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Abstract
The Current Population Survey (CPS) is a monthly household sample survey consisting of eight

rotation groups so that each selected household will be interviewed for 4 consecutive months and
another 4 consecutive months after resting 8 consecutive months. A composite type estimator is
adopted in the CPS for the estimation of the monthly population total, which combines sample
information from the current month survey and previous months using the fact that 75% households
have data for two consecutive months. There are two tuning parameters, 𝐴 and 𝐾, in the composite
estimator to decide how to combine the available information, and thus this estimator is called
the AK composite estimator. However, the current choices of the tuning parameter values were
determined by some empirical studies without theory support. In this paper, we derive a formula
of the mean squared error of the AK composite estimator, and show that this formula is a quadratic
form of 𝐴 for each fixed 𝐾. Using this result, we propose an easy-to-use method of choosing the
tuning parameters 𝐴 and 𝐾. Our method is data-driven, i.e., we propose a method to estimate
some population quantities in the mean squared error formula using observed data. Some numerical
studies are conducted to illustrate the effectiveness of the proposed method.

Key Words: Composite Estimator, Current Population Survey, Mean Square Error, Quadratic
form, Sample notation

1. Introduction

The Current Population Survey (CPS) is a household sample survey sponsored by the
U.S. Bureau of Labor Statistics and conducted monthly by the U.S. Census Bureau to
provide estimates of employment, unemployment, and other characteristics of the non-
institutionalized civilian population 16 years of age and older. The CPS adopts a 4-8-4
rotation sample design that consists of a sample of eight rotation groups, approximately
equal in size, partitioned in such a manner that for any given month, 1/8 of the sample is
interviewed for the first time, 1/8 for the second time,..., and 1/8 for the eighth time. House-
holds in a rotation group are interviewed for 4 consecutive months, dropped for the next 8
months, and then returned to the sample for the following 4 months before they retire from
the sample. The rotation paradigm ensures a 75% month-to-month overlap, which makes it
possible to increase the efficiency of the current month estimators using data from previous
months.

Let 𝑌𝑡 be the unknown population total or mean of interest (e.g., total unemployed
or unemployment rate) at month 𝑡. The current estimation procedure in the CPS can be
described as follows. Based on the data in rotation group 𝑖 and month 𝑡, let 𝑌𝑡,𝑖 be a ratio,
regression, or calibration estimator using some covariates such as age, sex, race, ethnicity,
and other household characteristics. A simple estimator of 𝑌𝑡 is the average of 𝑌𝑡.𝑖 over the
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8 rotation panels, i.e.,

𝑌𝑡 =
1

8

8∑
𝑖=1

𝑌𝑡,𝑖. (1)

Using data from the 75% sampled units in month 𝑡 having data for the two consecutive
months 𝑡 and 𝑡− 1, we can estimate the month-to-month change Δ𝑡 = 𝑌𝑡 − 𝑌𝑡−1 by

Δ̂𝑡 =
1

6

∑
𝑖∈𝑠

(𝑌𝑡,𝑖 − 𝑌𝑡−1,𝑖−1),

where 𝑠 = {2, 3, 4, 6, 7, 8}. Note that units in group 𝑖 = 1 or 5 do not have data for month
𝑡 − 1. This estimator of change together with the estimated monthly total for month 𝑡 − 1
provide an alternative estimator of 𝑌𝑡:

𝑌𝑡−1 + Δ̂𝑡. (2)

While the simple estimator in (1) is based on the data collected in month 𝑡 only, the alter-
native estimator in (2) might be more efficient since it makes use of the data from month
𝑡− 1 as well as data from month 𝑡 in overlapping rotation groups in 𝑠. On the other hand,
the estimator in (2) does not use data from month 𝑡 and rotation groups 1 and 5 that are not
in 𝑠. Thus, to combine the advantages of the estimators in (1) and (2), the following first
generation composite estimator was used prior to 1985:

𝑌 ′
𝑡 = (1−𝐾)𝑌𝑡 +𝐾(𝑌 ′

𝑡−1 + Δ̂𝑡), (3)

which is a convex combination of two estimators defined in (1) and (2) with a tuning value
𝐾 between 0 and 1.

After a series of pioneer research studies (e.g., Gurney and Daly 1965; Huang and Ernst
1981), in 1985 a different composite estimator was introduced by adding another term to
the composite estimator 𝑌 ′

𝑡 in (3), which is the estimator of the net difference between the
incoming and continuing parts of the current month’s sample:

𝜁𝑡 =
1

8

(∑
𝑖/∈𝑠

𝑌𝑡,𝑖 − 1

3

∑
𝑖∈𝑠

𝑌𝑡,𝑖

)
.

