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ABSTRACT

In this paper, a fictitious story, “How Amy Predicts Her President”, is introduced
to motivate the research considered. In the course of the story we propose a new
class of estimators in dual frame survey sampling that makes use of a power
transformation. The estimator proposed by Hartley (1962, 1974) is shown to be a
special case of the proposed class of estimators. The mean squared error of the
proposed estimator is derived and compared to that of the Hartley estimator. A
suggestion is given for improving the Fuller and Burmeister (1972) estimator
along similar lines. Lastly, the work is extend to the case of multi-covariates.
Note that we make no use of any known parameter of auxiliary information as in
the ratio estimator due to Cochran (1940). In this regard the proposed class of
estimators is different from the existing estimators in the literature of dual frame
survey sampling. We show theoretically that the proposed class of estimators is
always more efficient than the pioneer Hartley (1962, 1974) estimator. The
results are also justified through extensive simulated numerical situations.

Key words: Dual frame survey, estimation of population total, power

transformation.

1. INTRODUCTION

Let us motivate this contribution by a story. Every day, whenever Amy switches
on her television, she finds a stream of very interesting news about politics in the
United States. The news reader always seems to be talking about the latest
prediction of who will be chosen in the coming election to be the next president.
Amy finds that the main purpose of the news seems to be to discover whether
“Democrats” or “Republicans” will win in the coming election.
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Fig. 1.1. Amy watching television Political game of donkeys and elephants

Amy is a survey statistician. One day, Amy found a very interesting and
challenging problem on the television in the program: “Future of Politics”.
In the episode, a government agency hires two private companies, with
logos: “Modern Analytics” and “Stat-Hawkers”. Both companies are
assigned the job of taking samples in such a clever way that the general
public would be made completely aware of the future president of the
United States. The show makes the point that such predictions of the
presidential winner are also helpful to the candidates who are competing
in the election in preparing them for the almost certain outcome of their
being the loser or winner. Otherwise a sudden shock of losing or gaining
president position may cause heart problems to the candidates as well as to
many who are deeply associated with the election. Thus predictions of
future president of the United States (or of any other county) help people
to stay calm during or after the time of final election.

The company “Modern Analytics” decides to use a frame A (say), which
consists of all voters who have cell phones. The company “Stat-Hawkers”
decides to use a frame B (say), which consists of voters who have land-line

phones. Amy found that “Modern Analytics” selected a sample of n, voters
from the frame A and “Stat-Hawkers” selected a sample of ng voters from the

frame B. Both companies, “Modern Analytics” and “Stat-Hawkers”, announce
their results on the television. Amy became suspicious of the findings of both
companies. Amy reaches both of the companies and is granted permission to look
at the raw data collected by both companies. Amy noticed that one respondent,
Mr. Mobile has only cell phone, another, Miss Twinkle has both cell phone and
land-line phone, and still another, Mr. Static has only a land-line phone. Amy
looks at the entire raw data sets collected by both of the companies “Modern
Analytics” and “Stat-Hawkers”. Amy found that out of the n, voters selected by

“Modern Analytics”, n, voters have only cell phones, and ng, voters have both
cell phones and land-line phones. Also Amy found that out of the ng voters
selected by “Stat-Hawkers”, ny voters have only land-line phones, and ny,

voters have both land-line and cell phones. Thus Amy wonders how this double
counting from both frames in the sample can be utilized to draw better inferences
about which candidate might be the future presidents from the target population
consisting of the union of both frames. Amy feels that inferences based on

2691



JSM 2014 - Survey Research Methods Section

samples collected only from frame A, or only from frame B, may provide
misleading results. In addition, Amy finds that there is additional information
about the voters selected in the sample from the presence of a co-variate. We
take these observations by Amy as motivation for our movement in the following
direction.

MAr. Static
on
land-line phone

Mr. Mobhile
on
cell phone

Miss Twinkle
has both
cell phone and land-line phone

Fig. 1.2. Amy’s motivation for dual frame survey sampling.

In this paper, we consider a new situation when a co-variate X is available for
the units included in the sample taken from a dual frame survey, in addition to

the main variate, Y , of interest. Let (Ya, X3), (Y, Xp), (Yap: Xap), (Ya, X a)
and (Yg Xg) be the unknown population totals of the main variate Y and co-
variate X , where the subscript a indicates the subpopulation of units only in
frame A, b indicates units only in frame B, and ab indicates units found in both
frames. Note that Yp =Yy +Yap, Xa=Xa+Xg, Yg=Yp+Yy and
Xg =Xp+Xgp. A pictorial representation of such a dual frame survey
structure is shown below:

19,
Target Population =AW B
Yp
YA Frame B
=
X4 ()

Out of Scope Population = (4w BY

Fig. 1.3. A dual frame survey structure.
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In the next section, we define a few notations which remain useful in this and
future research in this area.

