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Abstract 
Disclosure control of tables where the study variable may take both positive and negative 

values poses a particular problem. The common sensitivity rules like the dominance rule 

and the p% rule do not apply. To solve this, it has been suggested to transform cell values 

(e.g. add a constant or take absolute values) in order to make all values positive and 

facilitate the use of the common sensitivity rules. With this approach, it is assumed that 

the risk scenario for variables that may take negative values is similar to variables that 

only take positive values. We use empirical and simulated data to illustrate how the 

common sensitivity rules perform in different situations and we initiate a discussion of 

the sensitivity of data that may take both positive and negative values and discuss the 

need for a different approach to determining the sensitive values. Ideas for modified 

measures of risk are presented.  
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1. Introduction 

 
In statistical disclosure control, determining the sensitivity of the cells in a table is the 

first step towards producing a properly protected table that will be safe enough to publish. 

A widely used and often recommended measure to determine the sensitivity of cells in a 

magnitude table is the p%-rule. Another well-known rule is the (n,k)-rule. These 

concentration rules will work when the variables that the table is based on can take only 

non-negative values, but there are a number of economic variables that can take also 

negative values. In order to apply sensitivity measures to tables with such data, some 

approaches have been suggested in the literature. 

 

Giessing (2008) proposes two methods for dealing with variables that can take both 

positive and negative values. The first one is to relax the parameters of the common 

concentration rules by either reducing p or increasing k. It might even be adequate to 

replace the concentration rules by a frequency rule, since data taking both negative and 

positive values are likely to be less sensitive than data taking only nonnegative values. 

The same approach is suggested in Hundepool et al (2012). The second proposed method 

is to transform micro data by adding to the original values a constant M. Each original 
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value is at least of size M, and M is assumed to be known. The sensitivity of data is then 

determined by applying the common concentration rules on the transformed data. With 

this rule, secondary suppression can be carried out using the methods available in the τ-
Argus software (Hundepool et al 2011). 

 

Hundepool and de Wolf (2011) describe improvements to the modular approach in τ-
Argus, including how to deal with negative cell values, but they only consider secondary 

suppression, assuming that the sensitive cells are already determined. The approach is to 

add the smallest cell value plus 1 to all interior cells in the table, and to their lower and 

upper a priori bounds, and then adjust the marginal cells accordingly.  

 

Daalmans and de Waal (2011) discuss the problem that when a (p,q)-sensitivity rule is 

applied to single cells in a table and a safe suppression pattern is determined for the table 

based on suppressions intervals, the resulting pattern might still not offer sufficient 

protection. They suggest to solve the problem by using an extended (p,q)-sensitivity rule 

and apply the rule to aggregations of primary suppressed cells. With the extended 

sensitivity rule, the absolute contributions of the respondents are used, and thus negative 

contributions are allowed. 

 

Tambay and Fillion (2013) describe the methodology for cell suppression as used in 

Statistics Canada´s G-Confid system, including how negative values can be handled. The 

authors state that using the absolute value of the contributions to a cell will often suffice, 

but if a very large unit has a small absolute value on the variable to be protected, they 

suggest the use of a proxy variable. With a proxy variable of the form discussed in the 

paper, a safe suppression pattern can be determined. 

 

The methods described in the literature referred to above suggest to somehow change the 

variable values, i.e. add a constant or take the absolute value, or to use a proxy (or 

shadow) variable. It is implied that the risk scenario is the same as with a study variable 

taking only nonnegative values, and the suggested approaches are to apply traditional (or 

extended) sensitivity measures to the altered or replaced data. With these approaches, the 

sensitivity measure is not applied to the same data that a possible intruder has access to, 

that is, the risk is not measured under the true scenario. (Giessing (2008) assumes in the 

second scenario above that the constant M is known, but does not discuss if this would be 

a realistic assumption.) We mean to investigate a different approach with alternative 

measures focusing on the dispersion of the data. To focus on dispersion has also been 

suggested by Domingo-Ferrer and Torra (2002), as a solution to specific cases when the 

traditional sensitivity measures are insufficient. They suggest basing the sensitivity 

assessment on the concentration of the relative contributions to a cell, i.e. the distribution 

of values instead of the actual values, and propose to use the entropy of the relative 

contributions.  