The resulting second generation composite estimator, called the AK composite estimator,
is

𝑌
′′
𝑡 = (1−𝐾)𝑌𝑡 +𝐾(𝑌

′′
𝑡−1 + Δ̂𝑡) +𝐴𝜁𝑡, (4)

where 𝐴 and 𝐾 are tuning values. By assigning more weights to rotation groups that have
been in the sample for the first and fifth time, the additional term 𝐴𝜁𝑡 might reduce both
the bias and variance of the composite estimators.

Prior to our study, empirical study was the only way to determine tuning values 𝐴 and
𝐾 in (4) or 𝐾 in (3). In the current document for the CPS published in 2006, (𝐴,𝐾) was
chosen as (0.4, 0.7) for estimating the total employed or as (0.3, 0.4) for estimating the
total unemployed, which were based on some empirical results.

In this article, we derive an analytic formula for the mean squared error (MSE) of
the AK composite estimator. This formula is quadratic in 𝐴 for each fixed 𝐾. Based on
this formula, the optimal tuning values that minimizes the MSE can be obtained in terms of
some unknown population parameters. By substituting unknown parameters by appropriate
sample estimators, we obtain a data-adaptive AK estimator which is approximately optimal
in terms of the MSE. The proposed method is examined via some simulation studies.
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2. The Optimal AK Composite Estimator

The biases of the composite estimator in (3) and the AK composite estimator in (4) were
studied in Bailar (1975) and Huang and Ernst (1981), respectively, under the following
condition:

(C1) 𝐸(𝑌𝑡,𝑖) = 𝑌𝑡 + 𝑎𝑖 for any month 𝑡, 𝑖 = 1, . . . , 8.

The biases 𝑎𝑖’s in (C1) are mainly caused by the difference in data collection among dif-
ferent rotation groups. Using condition (C1) and the results in Huang and Ernst (1981), we
write the bias of the AK composite estimator as a linear function of 𝐴:

Bias(𝑌
′′
𝑡 ) = 𝐸(𝑌

′′
𝑡 )− 𝑌𝑡 =

(𝜸𝑇
0 a)𝐴+ (𝜸1 −𝐾𝜹)𝑇a

1−𝐾
, (5)

where

a =(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8)
𝑇 ,

𝜸0 =(1/8,−1/24,−1/24,−1/24, 1/8,−1/24,−1/24,−1/24)𝑇 ,

𝜸1 =

(
1−𝐾

8
,
3 +𝐾

24
,
3 +𝐾

24
,
3 +𝐾

24
,
1−𝐾

8
,
3 +𝐾

24
,
3 +𝐾

24
,
3 +𝐾

24

)𝑇

,

𝜹 =(1/6, 1/6, 1/6, 0, 1/6, 1/6, 1/6, 0)𝑇 .

Next, we focus on the variance of the AK composite estimator. Huang and Ernst (1981)
first gave an approximate variance formulae of AK composite estimator. We will re-derive
the variance formula in terms of a quadratic function of 𝐴 for each fixed 𝐾, along the
development of Cantwell (1990). We also assume the same conditions as in Huang and
Ernst (1981) and Cantwell (1990), which are listed as (C2) and (C3) as follows.

(C2) Var(𝑌𝑡,𝑖) = 𝜎2 for all 𝑡 and 𝑖, and 𝑌𝑡,𝑖 and 𝑌𝑠,𝑗 are uncorrelated whenever they are
based on groups with different sampled units;

(C3) Based on the structure of the rotation sample design, the following covariances are
possibly not zero and we write them in terms of unknown 𝜎2 and correlation coeffi-
cients 𝜌𝑖’s:

Cov(𝑌𝑡,𝑖+1, 𝑌𝑡−1,𝑖) = 𝜌1𝜎
2, 𝑖 = 1, 2, 3, 5, 6, 7;

Cov(𝑌𝑡,𝑖+2, 𝑌𝑡−2,𝑖) = 𝜌2𝜎
2, 𝑖 = 1, 2, 5, 6;

Cov(𝑌𝑡,𝑖+3, 𝑌𝑡−3,𝑖) = 𝜌3𝜎
2, 𝑖 = 1, 5;

Cov(𝑌𝑡,5, 𝑌𝑡−9,4) = 𝜌9𝜎
2;

Cov(𝑌𝑡,𝑖+2, 𝑌𝑡−10,𝑖) = 𝜌10𝜎
2, 𝑖 = 3, 4;

Cov(𝑌𝑡,𝑖+3, 𝑌𝑡−11,𝑖) = 𝜌11𝜎
2, 𝑖 = 2, 3, 4;

