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Abstract
The Hartley-Rao-Cochran (RHC) sampling design (Rao et al., 1962) is a popular unequal probabil-
ity sampling design. We show how empirical likelihood confidence intervals can be derived under
this sampling design. Berger and De La Riva Torres (2012) proposed an empirical likelihood ap-
proach which can be used for point estimation and to construct confidence intervals under complex
sampling designs. We show how this approach can be adjusted for the RHC sampling design. The
proposed approach intrinsically incorporates sampling weights and auxiliary information. It may
give better coverages than standard methods even when the sampling distribution of the parameters
of interest is not normal. The proposed approach is simple to implement and less computer inten-
sive than bootstrap. The proposed approach does not rely on re-sampling, linearisation, variance
estimation, or design-effects.

Key Words: Auxiliary information, Design-based approach, Estimating equations, Probability
proportional to size sampling design, Regression estimator, Unequal inclusion probabilities.

1. Introduction

Complex estimators, such as quantiles, poverty indicators, M-estimators or parameters of
population models are often computed from survey data. The sampling distribution of these
estimators may not be normal when the distributions of the underlying variables are skewed.
Furthermore, asymptotic linearised variances estimators can be biased in this situation.
Therefore, standard confidence intervals based upon normality and variance estimates can
have poor coverages. Their bounds can be also out of the range of the parameter space. For
example, a lower bound can be negative even when the parameter of interest is positive.
Empirical likelihood confidence intervals may have better coverages in this situation, as
empirical likelihood confidence intervals are determined by the distribution of the data
(e.g. Owen, 2001) and as the range of the parameter space is preserved.

Let U be a finite population of N units; where N denotes the population size. Consider
that the population parameter of interest θN is the non-random quantities which is the
unique solution of the following estimating equation (Godambe, 1960).

G(θ) = 0, with G(θ) =
∑
i∈U

gi(θ); (1)

where gi(θ) is a function of θ and of the values variable of interest and auxiliary variables
for the unit i. For example, when gi(θ) = yi − θ, the parameter θN is population mean
µ = N−1

∑
i∈U yi; where the yi are the values of a variable of interest. Other examples are

ratios, low income measures, regression coefficients, M-estimators (e.g. Qin and Lawless,
1994; Binder and Kovacević, 1995). We consider that gi(θ) and θN are scalars, although
this paper approach can be extended when they are vectors. Note that the gi(θ) do not need
to be differentiable functions. The aim of this paper is to propose an estimator for θN and
to derive a confidence interval for θN .

Suppose we have a sample s of size n selected with the uni-stage Hartley-Rao-Cochran
(RHC) sampling design (Rao et al., 1962) defined in § 2. The parameter θN will be esti-
mated from the sampled data. We adopt a design-based approach which considers that the
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sampling distribution of the estimator is specified by the RHC sampling design and the val-
ues of the variables are fixed (non-random) quantities. Under this approach, the standard
likelihood function is flat and cannot be used for inference (Godambe, 1966). Alternatively,
empirical likelihood approaches can be used.

Hartley and Rao (1968) introduced the empirical likelihood-based approach. Owen
(1988) brought this approach into the mainstream statistics (see also Owen, 2001). The em-
pirical likelihood-based approach cannot be straightforwardly implemented under a design-
based approach without some adjustments. Chen and Sitter (1999) proposed a pseudo
empirical likelihood approach which can be used to construct confidence intervals (Wu
and Rao, 2006). This approach consists in including the first-order inclusion probabilities
within the empirical likelihood function and adjusting the empirical log-likelihood ratio
function by a design effect which needs to be estimated. Berger and De La Riva Torres
(2012) proposed a different empirical likelihood approach which consists in using the de-
sign constraints without adjusting the empirical likelihood function. Berger and De La
Riva Torres (2012) showed that this approach can be used for point estimation and to con-
struct confidence intervals under a class of high entropy sampling designs. The confidence
interval proposed by Berger and De La Riva Torres (2012) does not rely on variance es-
timates or design effects. This approach cannot be straightforwardly implemented under
RHC sampling, because the RHC sampling design does not belong to the of high entropy
sampling designs. In this paper, we show how the approach proposed by Berger and De La
Riva Torres (2012) can be adjusted to take into account of the RHC sampling design.