2. NOTATIONS

Assume S, to be a sample of size n, taken from the frame A and Sg to be an
independent sample of size ng taken from the frame B. Let 7Z'i(A) be the

probability of including ith unit in the sample s, from the frame A and 7Z'i(B) be
the probability of including ith unit in the sample sg from the frame B .

Following Horvitz and Thompson (1952), we have:
Yi

\fA =X —A is an unbiased estimator of the population total Y 5,
1€Sp 7Z'|
and
\fB =X % is an unbiased estimator of the population total Yg .
|€SB 7Z'I

Let us define three indicator variables:

1@ _ 1 ifiea | ) _ 1 ifieb and I-(ab)— 1, ifie(ab)
I 710, otherwise’ "I~ 10, otherwise I ~ 10, otherwise"

By following Hartley (1962, 1974), we define:

i i(a) , unbiased estimator of the domain population total Y,

Yy = izs %Ii(b) , unbiased estimator of the domain population total Y,
€5 i
?Ab =X %L)

iESA 7Z'|

113 unbiased estimator of the domain population total Y,

based on the sample from frame A, and

Yi
(B)

Yoo = X Ii(ab) as also an unbiased estimator of the domain

iESB T

population total Y,, based on the sample from frame B.

In the same way, the unbiased estimators of X o, Xg, X5, Xp and Xgp

are definedas X 5, Xg, Xg, Xp and X, (Or Xp,q) respectively.
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Hartley (1962, 1974) proposed an estimator of the population total Y in a dual
frame survey sampling as:

YHartley = Ya + Yb + O Yap + (1-6H)Yba

The minimum variance of the estimator \?Hartley with the optimum value of &

is given by:

MinY (Viiartiey) =V (Ya) +V (Vo) +V (Yba) +2C0v(Y Yo )
~{Cov(Yy, Yba) +V (Ypa) = Cov(Ya, Ya)}* -
V(Yap) +V (Ypa)

Fuller and Burmeister (1972) suggested a modification in the Hartley’s estimator
by using an additional information about N, as:

Yeg =Ya + Yo + O1Yap + (L= 61)Voa + 62 (Nap —Npa)

Lohr and Rao (2000) have shown that the Fuller-Burmeister \ZFB estimator has

the smallest asymptotic variance among the estimators considered by them. The
estimator due to Fuller and Burmeister (1972) is internally inconsistent, see Lohr
(2011) for detail about internal consistency. Later Skinner and Rao (1996)
attempted to make it consistent by using pseudo-maximum likelihood (PML)
estimator based on some simulation justifications, but no strong theoretical
evidence is provided. Rao and Wu (2010) proposed a pseudo-empirical
likelihood (PEL) estimator for a dual frame survey sampling estimator in the
presence of known auxiliary information (Lohr, 2011, page 201). Again their
constraints result in a different set of weights for each response variable leading
to their proposed PEL being internally inconsistent. Rao and Wu (2010) also
tried an alternative estimator in which the weight adjustment does not depend on
the study variable, and in the absence of auxiliary variable their this approach
leads back to the pioneer Hartley’s estimator. The moral of the story of this
review is that there is no clearly well defined estimator in the literature which,
based on theoretical evidence, can be claimed to be more efficient than the
pioneer Hartley’s estimator in the absence of auxiliary information. For a review
of such estimators, please refer to Lohr (2011).

In the next section, we propose a new class of estimator suitable for a dual frame
survey in the presence of a covariate (note that no auxiliary information
parameter is available). Then we show theoretically that it remains more efficient
than the Hartley’s estimator.
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3. PROPOSED CLASS OF ESTIMATORS

We propose a new class of estimators of the population total Y in dual frame
survey sampling as:

~ ~ ~ ~ a
(Xa + Xpa)(Xp + Xgp)

. + 7Y + (L= )Y, (3.1)
XAXB ab ba

YAnew = (YAa +YAb)

where « and y are real known constants. If a =0 then \fnew =\fHart|ey, that

is, the proposed class of estimators reduces to the Hartley’s estimator. It will be
worth mentioning that such a class of ratio type estimators in the presence of an
auxiliary variable was initiated by Srivastava (1967), and today a huge body of
literature making use of such power transformation estimators is available, many
of which are quoted in Singh (2003). The present contribution has a similarly
broad scope of extensions in the presence of a co-variate, which is a departure
from the Srivastava (1967) class of estimators. There is also a huge body of
literature in the field of survey sampling where optimum values of these types of
constants « and y are estimated from the given sample, and the resultant

estimators are shown to maintain the same asymptotic mean squared errors, see
Singh (2003) and Singh et al. (1995).