Cov(𝑌𝑡,𝑖+4, 𝑌𝑡−12,𝑖) = 𝜌12𝜎
2, 𝑖 = 1, 2, 3, 4;

Cov(𝑌𝑡,𝑖+5, 𝑌𝑡−13,𝑖) = 𝜌13𝜎
2, 𝑖 = 1, 2, 3;

Cov(𝑌𝑡,𝑖+6, 𝑌𝑡−14,𝑖) = 𝜌14𝜎
2, 𝑖 = 1, 2;

Cov(𝑌𝑡,8, 𝑌𝑡−15,1) = 𝜌15𝜎
2.
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Let V be the 8× 8 matrix whose (𝑖, 𝑗)th element is

V𝑖,𝑗 =

⎧⎨⎩
𝐾𝑖−𝑗𝜌𝑖−𝑗 1 ≤ 𝑗 < 𝑖 ≤ 4,
𝐾𝑖−𝑗𝜌𝑖−𝑗 5 ≤ 𝑗 < 𝑖 ≤ 8,
𝐾𝑖+8−𝑗𝜌𝑖+8−𝑗 5 ≤ 𝑖 ≤ 8, 1 ≤ 𝑗 ≤ 4,
0 otherwise.

Also, let 𝜸 = 𝐴𝜸0 + 𝜸1. Following Theorem 1 of Cantwell (1990), we can obtain that

Var(𝑌
′′
𝑡 ) =

𝜎2{𝜸𝑇𝜸 +𝐾2𝜹𝑇 (𝜹 − 2𝜸) + 2(𝜸 −𝐾2𝜹)𝑇V(𝜸 − 𝜹)}
1−𝐾2

.

By arranging terms as a quadratic form of 𝐴, we can write the variance of the AK estimator
as

Var(𝑌
′′
𝑡 ) = 𝑎𝑣𝐴

2 + 𝑏𝑣𝐴+ 𝑐𝑣, (6)

where

𝑎𝑣 =
𝜎2(𝜸𝑇

0 𝜸0 + 2𝜸𝑇
0 V𝜸0)

1−𝐾2
,

𝑏𝑣 =
2𝜎2(𝜸𝑇

0 𝜸1 −𝐾2𝜹𝑇𝜸0 −𝐾2𝜹𝑇V𝜸0 − 𝜸𝑇
0 V𝜹 + 𝜸𝑇

1 V𝜸0 + 𝜸𝑇
0 V𝜸0)

1−𝐾2
,

𝑐𝑣 =
𝜎2(𝜸𝑇

1 𝜸1 +𝐾2𝜹𝑇𝜹 − 2𝐾2𝜹𝑇𝜸1 + 2𝐾2𝜹𝑇V𝜹 − 2𝐾2𝜹𝑇V𝜸1 − 2𝜸 ′
1V𝜹 + 2𝜸 ′

1V𝜸1)

1−𝐾2

under conditions (C2) and (C3).
Combining results (5) and (6), we obtain a formula of the MSE of the AK estimator in

terms of a quadratic form of 𝐴 for each fixed 𝐾.

Theorem 1. Assumed conditions (C1) − (C3). The mean square error of AK composite
estimator is

MSE(𝑌
′′
𝑡 ) = 𝐸(𝑌

′′
𝑡 − 𝑌𝑡)

2 = (𝑎𝑣 + 𝑎𝑏)𝐴
2 + (𝑏𝑣 + 𝑏𝑏)𝐴+ (𝑐𝑣 + 𝑐𝑏), (7)

where

𝑎𝑏 =
(𝜸𝑇

0 a)
2

(1−𝐾)2
, 𝑏𝑏 =

2(𝜸𝑇
0 a){(𝜸1 −𝐾𝜹)𝑇a}

(1−𝐾)2
, 𝑐𝑏 =

{(𝜸1 −𝐾𝜹)𝑇a}2
(1−𝐾)2

.

Note that 𝑎𝑏 > 0 and 𝑎𝑣 = (6− 𝜌1𝐾 − 2𝜌2𝐾
2 − 3𝜌3𝐾

3)𝜎2/{144(1−𝐾2)} > 0 for
𝐾 ∈ [0, 1). Hence, for each fixed 𝐾, the MSE in (7) is a quadratic form of 𝐴 having a
minimizer at −(𝑏𝑣 + 𝑏𝑏)/{2(𝑎𝑣 + 𝑎𝑏)}. Also, for each fixed 𝐾,

min
𝐴

[
(𝑎𝑣 + 𝑎𝑏)𝐴

2 + (𝑏𝑣 + 𝑏𝑏)𝐴+ (𝑐𝑣 + 𝑐𝑏)
]
= (𝑐𝑣 + 𝑐𝑏)− (𝑏𝑣 + 𝑏𝑏)

2

4(𝑎𝑣 + 𝑎𝑏)
.

