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Abstract 

A set of unweighted normal equations for a least squares solution assumes that the 

response variable of each equation is equally reliable and should be treated equally. 

When there is a reason to expect higher reliability in the response variable in some 

equations, we use weighted least squares (WLS) to give more weight to those equations. 

For an analysis of experimental or observational data, an inverse of variance is typically 

used for efficient estimates. For an analysis of survey data, sampling weights are 

typically used for unbiased and efficient estimates. There might be reasons for deviating 

from these weights – e.g., heteroscedasticity or extreme weights. Different weights can 

yield different point and interval estimates of the coefficients, affecting the interpretation 

of results. In other work, we considered the impact of different functional forms of 

weights on the WLS solutions. In the current work, we simultaneously consider sampling 

weights and inverses of variance for the WLS solutions, using data from the 2009-2010 

National Health and Nutrition Examination Survey  a periodic survey conducted by the 

National Center for Health Statistics, Centers for Disease Control and Prevention . 

Results of using both are compared to results using the following three weights: (1) 

Constant; (2) Sampling weights only; and (3) Inverse of the estimated variance only. We 

model body weights (Kg) as a function of heights and other explanatory variables 

including sex and race/ethnicity, and demonstrate the effects of using both sampling 

weights and inverse of variance on the regression coefficients. 

Key Words: Projection, Regression, Dispersion Matrix, Variances, Weights, Least 

Squares, Weighted Least Squares. 

 

1. Introduction 

Ever since the seminal publications of Legendre (1805) and Gauss (1809), the method of 

least squares (LS) has been a main tool or approach of modern statistical analysis 

(Celmins, 1998; Kalman, 1960; Plackett, 1949; Plackett, 1950; Seal, 1967; Sprott, 1978; 

Stigler, 1981; Young, 1974).  

A set of unweighted normal equations assumes that the response variables in the 

equations are equally reliable and should be treated equally. When there is a reason to 
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expect higher reliability in the response variable in some equations, we use weighted least 

squares (WLS) to give more weight to those equations.  

Now let   be a (   ) diagonal matrix with weights. A set of weighted equations can 

be expressed as 

         

where   is (   ) column vector of dependent variable and   is (   ) matrix of 

explanatory variables. The    is the exact solution vector if a solution exists. And the 

normal equations from the weighted equations are  

(  )    ̂  (  )
     

Rearranging terms, the weighted normal equations without parentheses are 

       ̂   
       

And the WLS solution is 

 ̂  ( 
     )

  
        

If we assume non-stochastic   and  , independent  , and a known variance    
   for each 

component of error vector,  , the variance of  ̂  would be 

   ( ̂ )  ( 
     )

  
  
   

Our earlier works (Shin, 2013; Shin & Jibum, 2014) demonstrated the effects of differing 

functional forms of weights on the WLS solutions, the following five forms or methods 

were considered: (1) 1 (constant); (2)    (sampling weights); (3) √   (positive square 

root of the sampling weights); (4)   ̂ 
 ⁄  (inverse of the estimated variance); and (5) 

  ̂ ⁄ (square root of the inverse of the estimated variance). We demonstrated the 

importance of choosing a correct functional form of weights for WLS estimation. 

Estimates resulting from WLS solutions with differing functional weight forms led to 

conflicting research findings. 

2. Two Approaches using Both Variances and Sampling Weights 

Initially the weight for WLS methods was considered to exclusively handle 

heterogeneous variances (Aitken, 1935; Cochran & Carroll, 1953; Harter, 1974). 

Sampling weights were introduced to WLS methods to consider mainly the impact of 

sample selection probability on the LS estimates (Horvitz & Thompson, 1952; Neyman, 

1934). In the following, we will briefly review two main WLS approaches using both 

variance and sampling weights: 1) Fuller & Rao approach (1978); and 2) S rndal, 

Swensson, and Wretman (1992).   