We suppose that we have a set of auxiliary variables xi attached to unit i. We suppose
that some population characteristics (denoted ϑN ) of these variables are known at popula-
tion level (see § 3.2). For example, these population characteristics can be totals, means,
ratios or quantiles. We will show how these characteristics can be used for point estimation,
and how it can be taken into account for constructing confidence intervals.

In § 2, we define the RHC sampling design. In § 3, we show how the parameter of
interest can be estimated using empirical likelihood. In § 4, we introduce a penalised em-
pirical log-likelihood ratio function which can be used under the RHC sampling design. We
show how the penalised empirical log-likelihood ratio function can be used for testing and
confidence intervals. In § 5, a simulation study supports our findings.

2. The RHC sampling design

The RHC sampling design is an unequal probability sampling design which does not belong
to the class of high entropy sampling designs. Therefore the empirical likelihood approach
proposed by Berger and De La Riva Torres (2012) cannot be directly implemented without
some adjustments.

The RHC sampling design is a probability proportional to size design; that is a unit i
is selected with probability proportional to a measure of size Mi. We consider that the Mi

are standardised such that
∑

i∈U Mi = 1. Note that this design allows for large sampling
fractions.

Suppose that the population is divided randomly into n disjoint groupsA1, . . . , Ai, . . . ,
An of sizes N1, . . . , Ni, . . . , Nn, where

∑n
i=1Ni = N , where

∑n
i=1 denote the sum over

the sampled units. The Ni are fixed (non-random) quantities which are chosen before
sampling. A sample of size n is obtained by selecting one unit independently from each
group with the following probabilities:

pi =
Mi

ti
; where ti =

∑
j∈Ai

Mj · (2)
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Note that
∑

i∈U pi = n. As far as weighting is concerned, the pi play the same role as the
first-order inclusion probabilities.

3. Empirical likelihood point estimator

Consider the following empirical log-likelihood function (Berger and De La Riva Torres,
2012).

`(m) =
n∑
i=1

log(mi). (3)

The quantity mi denotes the scale load of unit i (Hartley and Rao, 1968). As the units are
selected independently, the empirical log-likelihood function is given by (3). Let {m̂i : i ∈
s} be the set of values which maximises `(m) subject to the constraints mi ≥ 0 and

n∑
i=1

mici = C; (4)

where ci is aQ×1 vector associated with the i-th sampled unit andC is aQ×1 vector. The
m̂i are empirical likelihood weights. We assume that ci and C are such that the regularity
conditions proposed by Berger and De La Riva Torres (2012) hold. The pi are assumed to
be contained within the ci; that is, we assume that the ci and C are such that there exists
a non random Q × 1 vector t such that t>ci = pi and t>C = n. Note that we do not
impose that

∑n
i=1mi = N always holds (except when pi = n/N ). If we want to impose

that constraint, we need to consider an additional constraint
∑n

i=1mixi = N with xi = 1,
and treat xi as an auxiliary variable (see §§ 3.2 and 5.1).

Berger and De La Riva Torres (2012) showed that the minimisation of (3) under (4) has
a unique solution given by

m̂i =
(
pi + η>ci

)−1
· (5)

The quantity η is such that the constraint (4) holds. This quantity can be computed using
an iterative Newton-Raphson ‘type’ procedure (Polyak, 1987).

The maximum empirical likelihood estimate θ̂ of θN is defined by the unique solution
of

Ĝ(θ) =
n∑
i=1

m̂i gi(θ) = 0; (6)

where m̂i is defined by (5). Berger and De La Riva Torres (2012) showed that θ̂ is also
minimises an empirical log-likelihood ratio function.