Thus, if all population quantities in (C1)-(C3) are known, then the optimal 𝐾 and 𝐴 that
minimize the MSE in (7) can be determined through the following algorithm.

Step 1. Find the optimal 𝐾 ∈ [0, 1) that minimizes (𝑐𝑣 + 𝑐𝑏) − (𝑏𝑣 + 𝑏𝑏)
2/{4(𝑎𝑣 + 𝑎𝑏)}

using some method; for example, a gird search.

Step 2. The optimal 𝐴 is then chosen as −(𝑏𝑣 + 𝑏𝑏)/{2(𝑎𝑣 + 𝑎𝑏)} with the 𝐾 obtained in
step 1.
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3. Parameter Estimation

The results presented in the previous section are useful only when 𝑎𝑖’s in (C1) and 𝜎2

and 𝜌𝑗’s in (C2) and (C3) are all known. In practice, however, these values are usually
unknown. We in this section address the issue of parameter estimation.

First, consider the estimation of the biases 𝑎𝑖, 𝑖 = 1, . . . , 8. Unfortunately, 𝑎𝑖’s are not
estimable unless some conditions or constraints are imposed to them. The first results was
established in Bailar (1975) under the following assumption:

(C4)
∑8

𝑖=1 𝑎𝑖 = 0.

Under condition (C4),

𝐸(𝑌𝑡,𝑖 − 𝑌𝑡) = 𝑎𝑖 − 1

8

8∑
𝑖=1

𝑎𝑖 = 𝑎𝑖.

Then, for a total 𝑇 months, 𝑎𝑖 can be estimated unbiasedly as

�̂�𝑖 =
1

𝑇

𝑇∑
𝑡=1

(𝑌𝑡,𝑖 − 𝑌𝑡).

This estimator converges to the true value of 𝑎𝑖 as 𝑇 increases to ∞ at the rate 1/
√
𝑇 .

Condition (C4) means that the average of 8 rotation group estimators, 𝑌𝑡,1,...,𝑌𝑡,8, is an
unbiased estimator of the population total 𝑌𝑡. Now we turn to the estimation of 𝜎2 and 𝜌𝑖’s
in (C2)-(C3). Under condition (C2), we obtain that, for any 𝑖 ∕= 𝑗 and 𝑡,

𝐸(𝑌𝑡,𝑖 − 𝑌𝑡,𝑗)
2 = 𝐸{(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)− (𝑌𝑡,𝑗 − 𝑌𝑡 − 𝑎𝑗)− (𝑎𝑖 − 𝑎𝑗)}2
= 2𝜎2 + (𝑎𝑖 − 𝑎𝑗)

2.

Hence,

𝜎2 =
𝐸(𝑌𝑡,𝑖 − 𝑌𝑡,𝑗)

2 − (𝑎𝑖 − 𝑎𝑗)
2

2
.

Similarly, the following formulas can be derived under (C2) and (C3):

𝜌1 =𝐸(𝑌𝑡+1,𝑖+1 − 𝑌𝑡+1 − 𝑎𝑖+1)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)/𝜎
2, 𝑖 = 1, 2, 3, 5, 6, 7;

𝜌2 =𝐸(𝑌𝑡+2,𝑖+2 − 𝑌𝑡+2 − 𝑎𝑖+2)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)/𝜎
2, 𝑖 = 1, 2, 5, 6;

𝜌3 =𝐸(𝑌𝑡+3,𝑖+3 − 𝑌𝑡+3 − 𝑎𝑖+3)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)/𝜎
2, 𝑖 = 1, 5;

𝜌9 =𝐸(𝑌𝑡+9,𝑖+2 − 𝑌5 − 𝑎5)(𝑌𝑡,4 − 𝑌𝑡 − 𝑎4)/𝜎
2;

𝜌10 =𝐸(𝑌𝑡+10,𝑖+2 − 𝑌𝑡+10 − 𝑎𝑖+2)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)/𝜎
2, 𝑖 = 3, 4;

𝜌11 =𝐸(𝑌𝑡+11,𝑖+3 − 𝑌𝑡+11 − 𝑎𝑖+3)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)/𝜎
2, 𝑖 = 2, 3, 4;

𝜌12 =𝐸(𝑌𝑡+12,𝑖+4 − 𝑌𝑡+10 − 𝑎𝑖+4)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)/𝜎
2, 𝑖 = 1, 2, 3, 4;

𝜌13 =𝐸(𝑌𝑡+13,𝑖+5 − 𝑌𝑡+13 − 𝑎𝑖+5)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)/𝜎
2, 𝑖 = 1, 2, 3;

𝜌14 =𝐸(𝑌𝑡+14,𝑖+6 − 𝑌𝑡+14 − 𝑎𝑖+6)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎𝑖)/𝜎
2, 𝑖 = 1, 2;

𝜌15 =𝐸(𝑌𝑡+15,8 − 𝑌𝑡+15 − 𝑎8)(𝑌𝑡,𝑖 − 𝑌𝑡 − 𝑎1)/𝜎
2.