 

2. Alternative Measures of Sensitivity 

 
In the following, we assume that the surveyed population is totally enumerated. Before 

measuring the risk in a cell, we need to consider the division between negative and 

positive values within a cell. A measure that seems reasonable to use is  
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where T  is the sum of all positive contributions to a cell value and  T  is the  sum of all 

negative contributions. We thus have that the cell value, the total, equals T + T .  The 

ratio will be zero if there are only positive or only negative contributions. In this case, the 

traditional sensitivity measures can be used. If the ratio is close to zero, the contribution 

of either negative or positive values might be negligible, suggesting that traditional 

methods can still be used. However, if the ratio is larger than a constant k (where k is a 

small value), there are non-negligible contributions of both positive and negative values 

and we need an alternative measure that can be calculated irrespective of the sign of the 

values in the cell.  

 

Consider 
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where 
2

nS   is the variance in the cell, calculated using all objects in the cell, and 
2

hnS    is 

the variance when the h largest (in terms of absolute value) objects are omitted. If there 

are no extreme values, the variance is not much affected when the largest absolute values 

are excluded from the calculation. On the other hand, if the largest values differ very 

much from the other values, the drop in the variance ratio will be large when an extreme 

value is excluded. The cell is considered as safe if the ratio RS is larger than some 

constant c. First results indicate that c should be small, maybe below 0.05.  

 

Another measure taking the dispersion into account is the following ratio, 
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where y~ is the median and 
0A  is the set of all observations, 

1A  is the set of all 

observations excluding the largest (in terms of absolute value), 
2A is the set of 

observations excluding the two largest, etc. If Q is close to zero, the cell is sensitive. 

 

The two different measures give similar results, except that the variance ratio in (1) can 

take values larger than 1, while the quantile ratio in (2) is always smaller than or equal to 

1.  

 

3. Empirical illustration 

 
The following example is an empirical illustration of the behavior of the traditional rules 

and the suggested measures. Data are from a real survey where the variable can take both 

positive and negative values. The original data is shown in the first column of Table 1. 

The second and third columns show a transformation of the data and the absolute values, 
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respectively. All the values in a column of Table 1 belong to the same cell. Looking at 

the observations, there is reason to suspect that two of the values are so much larger than 

the rest that the cell total might be too sensitive to publish. 

 

Table 1:  Original data, transformed data and absolute values of 

the original data 

 

Original data, iy  Transformed data,  

iy + 19303 

Sorted absolute values, 

iy  

-19 302 1 0 

-18 599 704 0 

-1 409 17 894 0 

-582 18 721 1 

-485 18 818 3 

-463 18 840 3 

-11 19 292 6 

-3 19 300 11 

-3 19 300 11 

0 19 303 11 

0 19 303 32 

0 19 303 236 

1 19 304 391 

6 19 309 463 

11 19 314 485 

11 19 314 582 

32 19 335 715 

236 19 539 1 356 

391 19 694 1 409 

715 20 018 18 599 

1 356 20 659 19 302 

 

 

The dominance rule and the p%-rule were applied to the transformed data. The 

alternative measures, the variance ratio hRS ,  and the quantile ratio hRQ ,  were calculated 

using the original data. 

 

For the transformed data the largest observation contribute with 6 percent to the total and 

the two largest observations contribute with 11 percent to the total. Thus according to the 

dominance rule the cell is far from sensitive. The p%-rule gives the same result, the cell 

is not sensitive. 

 

For the absolute values of the original data the largest observation contribute with 44 

percent to the total and the two largest observations contribute with 87 percent to the 

total. The dominance rule with commonly used parameters (n,k) = (1,50) and (2,90) 

indicates that the cell is safe. With the p%-rule, the cell is safe if p < 30%.  

 

In this example the T-ratio is 07.0RT , which is small but probably far enough from 

zero to indicate that the standard measures should not be used. This is also justified by 

looking at the data: significant parts of the observations in the cell are negative or 

positive, respectively. 
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In Table 2, results for the alternative measures are shown. For h=2 the values of both 

ratios are small, indicating that there is a risk of disclosure. 

 

Table 2: Results for alternative measures using 

original data. 

 
h Variance ratio hRS ,  Quantile ratio hRQ ,  

1 0.536 0.485 

2 0.009 0.007 

 

 

4. Simulations 

 
To further compare the variance ratio with the combined dominance rule, (1,50) and  

(2,90), we performed the simulations described below.  