3.1 Example without auxiliary information

Suppose that we ignore the auxiliary information. In this case, we use ci = pi and C = n.
It can be shown that m̂i = p−1i and (6) reduces to

Ĝ(θ)RHC =

n∑
i=1

gi(θ)

pi
· (7)

which is the unbiased Rao et al. (1962) estimator of G(θ) for a given θ. The solution
θ̂ of Ĝ(θ)RHC = 0 is the maximum empirical likelihood point estimate for θN . When
gi(θ) = yi − n−1piθ, the solution of (7) is the Rao et al. (1962) estimate of a total. When
gi(θ) = yi − θ, the solution is the ratio estimate of a mean.
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3.2 Example with auxiliary information

Let xi be a vector of values of auxiliary variables attached to unit i. Let ϑN be some
known population characteristics, of the auxiliary variables, which are considered to be the
solution of the following estimating equation:∑

i∈U
fi(xi,ϑ) = 0,

where fi(xi,ϑ) denotes a vector of known function ofxi andϑ. Suppose that the parameter
ϑN is known without sampling error. For example, this the case, when ϑN described some
known population quantities. For example, ϑN is a vector of known population means
when fi(xi,ϑN ) = xi − ϑN .

The point estimator is the solution of (6) with ci = (pi, fi(xi,ϑN )>)> and C =
(n,0>)>. It can be shown that the resulting m̂i are such that

∑n
i=1 m̂ifi(xi,ϑN ) = 0

holds. This implies that the maximum empirical likelihood estimator ϑ̂ of ϑN is such that
ϑ̂ = ϑN . In other words, the m̂i are empirical likelihood weights calibrated with respect
to ϑN .

4. Penalised empirical log-likelihood ratio function

In § 4.3, we show how confidence intervals can be computed using the penalised empirical
log-likelihood ratio function defined by (14). This function is based upon the following
penalised empirical log-likelihood function (Berger and De La Riva Torres, 2012).

˜̀(m) = log

(
n∏
i=1

mi exp(1− pimi)

)
· (8)

Let {m̃i : i ∈ s} be the set of values which maximises (8) subject to the constraints
mi ≥ 0 and

n∑
i=1

mic̃i = C̃; (9)

for some c̃i and C̃ defined in §§ 4.1 and 4.2. It can be shown that

m̃i =
(
pi + η̃>c̃i

)−1
, (10)

where η̃ is such that (9) holds. Note that c̃i and C̃ are different from ci and C. However,
we will see in §§ 4.1 and 4.2 that the choice of c̃i and C̃ depends on ci and C.

4.1 Without auxiliary information

In § 3.1, we use ci = pi andC = n for point estimation. In this case, we consider c̃i = q◦i pi

and C̃ =
∑n

i=1 q
◦
i , where q◦i = t

1/2
i . Let {m̃i : i ∈ s} be the set of values which maximises

(8). In this case, m̃i = p−1i .
Let {m̃∗i (θ) : i ∈ s} be the set of values which maximises (8) (for a given θ) subject to

the constraints mi ≥ 0 and

n∑
i=1

mic̃
∗
i = C̃

∗
; (11)
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with

c̃∗i = (c̃i , q
•
i gi(θ))

> , (12)

C̃
∗

=

(
C̃ ,

n∑
i=1

(q•i − 1)
gi(θ)

pi

)>
, (13)

where q•i = ς̂ 1/2 t
−1/2
i ; where ς̂ = (

∑n
i=1N

2
i − N)(N2 −

∑n
i=1N

2
i )−1 is the finite

population correction proposed by Rao et al. (1962, p. 485) and ti is defined in (2). It can
be shown that m̃∗i (θ) = (pi + η̃∗>c̃∗i )

−1
, where η̃∗ is such that (11) holds.

Berger and De La Riva Torres (2012) proposed to use the following penalised empirical
log-likelihood ratio function which is the following function of θ.

r̃(θ) = 2
{˜̀(m̃)− ˜̀(m̃∗, θ)} , (14)

where ˜̀(m̃) and ˜̀(m̃∗, θ) are given by (8) after substituting mi by m̃i and m̃∗i (θ) respec-
tively; that is, ˜̀(m̃) and ˜̀(m̃∗, θ) are the maximum values of (8).