With the available unbiased estimator �̂�𝑖 for the rotation group bias under (C4), approx-
imately unbiased estimators of 𝜎2 and 𝜌𝑖’s based on data over 𝑇 months can be constructed

JSM 2014 - Survey Research Methods Section

2617



as follows:

�̂�2 =
1

56𝑇

𝑇∑
𝑡=1

∑
𝑖<𝑗

{(𝑌𝑡,𝑖 − 𝑌𝑡,𝑗)
2 − (�̂�𝑖 − �̂�𝑗)

2};

𝜌1 =
1

6(𝑇 − 1)�̂�2

𝑇−1∑
𝑡=1

∑
𝑖∈{1,2,3,5,6,7}

(𝑌𝑡+1,𝑖+1 − 𝑌𝑡+1 − �̂�𝑖+1)(𝑌𝑡,𝑖 − 𝑌𝑡 − �̂�𝑖);

𝜌2 =
1

4(𝑇 − 2)�̂�2

𝑇−2∑
𝑡=1

∑
𝑖∈{1,2,5,6}

(𝑌𝑡+2,𝑖+2 − 𝑌𝑡+2 − �̂�𝑖+2)(𝑌𝑡,𝑖 − 𝑌𝑡 − �̂�𝑖);

𝜌3 =
1

2(𝑇 − 3)�̂�2

𝑇−3∑
𝑡=1

∑
𝑖∈{1,5}

(𝑌𝑡+3,𝑖+3 − 𝑌𝑡+3 − �̂�𝑖+3)(𝑌𝑡,𝑖 − 𝑌𝑡 − �̂�𝑖);

𝜌9 =
1

(𝑇 − 9)�̂�2

𝑇−9∑
𝑡=1

(𝑌𝑡+9,5 − 𝑌𝑡+9 − �̂�5)(𝑌𝑡,4 − 𝑌𝑡 − �̂�4);

𝜌10 =
1

2(𝑇 − 10)�̂�2

𝑇−10∑
𝑡=1

∑
𝑖∈{3,4}

(𝑌𝑡+10,𝑖+2 − 𝑌𝑡+10 − �̂�𝑖+2)(𝑌𝑡,𝑖 − 𝑌𝑡 − �̂�𝑖);

𝜌11 =
1

3(𝑇 − 11)�̂�2

𝑇−11∑
𝑡=1

∑
𝑖∈{2,3,4}

(𝑌𝑡+11,𝑖+3 − 𝑌𝑡+11 − �̂�𝑖+3)(𝑌𝑡,𝑖 − 𝑌𝑡 − �̂�𝑖);

𝜌12 =
1

4(𝑇 − 12)�̂�2

𝑇−12∑
𝑡=1

∑
𝑖∈{1,2,3,4}

(𝑌𝑡+12,𝑖+4 − 𝑌𝑡+12 − �̂�𝑖+4)(𝑌𝑡,𝑖 − 𝑌𝑡 − �̂�𝑖);

𝜌13 =
1

3(𝑇 − 13)�̂�2

𝑇−13∑
𝑡=1

∑
𝑖∈{1,2,3}

(𝑌𝑡+13,𝑖+5 − 𝑌𝑡+13 − �̂�𝑖+5)(𝑌𝑡,𝑖 − 𝑌𝑡 − �̂�𝑖);

𝜌14 =
1

2(𝑇 − 14)�̂�2

𝑇−14∑
𝑡=1

∑
𝑖∈{1,2}

(𝑌𝑡+14,𝑖+6 − 𝑌𝑡+14 − �̂�𝑖+6)(𝑌𝑡,𝑖 − 𝑌𝑡 − �̂�𝑖);

𝜌15 =
1

(𝑇 − 15)�̂�2

𝑇−15∑
𝑡=1

(𝑌𝑡+15,8 − 𝑌𝑡+15 − �̂�8)(𝑌𝑡,1 − 𝑌𝑡 − �̂�1).

The next theorem confirms that these moment estimators are consistent with the con-
vergence rate

√
𝑇 .