 

Figures 1a, 1b, and 1c show the variance ratio for h=0, 1,…,5 with only positive values, 

in order to facilitate comparison with the dominance rule. The following cases are 

considered: 

 

1. Simulation, Uniform(0,10), 1000 observations, no extreme value 

2. Simulation, Uniform(0,10), 1000 observations, one extreme value, the largest 

observation contribute with 50% to the total 

3. Simulation, Uniform(0,10), 1000 observations, two extreme values, the largest 

observation contribute with 50% and the two largest contribute with 90% to the 

total 

 

 

 

 

 

 

Figure 1a: Variance ratio for case 1 for h=0, 1, …,5. 
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Figure 1b: Variance ratio for case 2 for h=0, 1, …,5. 

 

 

 

 
 

Figure 1c: Variance ratio for case 3 for h=0, 1, …,5. 

 

From Figure 1c we see that the variance ratio with h = 2 is close to zero and this 

corresponds to the dominance rule (2,90). That is, both rules indicate sensitivity.  

 

Figures 2a, 2b, and 2c show the variance ratio for h=0, 1,…,5 with both positive and 

negative values. The following cases are considered: 

 

I. Simulation, Normal(1000,1000), 1000 observations, no extreme value 

II. Simulation, Normal(1000,1000), 1000 observations, one extreme value, the 

largest observation contribute with 50% to the total  

III. Simulation Normal(1000,1000), 1000 observations, two extreme values, the 

largest observation contribute with 50% and the two largest contribute with 

90% to the total 
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Figure 2a: Variance ratio for case I for h=0, 1, …,5. 

 

 

 
 

Figure 2b: Variance ratio for case II for h=0, 1, …,5 

 

 
 

Figure 2c: Variance ratio for case III for h=0, 1, …,5. 

 

From the simulations, we conclude that when all values are nonnegative, the variance 

ratio rule performs similar to the dominance rule, but in contrast to the dominance rule, 

the variance ratio can be calculated irrespective of the sign of the contributions to the cell. 

 

 

 

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6

h 

     

h 

     

h 

     

JSM 2014 - Survey Research Methods Section

2902



5. Discussion 
 

We argue that for variables that can take negative values, the standard traditional 

measures do not always apply. These variables will require special treatment if the 

negative contributions are not ignorable. It is probably better if sensitivity measures are 

used on original data and not on transformations, and thus there is a need for alternative 

measures. We suggest using the dispersion of values in a cell, however the measures 

discussed in this paper should only be seen as first attempts.   

 

In Figure 3 we give an outline of a possible decision rule when a study variable can take 

both positive and negative values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Outline of an alternative decision rule 

 
Several issues remain to be further investigated. As mentioned above, the variance ratio 

can take values larger than 1, and then the rule is insufficient. This might happen when 

we have two or more about equally extreme observations and the other observations are 

small and few. This will cause the mean value to change drastically when the most 

extreme observation is excluded, resulting in a larger variance than when the extreme 

value is included. This will not happen with the quantile rule since it can only take values 

on [0, 1]. 

 

The variance ratio and the quantile ratio will both be zero if all but one of the 

observations are equal and h=1. The most extreme value can however be only slightly 

larger or smaller than the other observations. In this situation, there is no real risk of 

disclosure, but the variance rule and the quantile rule will suggest so. Therefore this must 

be checked. It can be noted that for the special case when all values but one are zero, the 

dominance rule will also indicate that there is a risk even if the value differing from zero 

is very small. 
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When a study variable can take only nonnegative values, it can be shown that it is the 

largest contributor to the cell value who is most at risk to be disclosed, and that if the 

largest contributor cannot be disclosed by the second largest contributor, the cell is safe. 

Our comparisons of the alternative measures with the traditional measures assume that 

the scenario is the same when negative values are present, but the scenario might be 

different when the variable under study can take both positive and negative values. For 

example, Giessing (2008) and Hundepool et al (2012) suggests that such data are less 

sensitive and that a frequency rule might be enough. In the future, we mean to further 

investigate if an alternative scenario would be better for data with negative values. A 

proper sensitivity measure could then be tailored to this alternative scenario and does not 

have to follow the traditional approaches for measuring sensitivity. 
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