The following Theorem gives an asymptotic approximation for r̃(θN ).

Theorem 1 We have that

r̃(θN ) =
Ĝ(θN )2RHC

v̂ar[Ĝ(θN )RHC ]
+ op(1); (15)

where Ĝ(θN )RHC is defined by (7) and

v̂ar[Ĝ(θN )RHC ] = ς̂

{
n∑
i=1

ti
gi(θN )2

M2
i

− Ĝ(θN )2RHC

}
(16)

is the Rao et al. (1962) variance estimator of Ĝ(θN )RHC .

Proof of Theorem 1: As m̂i = p−1i , we have that ˜̀(m̃) = −`(p), where `(p) =∑n
i=1 log(pi). Using Lemma 3 in Berger and De La Riva Torres (2012), we have that

−2{˜̀(m̃∗, θN ) + `(p)} = (C̃
∗
p −C∗)>Σ̃

∗−1
(C̃
∗
p −C∗) + op(1), (17)

where C∗ is defined by (13) and

C̃
∗
p =

n∑
i=1

c̃∗i
pi
,

Σ̃
∗

= =

n∑
i=1

1

p2i
c̃∗i c̃
∗>
i =

(
Σ̂pp Σ̂pg

Σ̂
>
pg σ̂gg

)
;

where

Σ̂pp =
N2

n2

n∑
i=1

q◦2i =
N2

n2

n∑
i=1

ti =
N2

n2
,

Σ̂pg =
N

n

n∑
i=1

q◦i q
•
i gi(θN )p−1i =

N

n
ς̂ 1/2 Ĝ(θN )RHC ,

σ̂gg =
n∑
i=1

q•2i
gi(θN )2

p2i
= ς̂

n∑
i=1

ti
gi(θN )2

p2i
·
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We also have that

C̃
∗
p −C∗ =

(
0, Ĝ(θN )RHC

)>
·

Using ˜̀(m̃) = −`(p), (14) and (17), we have

r̃(θN ) =
(

0, Ĝ(θN )RHC

)( Σ̂pp Σ̂pg

Σ̂
>
pg σ̂gg

)−1(
0

Ĝ(θN )RHC

)
+ op(1),

=
Ĝ(θN )2RHC

σ̂gg − Σ̂
>
pgΣ̂

−1
pp Σ̂pg

+ op(1)· (18)

It can be shown that σ̂gg − Σ̂
>
pgΣ̂

−1
pp Σ̂pg = v̂ar[Ĝ(θN )RHC ]. Thus, (18) implies (15). The

theorem follows.

�

Ohlsson (1986) proposed regularity conditions under which the Rao et al. (1962) es-
timator Ĝ(θN )RHC is asymptotically normal. Assuming that these conditions holds for
Ĝ(θN )RHC , Theorem 1 implies that r̃(θN ) follows asymptotically a chi-squared distribu-
tion with one degree of freedom, by the Slutsky’s lemma.

4.2 With auxiliary information

For point estimation, we use ci = (z>i , fi(xi,ϑN )>)> and C = (n>,0>)> (see § 3.2). In
this case, for ˜̀(m̃), we use

c̃i =
(
q◦i pi , q

•
i fi(xi,ϑN )>

)>
,

C̃ =

(
n∑
i=1

q◦i pi ,
n∑
i=1

(q•i − 1)fi(xi,ϑN )>p−1i

)>
,

For ˜̀(m̃∗, θ), we use

c̃∗i =
(
c̃>i , q

•
i gi(θ)

)>
,

C̃
∗

=

(
C̃
>
,

n∑
i=1

(q•i − 1)ği(θ)

)>
·

It can be shown that r̃(θN ) defined by (14) still follows asymptotically a chi-squared dis-
tribution with one degree of freedom.