Using notations from the Appendix, and using binomial expansion the proposed
class of estimators Ypey , in terms of €5,€p, €3p, €pa, 9a, S %ab, Sba -
op and opg, to the first order of approximation, can be expressed as:

Ynew =Y +Ya €5 +Yp €p +a(Yq +Yp) W +Yap €pa +7 Yan (€ab — €ba)

(3.2)
+aYy g ¥ +aYpy + a(a 1) w2 +0(n?)
where
Xaéb(ﬁa +0p) + Xap Xp(Spa +Ip) + Xa Xap (53 +Fap)
+ X 2 (Gap +0pa) — X aXp(da +B)
y = (3.3)

XaXp

Taking expected value on both sides of (3.2) and using results from the
Appendix, we have the following theorem:

Theorem 3.1. The bias in the proposed class of estimators \fnew is given by:

A 1 1 A a A A
B(Ynew) = O{X_B _X_AJ[COV(YEU Xab)_COV(Yb' Xba )]
, @la=1(Y, +Yb>{(x§ X2 (Rap) +V (R}
AX3X3 +2Xap (Xp = X3)Cov(X g, Xap) = 2Xp X AV (Xpg )

(3.4)
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In practice for most of the sampling designs, as the sample size increases:
Cov(Ya, Xap) >0, Cov(Yp, Xpa) =0, Cov(X,, Xap) =0, V(Xpa)—0,
and V(X o) =0

Thus from (3.4), it is clear that the bias in the proposed estimator is of first order
of approximation and B(\fnew) — 0 as the sample sizes increases.

Now we have following Lemmas:
Lemma 3.1. The expected value of 1//2 is given by:

(X + XDV (Xap) +V (Xpa)) + 2X a (X~ Xa)COV(X g Xap) = 2Xp X AV (Xba)

E(y?) ix2
(3.5)
Lemma 3.2. The expected value of €4 w is given by:
E(eq v) =%(X—1B—xiAJcOv(>2ab Va) (3.6)
Lemma 3.3. The expected value of €, y is given by:
Ech ) =%(XLA —X—l)cwo?ba V) @37
Lemma 3.4. The expected value of e, y is given by:
E(cap ¥) = Y:l-b (XlB - XlA JCOV(Xab Ya) (3.8)
Lemma 3.5. The expected value of €, w is given by:
E(epa ¥) = Yib (XlA - xlB JCOV(XbavYAba) 3.9)

Now using (3.2), to the first order of approximation, the mean squared error of
the proposed class of estimators Ye is given by:

MSE(Ynew ) = E[\?new —Y ]2

2
~E[Yq €a +Yp €p +a(Ya +Yp)¥ + Yap €ba +/¥ab(€ab —<ba)]

—V (V) +V (%) +V (Vpa) +2Cov(¥p Voa) + 72V (Vap) +V (Fba)}
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az(Ya +Ybﬂ(x§+><§)(V(>2ab)+vg>2ba)) A }
XaXp ) |+2Xap(Xp = Xa)Cov(X 4, Xap) —2Xp X AV (Xpa)

+27{Cov(Ya. Yab) — Cov(¥p, Vba) -V (Voa)}

11 . .. N
+2a(Yy +Yb)[E—X—AJ{Cov(Ya, X ab) ~ Cov(Xp, Xpa) — Cov(¥pa, Xpa)|

+2a7(Ya+Yb)( t ! J{cOv(\?ab,>2ab)+c:ov(\?ba,>2ba)} (3.10)

Xg  Xa

To reduce the length of the expressions, let us consider:

AL =V (Yab) +V (Yba) (3.11)
2 ~ ~
AZ:(YN%J{(xa2+><§)(v(xab)+vgxba)) ) } (312)
XaXg ) [+2Xap (Xp = Xa)Cov(Xq, Xap) =2Xp X AV (Xpa)
Ag =Cov(Yp,Ypa) +V (Ypa) — CoV(Ya, Yap) (3.13)
11 s o . - P
As = (Ya +Yb)[x——x—j{<:ov(va, Xab) = Cov(Rp Xa) = CoV(Voa X )}
A B
(3.14)
and