Theorem 2. Assume conditions (C1)-(C4). Then, as 𝑇 → ∞,
√
𝑇 (�̂�2 − 𝜎2) = 𝑂𝑃 (1),√
𝑇 (�̂�𝑖 − 𝑎𝑖) = 𝑂𝑃 (1),√
𝑇 (𝜌𝑗 − 𝜌𝑗) = 𝑂𝑃 (1)

for 𝑖 = 1, . . . , 8 and 𝑗 = 1, 2, 3, 9, . . . , 15, where 𝑂𝑃 (1) is a quantity bounded in proba-
bility.

The proof of this theorem is given in the Appendix.

4. Simulation Results

Our simulation study was based on a pseudo population containing the CPS micro data
from January 2004 to December 2013. In each month, there are about 16, 000 individuals
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in each rotation group. We randomly sampled 𝑛 individuals from each rotation group in
month 𝑡0, and kept them on track in the next fifteen month. We considered 𝑌𝑡 to be the
employment rate at month 𝑡 and obtained 𝑌𝑡0,1, 𝑌𝑡0+1,2, 𝑌𝑡0+2,3, 𝑌𝑡0+3,4, 𝑌𝑡0+12,5, 𝑌𝑡0+13,6,
𝑌𝑡0+14,7 and 𝑌𝑡+15,8 through ratio estimation. Based on 𝑌𝑡,𝑖’s with 𝑡 ranging from January
2004 to December 2012, we estimated the optimal coefficients 𝐴 and 𝐾 according to the
proposed procedure in Sections 2-3, and further obtained the optimal AK estimators for all
months in 2013. The proposed estimator is denoted by 𝑌

′′
𝑡,𝑜𝑝𝑡. For 𝑡 ranging from January

2013 to December 2013, we compared 𝑌
′′
𝑡,𝑜𝑝𝑡 with the AK estimator 𝑌

′′
𝑡 currently used in

the CPS, where (𝐴,𝐾) = (0.4, 0.7).
Based on 500 repetitions, we approximated the estimation bias and standard deviation

(SD) of 𝑌
′′
𝑡,𝑜𝑝𝑡 and 𝑌

′′
𝑡 , and listed them in Table 1 for 𝑡 ranging from Janunary to December,

2013. We also included in the tables the values of 𝑌𝑡 and the relative improvement in MSE
by incorporating the proposed optimal AK composite estimator:

IM =
MSE(𝑌

′′
𝑡 )− MSE(𝑌

′′
𝑡,𝑜𝑝𝑡)

MSE(𝑌 ′′
𝑡 )

.

In general, the simulation results support the theory derived in Sections 2-3. From Table
1, in terms of the MSE, the approximate optimal AK composite estimator 𝑌

′′
𝑡,𝑜𝑝𝑡 is better

than the current AK composite estimator 𝑌
′′
𝑡 except in two cases occurred in April 2013

when 𝑛 = 100. Since 𝑌
′′
𝑡,𝑜𝑝𝑡 is based on estimated parameters in (C1)-(C3), it is possible

that it performs worse than 𝑌
′′
𝑡 . When 𝑌

′′
𝑡,𝑜𝑝𝑡 improves 𝑌

′′
𝑡 , the relative improvement IM

can be as high as 12.24% and the improvement is generally larger when 𝑛 is smaller. The
optimal AK composite estimator mainly improves the variance of the estimation, since the
SD of 𝑌

′′
𝑡,𝑜𝑝𝑡 is uniformly smaller than the SD of 𝑌

′′
𝑡 . It is also less biased in most of

the cases under consideration. In fact, in cases where 𝑌
′′
𝑡,𝑜𝑝𝑡 is more biased than 𝑌

′′
𝑡 , the

improvements in MSE are small.
Based on our limited simulation results, updating the tuning coefficients 𝐴 and 𝐾 peri-

odically is necessary. Also, the estimation of parameters in (C1)-(C3) is crucial for a good
performance of 𝑌

′′
𝑡,𝑜𝑝𝑡.

5. Discussions

Selecting the tuning coefficients in the AK composite estimators has been a longstanding
issue in the CPS. We in this paper propose a novel method for choosing the optimal coeffi-
cients based on an analytic formula of the MSE of the AK composite estimator. Since this
analytic formula can be expressed as a quadratic form of 𝐴 for each fixed 𝐾, the optimal
𝐴 and 𝐾 can be easily obtained. We also propose some consistent estimators of the param-
eters in the optimal coefficients 𝐴 and 𝐾 so that a data-driven approximate AK composite
estimator can be used in the CPS. This approach along with the parameters estimation pro-
cedure can be further developed for choosing optimal weighting coefficients of a class of
generalized composite estimators (Park et al. 2001). In addition, combining with Theorem
2 in Cantwell (1990), our proposal can be extended to choose the optimal 𝐴 and 𝐾 for
estimating the month-to-month change Δ𝑡.