4.3 Confidence intervals and hypotheses testing

Empirical likelihood confidence intervals rely on the asymptotic distribution of the pivot
r̃(θN ). In the previous §, we show that r̃(θN ) follows asymptotically a chi-squared dis-
tribution. Thus, the α level empirical likelihood confidence interval (e.g. Wilks, 1938;
Hudson, 1971) for the population parameter θN is given by{

θ : r̂(θ) ≤ χ2
1(α)

}
; (19)

where χ2
1(α) is the upper α-quantile of the chi-squared distribution with one degree of

freedom. Note that r̂(θ) is a convex non-symmetric function with a minimum when θ is the
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maximum empirical likelihood estimate θ̂. This interval can be found using any root search
method. In the simulation study, we used the Brent-Dekker method (Dekker, 1969, Brent,
1973, Ch. 4). This involves calculating r̂(θ) for several values of θ. Note that (19) will
give a confidence intervals with the right coverage asymptotically even when θ̂ is biased.
This confidence interval will take into account of the auxiliary variable when the penalised
empirical log-likelihood ratio function is computed as described in § 4.2.

The p-value of the test H0 : θN = θ0 is given by p-value =
∫∞
r̃(θ0)

f(x)dx, where f(x)
is the density of the chi-squared distribution with r degrees of freedom. This p-value is
obtained from the statistical table of a chi-squared distribution.

5. Simulation study

In this §, we compare the Monte-Carlo performance of the proposed empirical likelihood
95% confidence interval with the linearisation (e.g. Deville, 1999), the pseudo empirical
likelihood (Wu and Rao, 2006), the rescaled bootstrap (Rao et al., 1992) and the Woodruff
(1952) confidence intervals (in § 5.2). The bootstrap confidence intervals are based upon the
quantiles of the set of 1000 bootstrap values (the histogram approach). The parameters of
interest considered are population means (in § 5.1) and population quantiles (in § 5.2). The
Rao et al. (1962) variance estimator is used for standard confidence intervals (linearisation)
and for the pseudo empirical likelihood approaches. All the simulation studies are based on
10, 000 RHC samples of size n = 500 and the quantities Ni are given by Ni = N/n. We
used the statistical software R (R Development Core Team, 2012). The algorithms were
coded in C.

5.1 Estimation of means with auxiliary variables

Consider that the parameter of interest θN is the population mean; that is, gi(θ) = yi − θ.
Suppose we have a vector xi = (1, xi)

> of auxiliary variables for each unit i. Let µx be the
population mean of the variable xi. We suppose that the population means ϑN = (1, µx)>

of these variables are known. In this case, fi(xi,ϑN ) = xi−ϑN . The standard confidence
interval is based on the standard regression estimator defined by (6.4.2) in Särndal et al.
(1992), with the pi playing the role of first-order inclusion probabilities. The linearisation
variance is used for the regression estimator. Note that the regression estimator, the pseudo
empirical likelihood point estimators (pseudo-EL1 & pseudo-EL2) and the empirical likeli-
hood point estimator are different.

We generate 80% of the values of yi from a normal distribution with mean 8 and vari-
ance 1. The remaining 20% are outlying values generated from yi = 3 + ai + βxi + ϕ ei,
where ϕ = 1.5. The variable ai and xi (i ∈ U ) are generated from independent expo-
nential distributions with rate parameters equal to 0.5. The Mi are proportional to ai + 2.
The values yi, xi and ai generated are treated as fixed. Populations of size N = 2000 and
N = 25, 000 are generated.

The simulation results are given in Table 1. The values not within brackets are for the
populations of size N = 2000 (large sampling fractions). The values within brackets are
for the populations of size N = 25, 000 (small sampling fractions). The ratio of average
length is the average length of the confidence intervals divided by the average length of
the confidence intervals based on linearisation. We measure the stability of the confidence
intervals using the standard deviation of the lengths. The standard deviations are divided
by the standard deviation of lengths of the linearisation confidence intervals. The column
“Ratio MSE” gives the relative efficiency given by the ratio between the mean squared error
(MSE) of the point estimator and the regression point estimator.
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Table 1: Coverages of the 95% confidence intervals for the mean. n = 500. The values not within
brackets for N = 2000 (large sampling fractions). The values within brackets for N = 25, 000
(small sampling fractions). The symbol ∗ or ∗∗ indicate that the coverages (or tail error rates)
significantly different from 95% (or 2.5%): ∗ → 0.01 < p-value ≤ 0.05, ∗∗ → p-value ≤ 0.01.