L1

As = (Ya +Yb)( S ]{Cov(?ab,iab) + CoV(Voq X )} (3.15)

B A

The mean squared error of the proposed class of estimators \fnew can then be
written as:
MSE (Ynew) =V (Ya) +V.(Yp) +V (Ypa) + 2Cov(Yy, Ypa )

2 2 (3.16)
+y7 A +aAy —2)A3 - 20A, + 20y Ag

The optimum values of « and y which minimizes the mean squared error in
(3.16), are given by:
o2 Paha = Ashs

> (3.17)
APy - A5
and
_PMA-AAS (3.18)
M Ay — A

The resultant minimum mean squared error of the proposed class of estimators

Ynew 1S given by
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Ay A2 —2A3A4 A

) . A A A P A? +
MIn.MSE (Ypew ) =V (Ya) +V (Yp) +V (Ypa) + 2Cov(Yp, Ypa) — A

MA, — A
(3.19)
or
. 5 _— A2 AAZ + A AT —2A3ALAs
Min.MSE (Ypew ) = MinV (Ypjariey) + —> — . (3.20)
A MAy — A5
where
. . . . A A2
wlin.V(Ymmy)=vcva)+vcvb>+vcvba>+zcov(vb,vba)—q3 (3.21)

Thus we have:;

. ~ - AZ(AA, — AZ) = AZ 4 A A2 —2A:A
Min.MSE (Vpew) = MinV (Vegartiey ) + 5 (AP —AS) = AM(ALAL + A A3 —2A5 A4 As)

A (P Ay~ AS)
or
2 2 72 2 72 2
MINMSE (V) = MInV (Fariy) + -5 212 A8 6 ~ AL AL = A5 +2A Ashu s
A (A Ay - AS)
or
R R _ 2
Min.MSE (Ypew ) = MinV (Ypartiey ) (Ass A1A42) (3.22)
A (A Ay - AS)
Note that:
_A2) = A2 _ A | o ( B 2)
A(AA -AS) = A A1 =A A lL-p7)>0 (3.23)
A A
where p? = {CoW(Ya + Yo )9, Yab (€ap — <ba )1} is a square of the usual

\% (Yab (€ab — Eba))‘/ ((Ya +Yp )‘//)
correlation coefficient between two variables.

So from (3.22) and (3.23), the proposed class of estimators \fnew is always more

efficient than the Hartley (1962, 1974) estimator. Hence no need of any
simulation study or numerical results.

2
The reduction in variance (Aghs — A Ay) could be small or large depending on
(P Ay~ AD)
the nature of population under study, see Srivastava and Jhajj (1980) where they
used known parameters of auxiliary variables.

In order to see the magnitude of the percent relative efficiency of the new
proposed class of estimators we consider hypothetical situation in the following
section.
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4, SIMULATION STUDY
Let:

Cov(Y,,Y, . - ~ ~
=M be the correlation coefficient between Y, and Yy ;

PY,Y, = =
" V(A (Yap)

3 Cov(Yp, Ypa)

PYeYpa =
T VYV (Ypa)

Cov(X,, X . . ’ -
P = (Xa, Xan) be the correlation coefficient between X ;and X gp;

XaXq = =
T VRV (X ap)

Cov(Yp, X . - A ~
= Uh: Xba) be the correlation coefficient between Y, and Xy, ;

PYpXpa = =
T VeV (Xpa)

Cov(Yp, X . - 0 v
= (b, Xap) be the correlation coefficient between Yy, and X 45 ;

PYpXq = =
T WYV (Xap)

Cov(Xp, X . . - -
= (Xb. Xpa) be the correlation coefficient between X, and Xy;,;

PX, X = =
TV (Rp)V (Xpa)

Cov(Ypa, X . - 0 v
_ _CoV(¥ha, Xpa) be the correlation coefficient betweenYy, and Xy, ;

'OYbaXba ~ ~
\/V (Yba)V (X ba)

and

be the correlation coefficient between \fb and \fba;

COV(YA b XA b) . . . " S
PY Xy = &'~ 3~ he the correlation coefficient betweenYy, and X 4

V(Yap )V (X ap)

It is likely that, for any sampling designs being used in the frames A and B, the
values of the correlation coefficients pyv. '\ Ovvp. » PXoXar PYoXpa ' PYpXa
and pyx, x,, are negative. However the values of the correlation coefficients
PYpaXba and PY X o could be positive or negative. By keeping these

observations in mind, we simulated situations where the proposed class of
estimator remains more efficient than the Hartley’s estimator and the absolute
value of the relative bias in the proposed estimator is negligible.

