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Abstract 
With many surveys now embracing adaptive survey design methods, new challenges 
have arisen in applying optimization methods to meet the requirement to produce 
automated real-time decisions to adapt survey design strategies across sample cases 
simultaneously.  Chesnut (2013) describes a mode-switching process for switching 
sample cases from Internet to mail using integer programming with the objective to 
maximize timeliness while controlling cost, response, and sample representativity. 
Building on this work, this paper presents the application of an integer programming 
solution using the OPTMODEL procedure in SAS® to automate the mode-switch 
decision process. We discuss the use of indicator variables to enable linear 
representations of our objective function for maximizing timeliness and the 
constraints for cost, response, and sample representativity in the integer programming 
environment. While this allows for a complete representation of the optimization 
problem at hand, the numerous constraints pose a challenge for computing a solution. 
We discuss alternative linear representations of our constraints using linear 
approximation methods to enable computed solutions.  
 
 
Key Words: mode switching, adaptive survey design, optimization, integer 
programming 
 

1. Introduction 
 
The basic concept of adaptive survey design entails tailoring the survey design to 
characteristics of the respondent informed by auxiliary frame data or paradata such 
that trade-offs between survey costs and errors are optimal.  Costs could include both 
tangible and intangible costs such as time. A straightforward approach for 
determining optimality would be to review historical data and identify time 
dependent thresholds (the unit of time being days, contacts, etc.) where group-
specific tailored survey design strategies would clearly reduce cost and/or error. 
Using this information, survey managers can establish decision rules prior to data 
collection that determine the allocation of survey design strategies among sample 
cases prior to and/or during data collection.  As we increase the number of indicators 
for cost and error, and attempt to address competing priorities such as reliability and 
nonresponse bias, the optimization problem becomes more complex. In this case, the 
point of optimality may become less exact or even unknown.  The optimization step 
for the adaptive design process now becomes an execution of “best practices” or a 
“rule of thumb” approach. As a result, the core component of the adaptive design 
concept of evaluating cost-error trade-offs is essentially omitted.  To remedy this, a 
mathematical modelling approach may be more effective in accounting for the 
increasing complexities encountered in an adaptive design problem and provide better 
solutions or approximations of optimality. Of course, sufficiently representing the 
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complexity of the optimization problem may lead to an intractable model also 
creating a challenge in determining optimality.  To illustrate an applied example of 
using a mathematical modelling approach, Chesnut (2013) developed and simulated 
an Internet-to-mail mode switch process using data from the 2011 American 
Community Survey (ACS) Internet tests. Focusing on the optimization component of 
this framework, we provide further detail on the integer programming model used to 
solve the problem of maximizing timeliness while constraining for indicators of cost 
and error. 
 

2. Methodology 
 
2.1 Predicting Internet Response 
 
The larger framework for developing an Internet to mail mode switch process as 
described in Chesnut (2013) involved using administrative data sources linked to 
sample cases from the 2011 ACS Internet Tests to predict daily Internet response 
propensities at the household-level using a discrete time hazards model. Census 
researchers designed the 2011 Internet tests to test the feasibility of offering an 
Internet mode of data collection in the ACS (Matthews, et al. 2012 and Tancreto, et 
al. 2012). Using the daily propensities, we stratified the sample cases into mode 
switch groups. The eligible mode switch days covered a two-week period beginning 
with the initial mailout of paper questionnaires for control cases not offered the 
Internet option and ending with the mailout of a paper questionnaire to 
nonrespondents.  
 
2.2 Integer Programming 
 
Schouten et al. (2011) construct a mathematical framework to describe adaptive 
survey designs.  They introduce the concept of formulating an optimization problem 
to enable the decision process for allocating sample cases to survey design strategies 
in a static manner (prior to data collection) or dynamically (during data collection). 
The focus of their mathematical model was to create an objective function that 
maximizes data quality with cost as a constraint or vice versa. In this same spirit, we 
control for cost and data quality, however we focus on timeliness as our objective. 
 
In our application, we need to determine the optimal day to switch the members of a 
given mode switch group such that we minimize the average time to nonresponse 
follow up while meeting constraints on cost and error.  Therefore, we will need to 
model our objective and constraints as a function of the group mode switch days, 
restricted to the integer values 0,1,…,13. Due to the discrete nature of our decision 
variables, we will need to model our decision problem using an integer linear 
programming methodology. Integer programming problems are combinatorial 
problems and thus are more difficult to solve than traditional linear programming 
problems (Ignizio and Cavalier, 1994). 
 