The theoretical justifications and numerical results in this paper are based on some
commonly used conditions in the CPS. Some recent studies suggest different correlation
structures between two rotation groups. After 2003, a new grouping procedure between
panel 𝑖 and 𝑖+4 was introduced in the CPS (𝑖 = 1, 2, 3, 4). To further adapt such grouping
procedure, we suggest modify assumptions (C1)-(C3) accordingly. Let 𝑍𝑡,𝑖 = 𝑌𝑡,𝑖 +𝑌𝑡,𝑖+4

for 𝑖 = 1, 2, 3, 4. The assumptions (C1)-(C3) can be updated as
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Table 1: Simulation results (in %) for employment rate under assumption
∑8

𝑖=1 𝑎𝑖 = 0.

𝑛 𝑡 𝑌𝑡 Bias(𝑌
′′
𝑡 ) Bias(𝑌

′′
𝑡,𝑜𝑝𝑡) SD(𝑌

′′
𝑡 ) SD(𝑌

′′
𝑡,𝑜𝑝𝑡) IM

20 Jan 2013 92.09 -1.69 -1.48 5.10 4.81 12.24
Feb 2013 92.44 -0.93 -0.84 4.71 4.47 10.15
Mar 2013 92.85 -2.44 -2.43 4.80 4.65 5.49
Apr 2013 93.37 -1.64 -1.69 4.54 4.42 3.69

May 2013 93.33 -2.37 -2.23 4.23 4.03 9.67
Jun 2013 92.85 -2.21 -2.12 5.05 4.75 10.94
Jul 2013 92.91 -2.71 -2.65 5.79 5.44 10.64

Aug 2013 93.30 -3.02 -3.02 4.32 4.24 2.64
Sep 2013 93.63 -2.55 -2.45 4.27 4.11 7.48
Oct 2013 93.59 -1.96 -1.99 4.16 4.01 5.15

Nov 2013 93.94 -3.45 -3.49 4.39 4.16 5.64
Dec 2013 93.96 -3.98 -3.92 5.02 4.94 3.10

50 Jan 2013 92.09 -1.43 -1.40 2.87 2.73 8.53
Feb 2013 92.44 -1.68 -1.62 3.11 2.96 9.37
Mar 2013 92.85 -1.94 -1.89 2.77 2.58 10.37
Apr 2013 93.37 -1.80 -1.85 2.55 2.38 6.31

May 2013 93.33 -2.16 -2.02 2.59 2.51 8.70
Jun 2013 92.85 -1.77 -1.72 2.76 2.64 7.77
Jul 2013 92.91 -1.96 -1.90 2.84 2.70 8.51

Aug 2013 93.30 -1.34 -1.36 2.29 2.18 6.65
Sep 2013 93.63 -2.32 -2.30 2.86 2.68 7.96
Oct 2013 93.59 -2.13 -2.18 2.59 2.45 4.14

Nov 2013 93.94 -2.87 -2.93 2.78 2.71 0.50
Dec 2013 93.96 -3.42 -3.31 2.92 2.73 9.12

100 Jan 2013 92.09 -2.17 -2.15 2.24 2.14 4.45
Feb 2013 92.44 -1.56 -1.52 2.12 2.03 6.73
Mar 2013 92.85 -1.55 -1.58 1.90 1.79 4.84
Apr 2013 93.37 -2.48 -2.57 1.88 1.77 -0.64

May 2013 93.33 -2.18 -2.17 1.93 1.83 4.75
Jun 2013 92.85 -2.58 -2.59 2.00 1.94 1.83
Jul 2013 92.91 -2.68 -2.67 2.14 2.08 2.32

Aug 2013 93.30 -1.99 -2.03 2.05 1.98 1.40
Sep 2013 93.63 -2.10 -2.09 2.00 1.92 4.10
Oct 2013 93.59 -2.44 -2.46 1.97 1.89 2.53

Nov 2013 93.94 -3.11 -3.15 2.08 1.96 1.60
Dec 2013 93.96 -3.29 -3.25 1.94 1.83 4.66
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(C1’) Var(𝑍𝑡,𝑖) = 𝜎2
1 for all 𝑡 and 𝑖.

(C2’) The covariances between different rotation groups in the same month are zero. That
is Cov(𝑍𝑡,𝑖, 𝑍𝑡,𝑗) = 0 for 1 ≤ 𝑖 ∕= 𝑗 ≤ 4.