The percent relative efficiency of the proposed class of estimator with respect the
Hartley’s estimator is defined as:

E_ MinV (YAHartIey)
Min.MSE(Ypew )

x100% (4.1)

The percent relative bias in the proposed class of estimator is computed as:
B(Ynew)
Ya +Yb + Yab

RB = x100% (4.2)
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To search for situations where the proposed class of estimators has mean squared
error smaller than the Hartley’s estimator we wrote FORTRAN codes which can
be had from the authors on a request. We consider hypothetical situations with
the parameters:

Y, =723, Y, =215, X,=523, Xp=334, Yu =312, Xg =212,
V(Yy)=75, V(Y,)=80, V(Ygr)=65, V(Ypg)=70, V(Xg)=75,
V(Xpa) =75, V(X,)=80,and V(Xp) = 90.

Realistically we also assumed that:
pxbxba :’Oxaxab’ ’OYbea :pYaYab ! pYbXba :’DYaXab and ’OYbaXba :pYabxab'

As said earlier, the percent relative efficiency depends on the situation being
considered and it varies from 100% to 122.25% for the 18968 situations that
were considered in the simulation study. As reported in Fig. 4.1, the percent
relative bias (RB) can be seen to be close to zero in the range -0.0025% to
+0.0025%. Table 4.1 with values below gives a summary of results obtained
from the 18968 points for which py_x, == py ,with values between -0.91 to

abXap
0.89, with a step of 0.1.

Table 4.1 Descriptive summary of the RE
PV X at Freq Min Med Max
-0.91 999  100.00 100.84  119.63
-0.81 999  100.00 100.81  118.50
-0.71 1000  100.00  100.78  117.57
-0.61 998  100.00 100.75  116.80
-0.51 998  100.00 100.74  116.16
-0.41 1000 100.00 100.71  115.64
-0.31 1000 100.00  100.70  115.21
-0.21 998 100.00 100.69  115.13
-0.11 997 100.00 100.69  115.17
-0.01 991 100.00 100.70  115.30
0.09 997 100.00 100.69 11551
0.19 998 100.00 100.70  115.83
0.29 999 100.00 100.69  116.25
0.39 999 100.00 100.70  116.78
0.49 999 100.00 100.72  117.46
0.59 999 100.00 100.74  118.30
0.69 1000 100.00 100.76  119.34
0.79 999 100.00 100.78  120.63
0.89 998 100.00 100.82 122.25

A graphical representation of percent relative bias and percent relative efficiency
is given in Fig. 4.1.
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Scatterplot of RE, RB vs Correlation between Y_ab and X_ab estimates

1 0 0 5 0. 0 0'.5 1.|0

RE
125- 0.0025-
[ ]
0.0020-
1201 o. ..0000000...
o‘ .0 0.0015 000000000008
‘. 00000
1151 ‘.88....0 0.0010 e
!’!'...‘ 0.0005
110+
0.0000-
1051 -0.0005 1
o -0.0010
1.0 -05 1.0

Correlatlon between Y_ab and X_ab estimates

Fig. 4.1. Graphs of RE and RB obtained from 18968 data values.

Thus we conclude that there exists a choice of parameters in different populations
where the proposed class of estimators can be efficiently used to estimate the
population total when the data is collected from two frames no matter what the
sampling designs have been used.

Remark: One obvious improvement of Fuller and Burmeister (1972) can be
seen in a class room exercise:

~ ~ ~ ~ o

(Xa + Xpa)(Xp + Xap)
XaXp

+60Yap + (L= 61)Ypa +02(Ngp — Npg)

YeB(new) = (Ya +Yb)

In the next section, we suggest a wider class of estimators making the use of
multi-covariates.
5. MULTI-COVARIATES

Let (Yo, X)) (Y. X)) (Yap. X)), (Ya x§)) and (vg x§)
j=12,..,k be the unknown population totals of the main variate Y and k

variables X () In such situation, we suggest a new wider class of estimators
defined as:
A A A A (04
. ~ ok X XY e x Dy .
YHEW(W) :(Ya +Yb)H AE(iJ) ~ (J) 2 +7/Yab + (1_7)Yba
j=1 XA Xg

(5.1)
where o, j=12,.., kare real constants to be determined such that the mean

squared error of the proposed wider class of estimators is minimum. Such a
determination seems could require a long class room exercise in extending the
results, and can be solved if required.
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APPENDIX: NOTATIONS AND EXPECTED VALUES