Our integer model includes a fixed cost constraint related to mailing a nonresponse 
followup questionnaire and two error constraints related to bias and level of response. 
Our cost constraint assumes fixed costs associated with printing, mailing, postage, 
and data capture. As a control for unit nonresponse bias, we use a proxy measure 
called the sample representativity indicator (R-Indicator) as an indirect measure of 
the level of contrast between respondents and nonrespondents (cf. Schouten et al. 
2009). Finally, we include constraints that preserve the period of maximum response 
within each group with the exception of any group where its maximum daily Internet 
response propensity fails to exceed an assumed threshold. We allowed the solver to 
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switch any such low-Internet-propensity group at the beginning of the two-week 
period of eligible mode switch days (i.e., on day zero). 
 
2.3 Specifying the Integer Model 
 
Given our available parameters, our goal was to find a solution set of group-based 
mode switch days that minimize the average group Internet nonresponse follow-up 
time as defined by  
 
തݕ ൌ ሺ∑ ݊௚ܯ௚ሻ

ீ
௚ୀଵ ∑ ݊௚

ீ
௚ୀଵൗ  where ܯ௚ is the mode switch day and ݊௚ is the sample 

size for group ݃, ܯ௚ ∈ ሼ0,1, … ,13ሽ , constrained by  

 

(i) ܭ∑ ሺ1 െ ∑ ௚݂ሺݐሻሻ݊௚
ெ೒
௧ୀଵ

ீ
௚ୀଵ ൑ ௢ܥ ൅  is the cost per Internet ܭ where ,ܥ

nonresponse attributed to mail follow-up, ௚݂ሺݐሻ is the predicted response 
propensity for group ݃ at time ܥ ,ݐ௢ is the baseline mail follow-up cost if we 
were to wait until day 13 to follow-up with all Internet nonrespondents, and 
 is an accepted cost increase ܥ
 

(ii) ܯ௚ ൒  ௚∗൯ is the local maximum for the probability densityݐ௚∗ where ௚݂൫ݐ

function for group ݃ at day ݐ௚∗ , i.e., ௚݂൫ݐ௚∗൯ ൒ ௚݂ሺݐሻ	∀	ݐ ് ∗௚ݐ ݐ , ∈ ሼ1, … ,13ሽ. 
Note that we relax the constraint, letting ܯ௚ ൒ 0, in the case where the local 

maximum ௚݂൫ݐ௚∗൯ fails to exceed a lower bound cutoff ௅݂஻_௖௨௧௢௙௙, i.e., 

௚݂൫ݐ௚∗൯ ൑ ௅݂஻_௖௨௧௢௙௙ (e.g, ௅݂஻_௖௨௧௢௙௙ ൌ 	0.01ሻ.  
	

(iii) ෠ܴ ൒ ෠ܴ௢ where ෠ܴ௢ is the level of sample representativity we would achieve if 
we were to wait until day 13 to follow-up with all Internet nonrespondents.            

෠ܴ ൌ 1 െ 2 መܵሺߩറሻ ൌ 1 െ 2 ቂ
ଵ

ே෡ିଵ
ቀ∑ ො௚ߩ௚൫ݓ െ ො̅൯ߩ

ଶீ
௚ୀଵ ቁቃ

భ
మ  

where ߩො௚ ൌ ∑ ௚݂ሺݐሻ
ெ೒
௧ୀଵ ො̅ߩ , ൌ ൫∑ ො௚ߩ௚ݓ

ீ
௚ୀଵ ൯ ∑ ௚ݓ

ீ
௚ୀଵൗ ௚ݓ , ൌ ∑ ௜ݓ

௡೒
௜ୀଵ ,  

෡ܰ ൌ ∑ ௚ݓ
ீ
௚ୀଵ , and ݓ௜ is the sample design weight. 

 
The mode switch days across groups ൛ܯ௚ൟ are the decision variables in our objective 
function.  Constraint (i) and (iii) include ܯ௚ as part of the summation index for 
calculating the cumulative sum of daily Internet response propensities for a given 
group.  To represent the summation operation as a linear function we define ܯ௚ as a 
summation of dummy indicator variables. 
 