Approaches Overall Lower tail Upper tail Ratio Ratio SD Ratio MSE
Cov. % err. rates % err. rates % Av. Length Length (Rel. Eff.)

Linear. (Reg. Est.)95.1 (94.6) 2.6 (2.8) 2.3 (2.6) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
Bootstrap 94.8 (93.9**) 0.8** (1.1**)4.4** (5.0**)1.05 (1.01) 0.93 (1.01) 1.00 (1.00)
Pseudo-EL1 94.6 (95.4) 2.4 (2.7) 3.0** (1.9**)0.51 (0.52) 0.45 (0.41) 0.50 (0.47)
Pseudo-EL2 93.1** (93.2**) 3.3** (4.0**)3.5** (2.8*) 0.49 (0.47) 0.40 (0.37) 0.49 (0.47)
Emp. Lik. 94.8 (94.7) 2.4 (2.8*) 2.8 (2.5) 0.50 (0.49) 0.37 (0.37) 0.49 (0.47)

Table 2: Coverages for quantiles Yq (q = 5% and 25%). n = 500. The values not within brackets
for N = 2000 (large sampling fractions). The values within brackets for N = 25, 000 (small
sampling fractions). The symbol ∗ or ∗∗ indicate that the coverages (or tail error rates) significantly
different from 95% (or 2.5%): ∗ → 0.01 < p-value ≤ 0.05, ∗∗ → p-value ≤ 0.01.

ρ(y, π) Approaches Overall Lower tail Upper tail Ratio Av. Ratio SD
Cov. % err. rates % err. rates % Length Length

Y0.05 0.8 Linear. 99.3** (98.0**) 0.7** (1.8**) 0.0** (0.2**) 1.0 (1.0) 1.0 (1.0)
Bootstrap 97.0** (95.1) 1.5** (2.3) 1.5** (2.6) 0.8 (0.8) 3.0 (2.2)
Woodruff 95.1 (95.0) 2.1* (2.0**) 2.8 (3.0**) 0.7 (0.8) 2.8 (2.2)
Emp. Lik. 94.5* (94.7) 2.0** (2.1*) 3.6** (3.2**) 0.7 (0.8) 2.8 (2.2)

0.3 Linear. 98.9** (98.8**) 1.1** (1.1**) 0.0** (0.0**) 1.0 (1.0) 1.0 (1.0)
Bootstrap 97.1** (95.3) 1.5** (2.2*) 1.5** (2.5) 0.7 (0.7) 2.6 (2.2)
Woodruff 95.3 (95.4) 2.0** (1.7**) 2.8 (2.9**) 0.6 (0.7) 2.6 (2.2)
Emp. Lik. 94.9 (94.8) 1.8** (2.0**) 3.2** (3.1**) 0.6 (0.7) 2.5 (2.2)

Y0.25 0.8 Linear. 94.2** (95.1) 2.4 (2.1*) 3.5** (2.7) 1.0 (1.0) 1.0 (1.0)
Bootstrap 97.1** (95.0) 1.4** (2.2) 1.4** (2.7) 1.1 (1.0) 3.6 (2.3)
Woodruff 95.1 (94.9) 2.6 (2.5) 2.3 (2.6) 1.0 (1.0) 3.4 (2.2)
Emp. Lik. 95.1 (95.0) 2.3 (2.2) 2.6 (2.8) 1.0 (1.0) 3.4 (2.2)

