  “unhealthy” status and level of pollutant:    
          T-statistics for testing significance of the fixed pollutant effect α,    
          Random effect variance estimates, σ2

cnty,  
  
 
3a  T-statistic PM10   3b    Random effect variance PM10 

 
 
3c  T-statistic Ozone            3d Random effect variance Ozone 
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Figure 4. Bayesian Posterior Distributions  

 
a. Ozone 

 
 
Quantiles 
      
100.0% maximum 2.68788 
99.5%  1.76693 
97.5%  1.17166 
90.0%  0.45329 
75.0% quartile  -0.1405 
50.0% median  -0.8122 
25.0% quartile  -1.44 
10.0%   -2.0766 
2.5%   -2.7039 
0.5%   -3.2856 
0.0% minimum  -3.9549 
 
Summary Statistics 
    
Mean  -0.802537 
Std Dev 0.9768013 
Std Err Mean 0.009768 
Upper 95% Mean  -0.78339 
Lower 95% Mean  -0.821684 
N  10000 
 
 
 
 
 
 
 
 
 
 

 

  
  

b. PM10 

 
 
 
 
Quantiles 
      
100.0% maximum 0.03396 
99.5%  0.02495 
7.5%  0.02236 
90.0%  0.01853 
75.0% quartile 0.01501 
50.0% median 0.01147 
25.0% quartile 0.00816 
10.0%  0.00502 
2.5%  0.00169 
0.5%   -0.0019 
0.0% minimum  -0.0043 
 
Summary Statistics 
    
Mean 0.0116703 
Std Dev 0.0052191 
Std Err Mean 0.0000522 
Upper 95% Mean 0.0117727 
Lower 95% Mean 0.011568 
N 10000 

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-0.004

0

0.004

0.008

0.012

0.016

0.02

0.024

0.028

0.032

JSM 2014 - Survey Research Methods Section

3212



T
ab

le
 2

. C
om

pa
ris

on
s o

f S
A

S 
 G

LI
M

M
IX

 a
nd

 M
C

M
C

 p
ro

ce
du

re
s f

or
 m

od
el

in
g 

as
so

ci
at

io
ns

 b
et

w
ee

n 
“u

nh
ea

lth
y”

 st
at

us
 a

nd
  p

ol
lu

ta
nt

 le
ve

l 
 

   
  
  
  
  

  
  
  

NH
IS

1  
  

  
  
  
  

  
  
  

  
  
  
  

  
  
  
  

  
  
  

  
  
  
  

  
  
  
  

  
  
  

  
  
  
  

  
  
  
  

  
  
  

  
  
  
  

  
  
  

  
  
  
  
  

  
  
  

fu
ll
  

  
  
  
Oz
on

e 
  
  

  
  
  

  
PM
2.
5 
  

  
  
  

 P
M1
0 

  
  
  
  
  

  
CO
1 

  
  
  

  
  
  
NO
2 

  
  
  

  
  
 L

ea
d 
  
  

  
  
  
  
  

  
  
  

  
  
  

  
GL
IM
MI
X 

MC
MC
  

  
GL
IM

MI
X 
MC
MC
  

  
GL
IM

MI
X 
MC

MC
  
  
GL
IM

MI
X 
MC

MC
  
  

GL
IM
MI
X 
MC

MC
  
  

GL
IM
MI

X 
MC
MC
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  

ra
ce
(h
is
p)

2 
  
  
 0
.6
81
  

 0
.7
59
  

 0
.7
79

  
 0
.7
57

  
 0
.7
52

  
 0
.8

13
  
 0
.8

03
  
 0
.8

21
  
 0

.8
04
  
 0

.8
11
  
 0

.8
01
  

 0
.8
90
  

 0
.8
32

 
ra
ce
(o
th
er

) 
  
  

0.
07
8 

  
0.
04
6 
  

0.
06
6 

  
0.
07

4 
  
0.
07
4 

  
0.
12

9 
  
0.

10
8 
  
0.
11

7 
  
0.

06
5 
  

0.
10
7 
  
0.

10
2 
  

0.
25
6 

  
0.
08
7 

ra
ce
(b
la
ck

) 
  
  

0.
73
5 

  
0.
75
3 
  

0.
75
5 

  
0.
71

4 
  
0.
70
5 

  
0.
75

4 
  
0.

74
5 
  
0.
75

8 
  
0.

74
4 
  

0.
77
7 
  
0.

76
2 
  

0.
78
9 

  
0.
74
8 

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  

se
x(
ma
le
)3

  
  
  
 -
0.
06
2 

 -
0.
09
6 
 -

0.
09
8 

 -
0.
10

3 
 -
0.
10
5 

 -
0.
12

6 
 -
0.

12
8 
 -
0.
10

4 
 -
0.

10
5 
 -

0.
10
9 
 -
0.

10
9 
 -

0.
10
8 

 -
0.
10
8 

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  

ag
e4
5 
  
  

  
  
  

0.
04
7 

  
0.
04
8 
  

0.
04
9 

  
0.
04

8 
  
0.
04
9 

  
0.
04

8 
  
0.

04
9 
  
0.
04

9 
  
0.

04
9 
  

0.
04
9 
  
0.

04
9 
  

0.
04
8 

  
0.
04
5 

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  

ai
r 
po
ll
ut

an
t 
  

  
  
  

-1
4.
14
1 
 -

0.
80
3 

  
0.
03

8 
  
0.
06
0 

  
0.
01

0 
  
0.

01
2 
  
0.
03

3 
  
0.

21
8 
  

3.
55
3 
  
0.

50
2 
 -

0.
67
4 

 -
0.
66
9 

 1/
 f
or
 c
om

pl
et
e 

da
ta
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  

2/
 w
hi
te
 i

s 
th
e 

re
fe
re

nc
e 
gr
ou
p 

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  

3/
 f
em
al
e 

is
 t
he

 r
ef
er

en
ce
 g
ro
up

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  

  
 G
re
en
 n

um
be
rs

 a
re
 n

ot
 s
ig
ni
fi

ca
nt
 a

t 
th
e 

0.
05
 l
ev
el

. 
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
  
  
  
  

  
  
  

  
  
  

  
 

JS
M

 2
01

4 
- 

Su
rv

ey
 R

es
ea

rc
h 

M
et

ho
ds

 S
ec

tio
n

32
13