Let
Y Y, Y Y, %
€a=—2-1, ep=-2-1, egu=—L-1, gpy=—2 1, A:Y—A—l,
Ya Y a Yab A
Y X X X X
EBZ—B—]., 53 :—a—l, 5b :—b—115ab: ab _1’5ba= ba —_']_,
Y Xa Xp X ab ab
X X
Sp=—P -1 and 65 =—B -1
XA XB
such that

E(ea) =E(ep)=E(eap) =E(€pa) =E(ea) =E(eg) =0
E(9) = E(0) = E(0an) = E(0ha) = E(94) = E(5) =0

a b ab ab

V(Ya) V(Yg) Cov(Yya,Yap)
E(€h)=—2%, E(c}) =27, E(cacp) =0, E(cacap) =— 227,
YA Y YaYab
YaYa

E(e) =

E(Gaeba)zoyE(eaeA): aE(EaEB):O,E(EbEab)ZOa

Cov(¥h, Yba) E(epen)=0, E(EbEB):V(\?bHCOV(\?ba,Vb)

E(epe =
(€b<ba) YoYar YoV

COV(\?a 'fab )+V (\fab )

YabYA
Cov(Yp, Ypa) +V (Ypa)
YabYB

E(eabepa) =0, E(egpen) = , E(eabep)=0,

E(epa€a)=0, E(epaeB) = , E(eaep) =0,

V(Xa) V(Xp)

E(5b)_ ! E(5 )_V(Xab)
5 Xy "
VXw) gis2)- Vi)
A Xg
Cov(Xa, Xab)
XaXab
V(Xg)+Cov(Xap, Xa)
XaXa
V(Xp) + Cov(Xpa, Xp)

Cov(Xp, X
COUEb: Xba) | g 5,54) =0, E(oop) = |
XpXab Tote

V(Xpa)
2
Xab
Cov(X 4, Xab)
XaXab

E(53) = E(0py) =

E(52)=

, E(0360ph) =0, E(0303p) =

E(0a0ph) =0, E(030ap) = , E(0adha) =0,

E(6adp) =

, E(0308)=0, E(0poap) =0,

E(SphSha) =

2703
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COV(Xaviab)ﬁLV()zab)
XabX A

Cov(Xp, Xpa) +V (Xpa)

XabXB

E(Sapdpa) =0, E(dapda) = , E(0apoB) =0,

E(Sbadn)=0,E(ShadB) = E(6a6B)=0,

Cov(Y. ,)2 Cov(\? ,)2 )
E(ca 0a) = 280 E(eq 6)=0, Eleq dap)=—x 222 E(cy ) =0,
aa a’ab
X AYa

COV(YAb , XA b )
XpYp

E(ca dpn)=

,E(Ga 58):01

E(ep 6a)=0,E(ep 6p) = +E(€ah 8p) =0, E(€p ap) =0,

i, X Cov )2 ,\f Cov )2 ,\f
Cov(Yp, ba),E(eb 5p)=0,E(cp 5g) = (Xp,Yp) + CoV(Xpa, Y)
Yb Xba YpXg

=
Cov(Vap, Xap) + Cov(Vap. X4)
YabX A
Cov(Xp, Ypa)
XpYab
CoV(Ypa, Xba)
YabXab
CoV(Ypa, Xp) + CoV(Vpa Xpa)
YabX B

E(ep Spa) =
E(eab é‘a) =

E(Gab op)=

) E(Eab é‘B) =0, E(Eba 6&):0’
E(eba §b): aE(ebaEab)ZoyE(eba 5ab)=0,
E(€pa %pa) = , E(€pa 6a)=0,

E(€pa 0B) =

, E(€ap Opa) =0,

Cov(Yy, X5) + Cov(Yap, X35)

E(ea da) = VX
a

,E(ep 0p)=0,
Cov(Ya, X ap) + COV(¥ap, X ap)
YaXap

COV(YAA, >2A)
YaXa
Cov(Yh, Xp) + Cov(Ypa: Xp)

Y Xp

COV(YAb,)’(\ba)+COV(YAba,)’(\ba) and E(e 5 ):COV(YB,XB).
Yg Xab ’ ° 7P YgXp

E(ca dap) = » E(€A dba) =0,

E(ea da)= , E(ea B) =0, E(ep 63) =0,

E(eg 6p) = , E(eg 0ap)=0,E(eg 64)=0

E(ep Spa) =

2704