Fuller & Rao approach (1978). Consider a problem of estimating the unknown 

parameter,  , in the linear regression model with heteroscedastic error variances ( ) 

 [ ]      
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where    is an (   ) vector of observations     (                         ∑   
 
    

 ) and E indicates an expectation. The matrix   is defined as 

             {  
            

     }  

where    
  is the known error variance and     is the (     ) identity matrix. The OLS 

estimator( ̂) of   is 

 ̂  (   )
  
     

And aWLS estimator of   is 

 ̃  (   ̂  ̂ )
  
   ̂  ̂   

where  

 ̂             { ̂ 
           ̂ 

     }  

The estimator  ̃ is obtained in two steps. Before calculating the estimator  ̃, an estimator 

 ̂ is obtained in the first step. 

 The (two-step) WLS estimator of   considering both of variances and sampling weights 

is 

 ̃  ( 
    ̂  ̂  )

  
     ̂  ̂    

where  

             {  
   
          

   
   }  

and    is the sampling weight for the     group of observations. 

 

S rndal, Swensson, and Wretman (1992). Consider a WLS solution vector ( ̃) for a 

known finite population of   observations: 

 ̃  (      )
  
      , 

where   is a (   ) response vector and   is a (   ) matrix of given explanatory 

variables.   is a (   ) diagonal matrix, i.e. 

       {  
         

  }  

where    
  is the known error variance. 

We can rewrite the equation for  ̃ as 

 ̃        

where   is a (   ) matrix and   is a (   ) vector. Using summation notation (∑),   

and   can be denoted as 
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  ;    ∑

    
 

  
    

where ∑  indicates a summation over the whole universe or population. 

Now, the Horvitz-Thompson estimators (Horvitz & Thompson, 1952) for   and   using 

sample data are 

 ̂  ∑
    

 

  
   

 ;   ̂  ∑
    

 

  
   

   

where    is inclusion probability and ∑  indicates a summation over the sample. Using 

matrix notation, the WLS estimator of   considering both variances (estimated variances) 

and sampling weights (inverses of inclusion probabilities) is 

 ̃  ( 
    ̂  ̂  )

  
     ̂  ̂     

We will examine the effects of using both variances and sampling weights in WLS 

estimation by analyzing data from the National Health and Nutrition Examination Survey 

(NHANES), a periodic survey conducted by the National Center for Health Statistics 

(NCHS), Centers for Disease Control and Prevention (CDC). Specifically, the 

“examination” sample weight is used for weighted estimation. 

3. Relationship between Inverses of the Estimated Variances and Sampling 

Weights 

We estimated the variance in the following way (Eicker, 1963; White, 1980). First, we 

model the body weights as a linear function of standing heights and obtained absolute 

values of residuals. Second, we model the absolute values of the residuals as a function of 

heights. Our estimated variance ( ̂ 
 ) is the square of the predicted residuals in the second 

step. When used as the weights for WLS estimation, the values   ̂ ⁄  were normalized so 

that their sums were equal to the sample size. 
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For estimation purposes in an actual survey, the sampling weights would be transformed 

into survey weights by adjustments for non-response and coverage errors.  However, we 

assume that    is a fixed and non-random variable. Let    (       ) be the 

normalized sampling weight for the i
th
 element, i.e., ∑   

 
     . For simplicity, the 

term “normalized” will be omitted hereafter when referring to sampling weights.  

Figure 1 shows a scatter plot between the inverses of the estimated variances and the 

sampling weights. As we see, the points tend to be away from the 45
o
 line and negatively 

correlated (                )  The inverses of the estimated variances and the 

sampling weights are two distinct measures. Accordingly, it is possible to obtain differing 

WLS solutions or regression coefficients depending on the specific form of weights used. 

 

4. Results 

Table 1 shows WLS solutions for four methods for each of four models. The right-most 

two columns show the coefficients and their significance for simultaneous use of the 

estimated variances and sampling weights. Model I is a WLS model with an intercept. 