Let ݕ௚௧ ൌ ൜
ݐ	݂݅	1 ൑ ௚ܯ

݁ݏ݅ݓݎ݄݁ݐ݋	0
 

 
Thus, our objective function becomes 
 
തݕ ൌ ሺ∑ ݊௚ܯ௚ሻ

ீ
௚ୀଵ ∑ ݊௚

ீ
௚ୀଵൗ ൌ ∑ ∑ ௚௧݊௚ݕ

ଵଷ
௧ୀଵ

ீ
௚ୀଵ ∑ ݊௚

ீ
௚ୀଵൗ   

 
To preserve the properties of the summation index, we need to restrict 
൫ݕ௚ଵ, ,௚ଶݕ … ,  ௚ଵଷ൯ such thatݕ

൫ݕ௚ଵ, ,௚ଶݕ … , ௚ଵଷ൯ݕ ∈ ሼሺ0,0, … ,0ሻ, ሺ1,0, … ,0ሻ, ሺ1,1, … ,0ሻ, … , ሺ1,1, … ,1ሻሽ.  Therefore, 
for the ݃௧௛ group we define the following constraints. 
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0 ൑ ௚ଵݕ ൑ 1 
0 ൑ ௚ଵݕ12 െ ∑ ௚௧ݕ

ଵଷ
௧ୀଶ ൑ 12  

0 ൑ ௚ଶݕ11 െ ∑ ௚௧ݕ
ଵଷ
௧ୀଷ ൑ 11  

																	⋮  
0 ൑ ௚ଵଵݕ2 െ ∑ ௚௧ݕ

ଵଷ
௧ୀଵଶ ൑ 2  

0 ൑ ௚ଵଶݕ െ ௚ଵଷݕ ൑ 1 
 
In addition, we can write the predicted cost in constraint (i) as follows. 
 

∑ܭ ሺ1 െ ∑ ௚݂ሺݐሻሻ݊௚
ெ೒
௧ୀଵ

ீ
௚ୀଵ ൌ ∑ܭ ሺ1 െ ∑ ௚௧ݕ ௚݂ሺݐሻሻ݊௚

ଵଷ
௧ୀଵ

ீ
௚ୀଵ  ൑ ௢ܥ ൅   ܥ

 
Furthermore, we can write the requirement to maintain the period of predicted 
maximum response in constraint (ii) as follows. 
 
∑ ௚௧ݕ
ଵଷ
௧ୀଵ ൒  .௚∗൯ is the local maximumݐ௚∗ where ௚݂൫ݐ

 
In order to include the nonlinear R-indicator constraint (iii) in our integer 
programming model, we need to find a way to represent it as a linear constraint.  Note 
that we can re-write (iii) as the following. 

 ෠ܴ ൌ 1 െ 2 ቂ
ଵ

ே෡ିଵ
∙ ቀ∑ ො௚ߩ௚൫ݓ െ ො̅൯ߩ

ଶீ
௚ୀଵ ቁቃ

భ
మ ൒ ෠ܴ௢ 

⇔∑ ො݃ߩ݃ݓ
2 െ ෡ܰߩොത

2
൑ܩ

݃ൌ1 ሺ෡ܰ െ 1ሻሺ1 െ ෡ܴ݋ሻ2 4⁄   

⇔ ∑ ො௚ߩ௚ݓ
ଶ െ ෡ܰߩො̅ଶ ൑ீ

௚ୀଵ ܳ∗  where ܳ∗ ൌ ሺ෡ܰ െ 1ሻሺ1 െ ෡ܴ݋ሻ2 4⁄   (1) 
 
We have simplified ෠ܴ such that we have reduced the nonlinear nature of ෠ܴ to two 
nonlinear components ߩො௚

ଶ and ߩො̅ଶ. We will need to represent these two nonlinear 
terms as linear functions of our decision variables.  Note the following. 
 

෡ܰߩො̅ଶ ൌ ∑ ௚ݓ
ீ
௚ୀଵ ቂቀ∑ ௚ݓ ∑ ௚݂ሺݐሻ

ெ೒
௧ୀଵ

ீ
௚ୀଵ ቁ ∑ ௚ݓ

ீ
௚ୀଵൗ ቃ

ଶ
ൌ

ଵ

ே෡
ሺݓଵߩොଵ ൅ ⋯൅    ොீሻଶߩீݓ

									ൌ
ଵ

ே෡
൫ݓଵଶߩොଵ

ଶ ൅ ⋯൅ ොீߩଶீݓ
ଶ ൅ ොଶߩොଵߩଶݓଵݓ2 ൅ ⋯൅ ොீߩොீିଵߩீݓଵିீݓ2 ൅

ොଷߩොଵߩଷݓଵݓ2																			 ൅ ⋯൅   ොீ൯ߩොଵߩீݓଵݓ2

									ൌ
ଵ

ே෡
൫∑ ො௚ߩ௚ଶݓ

ଶ ൅ ∑ ො௛௚வ௛ߩො௚ߩ௛ݓ௚ݓ2
ீ
௚ୀଵ ൯     (2)  