(C3’) All covariances between different rotation groups in different months are zero except
for the following:

Cov(𝑍𝑡,𝑖+1, 𝑍𝑡−1,𝑖) = 𝜌∗1𝜎
2
1, 𝑖 = 1, 2, 3;

Cov(𝑍𝑡,𝑖+2, 𝑍𝑡−2,𝑖) = 𝜌∗2𝜎
2
1, 𝑖 = 1, 2;

Cov(𝑍𝑡,𝑖+3, 𝑍𝑡−3,𝑖) = 𝜌∗3𝜎
2
1, 𝑖 = 1;

Cov(𝑍𝑡,1, 𝑍𝑡−9,4) = 𝜌∗9𝜎
2
1;

Cov(𝑍𝑡,𝑖−2, 𝑍𝑡−10,𝑖) = 𝜌∗10𝜎
2
1, 𝑖 = 3, 4;

Cov(𝑍𝑡,𝑖−1, 𝑍𝑡−11,𝑖) = 𝜌∗11𝜎
2
1, 𝑖 = 2, 3, 4;

Cov(𝑍𝑡,𝑖, 𝑍𝑡−12,𝑖) = 𝜌∗12𝜎
2
1, 𝑖 = 1, 2, 3, 4;

Cov(𝑍𝑡,𝑖+1, 𝑍𝑡−13,𝑖) = 𝜌∗13𝜎
2
1, 𝑖 = 1, 2, 3;

Cov(𝑍𝑡,𝑖+2, 𝑍𝑡−14,𝑖) = 𝜌∗14𝜎
2
1, 𝑖 = 1, 2;

Cov(𝑍𝑡,4, 𝑍𝑡−15,1) = 𝜌∗15𝜎
2
1.

In addition, the AK composite estimator based on 𝑍𝑡,𝑖’s can be defined as

𝑍𝑡 =
1−𝐾

8

4∑
𝑖=1

𝑍𝑡,𝑖 + (1−𝐾)
{
𝑍𝑡−1 +

4∑
𝑖=2

(𝑍𝑡,𝑖 − 𝑍𝑡,𝑖−1)/6
}
+𝐴

{( 4∑
𝑖=2

𝑍𝑡,𝑖

)− 𝑍𝑡,1

}
/8.

Then we can follow our proposed method to select optimal 𝐴 and 𝐾 under assumptions
(C1’)-(C3’).
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Appendix

Proof of Theorem 2.
We only prove the results for �̂�𝑖’s and �̂�2 under (C1)-(C4). Proof for the asymptotic re-
sults under alternative assumption (C4’) or for 𝜌𝑗’s is similar and thus is omitted. We
first deal with �̂�𝑖’s. Let 𝑈𝑡,𝑖 = 𝑌𝑡,𝑖 −

∑8
𝑗=1 𝑌𝑡,𝑗/8. Then {𝑈1,𝑖, . . . , 𝑈𝑇,𝑖} is a stationary

16-dependent sequence. By Theorem 9.1 in DasGupta (2008), we have

√
𝑇 (�̂�𝑖 − 𝑎𝑖) =

1√
𝑇

𝑇∑
𝑡=1

{𝑈𝑡,𝑖 − 𝐸(𝑈𝑡,𝑖)} −→ 𝑁(0, 𝜏2𝑖 );

as 𝑇 goes to infinity, where 𝜏2𝑖 = Var(𝑈1,𝑖) + 2
∑16

𝑗=2Cov(𝑈1,𝑖, 𝑈𝑗,𝑖) and 𝑖 = 1, . . . , 8.
Now we deal with �̂�2. Let 𝑆𝑡 =

∑
𝑖<𝑗{(𝑌𝑡,𝑖 − 𝑌𝑡,𝑗)

2 − (𝑎𝑖 − 𝑎𝑗)
2}/56. Then 𝑆𝑡 is

also a stationary 16-dependent sequence. Again by Theorem 9.1 in Dasgupta (2008), we
can see that

1√
𝑇

𝑇∑
𝑡=1

{𝑆𝑡 − 𝐸(𝑆𝑡)} −→ 𝑁(0, 𝜏20 );
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as 𝑇 goes to infinity, where 𝜏20 = Var(𝑆1) + 2
∑16

𝑗=2Cov(𝑆1, 𝑆𝑗). Then it is easy to see
that �̂�2 − 𝜎2 = 𝑂𝑃 (𝑇

−1/2) since �̂�𝑖 − 𝑎𝑖 = 𝑂𝑃 (𝑇
−1/2). The proof is completed. □
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