Model II is a no-intercept model. All the solutions or coefficients from Model II are 

different depending on the weights used. With constant weights in the equations, the 

estimated coefficient of height on body weight is .44. With square roots of sampling 

weights (√  ) in the equations, the estimated coefficient for height is .46. With square 

roots of the inverses of estimated variances (  ̂ ⁄ ), the estimated coefficient for height is 

.40. With simultaneous consideration of variances and sampling weights, i.e., with 

√   ̂ ⁄ , the estimated coefficient for height is .43, a value between .46 and .40.   Model III 

is obtained by adding gender to Model II. With square roots of sampling weights (√  ) 

in the equations, the estimated coefficients for men is positive (2.52) so that expected 

body weights of the males are greater than those of the females at a given height. With 

square roots of the inverses of estimated variances (  ̂ ⁄ ), however, the estimated 

coefficients for men is negative (-6.40) so that expected body weights of the male are 

lower than those of the female at a given height. With simultaneous consideration of 

variances and sampling weights, i.e., with √   ̂ ⁄ , the estimated coefficient for men is -

2.59, a  value between 2.52 and -6.40. 

Table 1. Effects of height (Cm), sex, and race/ethnicity on body weights (Kg): Solutions 

(coefficients) to weighted normal equations. 

Model Variable 

Functional Form of Weights for Normal Equations 

1 √     ̂ 
 ⁄  √   ̂ ⁄  

Coeffi-

cent 

Standard 

Error 

Coeffi-

cent 

Standard 

Error 

Coeffi-

cent 

Coeffi-

cent 

Coeffi-

cent 

Standard 

Error 

I 
Intercept -90.14 1.253 -93.41 1.279 -77.8 1.087 -82.08 1.161 

Height (cm) 1.01 0.008 1.03 0.008 0.93 0.007 0.95 0.007 

II Height (cm) 0.44 0.002 0.46 0.001 0.40 0.002 0.43 0.001 

III 
Height (cm) 0.45 0.002 0.45 0.002 0.42 0.002 0.44 0.002 

Men -0.94 0.471 2.52 0.455 -6.40 0.471 -2.85 0.470 

IV 

Height (cm) 0.47 0.003 0.46 0.003 0.46 0.003 0.45 0.003 

Men -0.83 0.462 2.60 0.449 -5.72 0.455 -2.59 0.460 

Race/Ethnicity a)        

  Hispanic -8.26 0.511 -5.79 0.496 -11.59 0.503 -9.05 0.509 

  NH Black -1.64 0.621 2.07 0.603 -5.88 0.611 -1.47 0.618 

  NH Other -13.06 0.966 -10.51 0.939 -15.77 0.952 -12.58 0.963 

Notes: 
a)
 Reference category is non-Hispanic (NH) White. 

JSM 2014 - Survey Research Methods Section

2976



 
 

 

 

Model IV includes race/ethnicity as explanatory variables in addition to the ones in 

Model III. With sampling weights (√  ) in the equations, the estimated coefficients for 

non-Hispanic blacks is positive (2.07). Expected body weights of non-Hispanic blacks 

are higher than those of non-Hispanic whites after controlling for the effects of height and 

gender, as indicated by positive coefficients. With the inverses of estimated variances 

(  ̂ ⁄ ), however, the expected body weights of non-Hispanic blacks are lower than those 

of non-Hispanic whites after controlling for the effects of height and gender, as indicated 

by negative coefficients (-5.88). With a simultaneous consideration of variances and 

sampling weights, i.e., with √   ̂ ⁄ , the estimated coefficient for non-Hispanic blacks is -

1.47, a  value between 2.07 and -5.88. Results in Table 1 indicate that a simultaneous 

consideration of variances and sampling weights could be an important factor in finding a 

“correct” WLS solution. Applying simultaneously square roots of inverses of the 

estimated variances and square roots of sampling weights to a system of linear equations 

generates an intermediate estimate (i.e. an estimate that is between those obtained when 

of applying the two weights separately).  

5. Concluding Remarks 

Initially the weight for WLS methods was considered to exclusively handle 

heterogeneous variances. Sampling weights were introduced to WLS methods to consider 

mainly the impact of sample selection probability on the LS estimates. We demonstrated 

the effects of simultaneously considering variance and sampling weights on WLS 

estimation by analyzing 2009-2010 NHANES public use data. Estimates resulting from 

WLS when applying the square roots of both the inverses of estimated variances and the 

sampling weights are between estimates obtained when applying the two weights 

separately In the current work, the variance or dispersion matrix,  , is diagonal. To 

analyze complex survey data, we could extend our analysis by specifying non-diagonal   

by considering sampling design (Kendall & Stuart, 1968). 
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