 
From (1) and (2), we observe that the nonlinear nature of the R-indicator can be 
further isolated to the square terms ߩො௚

ଶ and the product terms ߩො௚ߩො௛	, ݃ ൐ ݄. 
 
Note that we can re-write the ߩො௚

ଶ terms as 

ො௚ߩ
ଶ ൌ ቀ∑ ௚݂ሺݐሻ

ெ೒
௧ୀଵ ቁ

ଶ
ൌ ൫∑ ௚௧ݕ ௚݂ሺݐሻ

ଵଷ
௧ୀଵ ൯

ଶ
  

								ൌ ൬ݕ௚ଵ ௚݂ሺ1ሻ ൅ ⋯൅ ௚ெ೒ݕ ௚݂൫ܯ௚൯ ൅ ⋯൅ ௚ଵଷݕ ௚݂ሺ13ሻ൰
ଶ
  

								ൌ ∑ ௚௧ଶݕ ௚݂ሺݐሻଶ ൅ ∑ ௚௨ݕ௚௧ݕ2 ௚݂ሺݐሻ ௚݂ሺݑሻ௧வ௨
ଵଷ
௧ୀଵ   

 
Note that because of the constraints imposed to preserve the properties of the 
summation index 
൫ݕ௚ଵ, ,௚ଶݕ … , ௚ଵଷ൯ݕ ∈ ሼሺ0,0, … ,0ሻ, ሺ1,0, … ,0ሻ, ሺ1,1, … ,0ሻ, … , ሺ1,1, … ,1ሻሽ, we have 
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௚௨ݕ௚௧ݕ ൌ ݐሺ	௚௧ݕ ൐ ௚௧ଶݕ ሻ andݑ ൌ  ௚௧. Therefore, we reduce the second order andݕ

product terms to provide a linear representation of ߩො௚
ଶ. 

 
ො௚ߩ

ଶ ൌ ∑ ௚௧ݕ ௚݂ሺݐሻଶ ൅ ∑ 2௧வ௨ ௚௧ݕ ௚݂ሺݐሻ ௚݂ሺݑሻ
ଵଷ
௧ୀଵ      (3) 

 
For ݃ ൐ ݄ 

ො௛ߩො௚ߩ ൌ ቀ∑ ௚݂ሺݐሻ
ெ೒
௧ୀଵ ቁ ൫∑ ௛݂ሺݐሻ

ெ೓
௧ୀଵ ൯ ൌ ൫∑ ௚௧ݕ ௚݂ሺݐሻ

ଵଷ
௧ୀଵ ൯ሺ∑ ௛௧ݕ ௛݂ሺݐሻ

ଵଷ
௧ୀଵ ሻ  

											ൌ ൬ݕ௚ଵ ௚݂ሺ1ሻ ൅ ⋯൅ ௚ெ೒ݕ ௚݂൫ܯ௚൯ ൅ ⋯൅ ௚ଵଷݕ ௚݂ሺ13ሻ൰  

															ቀݕ௛ଵ ௛݂ሺ1ሻ ൅ ⋯൅ ௛ெ೓ݕ ௛݂ሺܯ௛ሻ ൅ ⋯൅ ௛ଵଷݕ ௛݂ሺ13ሻቁ  

											ൌ ∑ ∑ ௛௨ݕ௚௧ݕ ௚݂ሺݐሻ ௛݂ሺݑሻ
ଵଷ
௨ୀଵ

ଵଷ
௧ୀଵ   

  
Let us introduce the following indicator variables to substitute in for the ݕ௚௧ݕ௛௨ 
terms. 
 