0.3 Linear. 97.4** (97.2**) 1.8** (1.4**) 0.8** (1.4**) 1.0 (1.0) 1.0 (1.0)
Bootstrap 97.2** (95.4) 1.2** (2.3) 1.5** (2.4) 1.0 (0.9) 3.3 (2.5)
Woodruff 95.1 (95.3) 2.3 (2.5) 2.6 (2.2*) 0.9 (0.9) 3.1 (2.5)
Emp. Lik. 94.9 (95.3) 2.0** (2.3) 3.1** (2.5) 0.9 (0.9) 3.1 (2.4)

The proposed empirical likelihood approach gives coverages which are not significantly
different from 95%. Linearisation has also good coverages, but the proposed empirical like-
lihood approach gives shorter and more stable confidence intervals. From the last column,
we notice that the MSE of the empirical likelihood point estimator is about 50% lower than
the MSE of the regression estimator. The pseudo empirical likelihood estimators have sim-
ilar MSE. With small sampling fraction (N = 25, 000), the proposed empirical likelihood
approach and the pseudo-EL1 approach give similar coverages, but the proposed confidence
intervals are slightly shorter and more stable. The bootstrap and the pseudo-EL2 approaches
give coverages and tail error rates which may be significantly different from 95% and 2.5%.

5.2 Estimation of quantiles

We consider the 5% and 25% quantiles: Y0.05 and Y0.25. We use the gi(θ) proposed by
Berger and De La Riva Torres (2012). The standard confidence interval is based on the
linearised variance proposed by Deville (1999).

We generated several skewed population data using yi = 3 + ai + ϕ ei (Wu and Rao,

JSM 2014 - Survey Research Methods Section

2060



2006); where the ai follows an exponential distribution with rate parameters equal to 1 and
ei ∼ χ2

1 − 1. The Mi are proportional to ai + 2. Populations of size N = 2000 and
N = 25000 are generated. The parameter ϕ is used to specify the correlation ρ(y,M)
between the values yi and Mi: ρ(y,M) = 0.8 with ϕ = 0.5; ρ(y,M) = 0.3 with ϕ = 2.3.

The coverages and tail error rates of the linearised confidence intervals are significantly
different from 95% and 2.5% respectively, except with Y0.25,N = 25, 000 and a correlation
of 0.8. The rescaled bootstrap gives acceptable coverages for small sampling fractions.
However, for large sampling fraction, the coverages and tail error rates are significantly
different from 95% and 2.5% respectively. This is not surprising, as rescaled bootstrap is
design for small sampling fractions. The bootstrap confidence intervals have more unstable
confidence intervals (see last column of Table 2) because of re-sampling. Linearisation
gives the most stable confidence intervals, but with coverages significantly higher than
95%.

The Woodruff (1952) confidence intervals gives good coverages and tail error rates
in most situations. We notice that the tail error rates of Y0.05 are significantly different
from 2.5%. We observe similar coverages and average lengths with the proposed empirical
likelihood approach and the Woodruff (1952) approach.

6. Conclusion and discussion

Standard confidence intervals based on the central limit theorem and pseudo empirical like-
lihood confidence intervals require variance estimates which may involve linearisation or
re-sampling. Even if the parameter of interest is not linear, the proposed confidence inter-
val does not rely on normality of the point estimator, variance estimates, linearisation and
re-sampling. Our simulation study shows that the coverage of standard confidence intervals
can be poor with skewed variables.

The proposed approach is simpler to implement and less computationally intensive
than bootstrap, especially with calibration weights. Our simulations study also shows that
bootstrap confidence intervals may not have the right coverage and may be more unstable.

There is an analogy between the proposed empirical likelihood approach and calibra-
tion (e.g. Huang and Fuller, 1978; Deville and Särndal, 1992), as the function (3) can be
viewed as a calibration objective function. The objective functions used for calibration are
disconnected from mainstream likelihood statistical theory. However, the proposed objec-
tive function (3) is related to the concept of likelihood. The advantage of the proposed
empirical likelihood approach over standard calibration is the fact that (3) can be used
to make inference and construct confidence intervals. Furthermore, empirical likelihood
weights are always calibrated and positive.
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