௚௧௛௨ݖ ൌ ൜
௚௧ݕ	݂݅	1 ൌ ௛௨ݕ	݀݊ܽ	1 ൌ 1
																								݁ݏ݅ݓݎ݄݁ݐ݋	0

 

 
We include additional constraints that force ݖ௚௧௛௨ to take on the value of ݕ௚௧ݕ௛௨ 
 
௚௧௛௨ݖ ൑  ௚௧ݕ
௚௧௛௨ݖ ൑  ௛௨ݕ
௚௧௛௨ݖ ൒ ௚௧ݕ ൅ ௛௨ݕ െ 1 
 
Therefore, we have  
 
ො௛ߩො௚ߩ ൌ ∑ ∑ ௚௧௛௨ݖ ௚݂ሺݐሻ ௛݂ሺݑሻ

ଵଷ
௨ୀଵ

ଵଷ
௧ୀଵ       (4) 

 
Substituting in the linear representations of the nonlinear terms ߩො௚

ଶand ߩො௚ߩො௛ (݃ ൐ ݄) 
from (3) and (4), we can now re-write (1) as a linear function of our decision 
variables. 
 
∑ ො௚ߩ௚ݓ

ଶ െ ෡ܰߩො̅ଶீ
௚ୀଵ   

ൌ ∑ ∑௚൫ݓ ௚௧ݕ ௚݂ሺݐሻଶ ൅ ∑ 2௧வ௨ ௚௧ݕ ௚݂ሺݐሻ ௚݂ሺݑሻ
ଵଷ
௧ୀଵ ൯ீ

௚ୀଵ                             

				െ
ଵ

ே෡
൫∑ ∑௚ଶ൫ݓ ௚௧ݕ ௚݂ሺݐሻ ൅ ∑ 2௧வ௨ ௚௧ݕ ௚݂ሺݐሻ ௚݂ሺݑሻ

ଵଷ
௧ୀଵ ൯ ൅ீ

௚ୀଵ

													∑ ∑௛൫ݓ௚ݓ2 ∑ ௚௧௛௨ݖ ௚݂ሺݐሻ ௛݂ሺݑሻ
ଵଷ
௨ୀଵ

ଵଷ
௧ୀଵ ൯௚வ௛ ൯ ൑ ܳ∗   (5) 

 
Based on the 667 mode switch groups created from the Internet test sample and the 
defined constraints our optimization problem has 112,619,617 total constraints.  
Luenberger (2003) classifies linear programming problems with thousands of 
variables and constraints as large-scale problems requiring sophisticated code and 
mainframe computing resources. 
 
To compute a solution for the optimization model we have specified above, we use 
the OPTMODEL procedure in the SAS Version 9.2 (SAS Institute Inc., 2008).  The 
OPTMODEL procedure uses the OPTMODEL modeling language and serves as a 
point of access to several mathematical programming solvers in SAS. Given the 
binary nature of the variables used in our model, the OPTMODEL procedure applies 
the mixed integer linear programming solver to compute an exact solution for our 
model. Running our specified model in SAS, we exceed the available memory 
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resources on a Linux server with 23 six-core CPUs and 283 GB of RAM. Given that 
the computation required to find an exact solution for our optimization model exceeds 
the capabilities of the available technology, we must settle for an approximate 
solution. 
 
2.3 Approximating the R-indicator constraint 
 
To find an effective method for computing an approximate solution, we focus on the 
nonlinear components of our R-indicator constraint – specifically ߩො̅ଶ. The indicator 
variables introduced to represent this nonlinear term  represent the bulk of the total 
count of constraints. Pursuing a simple work-around, we explore the use of simple 
linear approximation techniques to represent the nonlinear components of this 
constraint as a means of reducing the total number of constraints – specifically 
eliminating the addition of the indicator variable constraints. Some basic linear 
approximation methods include linear interpolation, Taylor series approximation, 
piecewise linear approximation, and ordinary least squares (OLS) regression. 
Reviewing these different methods, the piecewise linear approximation would 
provide the best approximations for our nonlinear function, however this is not trivial 
to implement for multivariate nonseparable functions as in our case. Linear 
interpolation and first order Taylor series approximations do not provide uniformly 
good approximations across the range of values for our function, but this is not the 
case for OLS regression. 
 
Including this additional approximation step essentially converts our optimization 
problem into a multi-level or hierarchical optimization problem. For example, OLS 
regression involves minimizing the sum of squares of residuals (the differences 
between the actual and predicted values).   
 
For the set S of all possible mode switch strategy implementations, we use OLS 
regression to approximate ߩො̅௦ଶ by regressing ߩො̅௦ଶ on ߩො̅௦.  In other words, we fit the 

regression line ݕ௦ ൌ ଴ߚ ൅ ො̅௦ଶߩଵ minimize ∑൫ߚ ଴ andߚ ො̅௦ such thatߩଵߚ െ ௦൯ݕ
ଶ
. 

 
Figure 1 shows the plot of ߩො̅௦ଶ and our linear approximation of this function.  The 
curve representing ߩො̅௦ଶ appears to be gradual enough that a linear approximation of 
these values is reasonable. As expected, the regression approach performs well at 
minimizing the differences between the estimated and actual values of ߩො̅௦ଶ (the 
maximum residual value for the regression approximation was  0.0018 and the 
average value was 1.8 x 10-18).  
 
Satisfied by these results, we proceed with the regression-based estimates of ߩො̅௦ଶ to 
substitute into the R-indicator constraint. We re-write the R-indicator constraint in (1) 
as follows.  
 
∑ ො௚ߩ௚ݓ

ଶ െ ෡ܰߩො̅ଶீ
௚ୀଵ ൌ ∑ ො௚ߩ௚ݓ

ଶீ
௚ୀଵ െ ෡ܰ൫ߚ଴ ൅   ො̅൯ߩଵߚ

ൌ ∑ ∑௚൫ݓ ௚௧ݕ ௚݂ሺݐሻଶ ൅ ∑ 2௧வ௨ ௚௨ݕ௚௧ݕ ௚݂ሺݐሻ ௚݂ሺݑሻ
ଵଷ
௧ୀଵ ൯ீ

௚ୀଵ   

												െ∑ ௚ݓ
ீ
௚ୀଵ ൬ߚ଴ ൅ ଵߚ

∑ ∑ ௪೒௬೒೟௙೒ሺ௧ሻ
భయ
೟సభ

ಸ
೒సభ

∑ ௪೒
ಸ
೒సభ

൰ ൑ ܳ∗   

 
With our linear approximation of constraint (iii), we now have reduced the number of 
constraints from 112,619,617 to 9,340.  While we still consider this a large-scale 
optimization problem, we now have a more manageable model. 
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3. Results 
 
3.1 Simulating the Mode Switch Process 
 
Given that we were not able to find an exact solution for optimality that constrains 
the R-indicator, we want to examine whether the approximation does an adequate job 
in controlling the sample representativity such that we do not drop substantially 
below our established baseline level. To serve as a benchmark for comparison, we 
first simulate our mode switch process without implementing the sample 
representativity constraint and review the outcomes for the change in R-indicator 
values relative to our baseline. Figure 2 plots the changes in sample representativity 
relative to our baseline, ( ෠ܴ െ ෠ܴ௢ሻ, by the achieved timeliness objective due to mode 
switching. The minimized average reduced time to nonresponse follow up (ݕത) is 
subtracted from the 13 day interval to derive the x-axis values. Each line plot 
represents a different assumed level of control for relaxing the constraint on 
preserving a group’s period of maximum response. In addition, each data point 
moving from left to right on a given line plot represent a one percent controlled 
increase in the cost constraint (i), (1 to 15 percent). We observe that as we progress 
towards more aggressive mode switching strategies to improve timeliness (i.e., 
timelier, but more costly), our sample representativity suffers initially. Then 
depending on our assumptions on when we relax the threshold for preserving the 
period of maximum response (0.000 to 0.025), the representativity begins to improve 
(7.5 to 10.5 days for the range of thresholds) to a point where the R-indicator value 
exceeds that of our baseline value.  Clearly, this display of our proxy indicator of the 
contrast between respondents and nonrespondents at this initial phase of data 
collection indicates that the contrast is out of control. Note that the multi-mode 
survey design may compensate for any loss of representativity initially in the later 
modes of data collection. However, if we could control this outcome earlier in the 

Figure 1.  Linear Approximations of ࣋ෝഥ૛ Using Ordinary Least Squares Regression 
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data collection process we may alleviate some of the burden and expense for the later 
modes. 

 
3.2 Implementing the R-indicator Constraint 
 
Next, we simulate our mode-switching process including our approximated R-
indicator constraint, and examine the outcome in R-indicator values relative to the 
baseline. Compared to the line plots in Figure 2, Figure 3 reveals a more controlled 
level of R-indicator values relative to the baseline. However starting around a 6-day 
improvement in timeliness, we notice a slight departure from our baseline and then a 
recovery shortly thereafter.  This departure appears to be more sustained for the more 
liberal thresholds for relaxing the group maximum response constraint (ii). The 
largest decline relative to the baseline is a value of 0.02 representing only a 2.5 
precent decline in sample representativity. Based on these results, we conclude that 
our solution, while not exact, is well within acceptable tolerances for controlling the 
level of the R-indicator measure of contrast between respondents and 
nonrespondents. 
 
Implementing a lower bound constraint for our R-indicator has allowed the mode 
switching strategy allocations to produce R-indicator values that approximately 
follow or exceed the baseline.  In Figure 3 we notice that for the more aggressive 
strategy allocations for improving timeliness the R-indicator dramatically increases 
relative to the baseline.  Given the proxy nature of the R-indicator to measure 
response bias, we are not entirely confident in using a mode switch allocation that 
results in extreme swings in the values of this measure. As a result, we implement a 
more conservative approach, by changing our R-indicator constraint such that we 
maintain the baseline level across our range of assumption for simulating the mode 
switch process. Thus, we rewrite constraint (iii) as an equality constraint such that 
෠ܴ ൌ ෠ܴ௢. 
 

Figure 2.  The Mode Switching R-indicator Relative to the Baseline by the Average 
Days Reduced (without the R-indicator Constraint) 
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From Figure 4, we observe the results of our mode switch process with the equality 
constraint implemented. Clearly, we have a much more controlled outcome in the 
R-indicator relative to the baseline both bounded from below and above.  In other 
words, we now are approximately maintaining the same level of contrast between 
respondents and nonrespondent across our range of assumptions.  The downside to 

Figure 4.  The Mode Switching R-indicator Relative to the Baseline by the Average Days 
Reduced (with the Equality R-indicator Constraint) 

Figure 3.  The Mode Switching R-indicator Relative to the Baseline by the Average 
Days Reduced (with the Lower Bound R-indicator Constraint)  
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implementing this constraint is that we have increased the required processing time 
by 127 percent as a result of SAS determining a reduced feasible region for our 
solution set. 
 

4. Conclusion 
 

Through our use of integer programming and the OPTMODEL procedure in the SAS 
software, we were able to specify a mathematical model for mode switching sample 
cases from Internet to mail and simulate the mode switch process using the 2011 ACS 
April Internet Test data. An added complexity to our model included a nonlinear 
constraint that controlled for the level of sample representativity using the R-indicator 
measure. This constraint posed a challenge in our attempt to specify this constraint as 
a linear function of the decision variables. However, by extensive use of indicator 
variables, we were able to linearize this constraint. While we were able to specify our 
model to provide an exact solution using this technique, we were not able to compute 
a solution even with capable computing resources given the intractable number of 
constraints. As a result, we used a regression-based linear approximation method to 
approximate the nonlinear constraint to enable a computed solution for meeting the 
objective of improved timeliness while controlling for cost and error.  
 
Building on the application presented here for mode switching in the self-response 
modes of data collection, we need to develop a more comprehensive solution and 
operationalize the concept. For example, we need to assess more accurately and 
model all costs (tangible and intangible) impacted by mode switching in the self-
response modes. In addition, given a fixed period of time for the self-response mode 
of data collection, we need to also take into account the daily likelihood of mail 
response for a given household when tailoring the mode switch day such that we are 
maximizing response in the ‘cheaper modes’. To move beyond the proof of concept 
phase, we will need to conduct field tests to research how best to operationalize the 
mode switch process. 
 
By definition, the success of an adaptive survey design process is largely dependent 
on how effective the decision-making for tailoring survey strategies informed by 
auxiliary and paradata manages the trade-offs between cost and error. As a result, we 
view mathematical modelling as the core of the adaptive survey design process. 
While exact solutions are not always achievable, we demonstrated that approximate 
solutions can have acceptable results and will have known or approximate optimality 
rather than relying on methods such as best practices, threshold-based decision rules, 
or subjective decision-making. In addition, mathematical modelling can account for 
complex large-scale adaptive survey design problems. Furthermore, in a real-time 
environment, we can automate the modelling approach as opposed to solutions that 
introduce lag time by requiring human intervention such as constant monitoring of 
dashboards.  
 
In general, a more comprehensive adaptive design process than presented here for a 
multi-mode survey will likely be integer based, nonlinear in nature, and large scale 
thus posing model tractability issues. To arrive at a comprehensive solution to the 
adaptive survey design problem, survey methodologists may need to look to the 
operations research and industrial systems engineering disciplines for assistance.  
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