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Abstract
For practical convenience reasons, survey datasets are often disseminated to both internal and

external secondary users with imputed values in place of the missing observations that occur during
the data collection and processing stages. However, the released dataset generally leads to incorrect
analyses if standard complete-data methods are applied directly without taking into account the
imputation models. To alleviate this problem the survey statistician may, firstly, obtain some key
results in any manner that is considered appropriate, and, secondly, calibrate the disseminated data
so that these results can be reproduced by relevant standard complete-data procedures. In this paper,
we discuss an approach that allows us to control both the first- and second-order properties of
the imputed data and can be applied to complex surveys. We illustrate the implementation of the
proposed approach with a numerical example.

Key Words: Complex surveys, Missing data, Survey nonresponse, Reverse calibration, Secondary
data analysis, Hot deck imputation

1. Introduction

Survey organizations face frequently the problem of missing data due to nonresponse or
inconsistencies of particular item values. This problem affects the quality of the survey
data, generates an incomplete and more difficult data structure to analyze and also reduces
the sample sizes originally intended. An option for data dissemination for secondary use is
to complete the dataset by imputation, that is by applying a set of procedures to replacing
“suitably chosen” or estimated values for the missing or inconsistent information. The
use of imputation is a practical alternative to carrying out additional work to recontact
nonrespondents that is beyond the survey budget and time constraints, especially because
recontacts can not always be successful.

In this paper, we address the imputation perspective pointed by Sedransk (1985, p.
446) to allowing secondary data analysts to perform correct statistical analyses by apply-
ing simple tools available on standard statistical software. We propose an extension for
the reverse calibration approach (Chambers and Ren 2004), originally formulated in the
context of handling outliers in survey data. Their goal is to create an imputed dataset that
could allow secondary users to reproduce robust estimates of totals by applying simple es-
timation methods in the absence of outliers. It should be stressed that the robust estimates
are obtained by the data producer using appropriate statistical methods of estimation in the
presence of the outliers. Imputation is used as a device to produce a clean and complete
dataset in which the outlying observations are replaced by properly chosen values.

It is worth noting that, while much attention has traditionally been given to the public
data users, the need of internal reuses has grown in the recent years. Many statistical
offices are currently developing a corporate-wide data warehouse architecture, whereby the
statistical data across the different surveys and register sources are brought to a central
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database for future reuses. The ability for such internal secondary users to reproduce the
appropriate estimates and the associated uncertainty measures by using standard complete-
data procedures is just as important.

The reverse calibration approach of Chambers and Ren offers a feasible way of adjust-
ing an imputed dataset to satisfy first order properties of the data. As far as point estimation
of totals and means are concerned, the calibrated data allow the imputation–based estimates
to reproduce chosen valid targets. The reverse calibration approach can be related to other
calibrated imputation methods in Beaumont (2005), Favre et al. (2005), and Chauvet et al.
(2011). All these methods use first order constraints and variance estimation has to be
undertaken by specific methods for imputed data.

There are basically two types of variance estimation methods based on imputed data
under the frequentist framework of inference. Kim and Rao (2009) outline a unified lin-
earization approach to survey data after imputation of item nonresponse. The other class of
methods are based on replication procedures, such as the Jackkinfe (Rao and Shao 1992)
or the Bootstrap (Shao and Sitter 1996). These methods are developed to be used with a
single imputed dataset. However, while these techniques are feasible for the data producer,
they are not easy or even applicable by the secondary data analyst. This may be due to
the additional complexities inherent to the replication procedure, need of specific software,
or information about the assumed response process and imputation models that are not
available in the disseminated data.

However, as it is of a common survey interest to address variance estimation of the
point estimates, control of the second moment of the imputed data comes into play. This
additional requirement has, under the perspective of facilitating secondary data analyses,
the same motivation as the multiple imputation technique proposed by Rubin (1978, 1987),
where the secondary data analyst can by means of a simple formula combine estimates
from multiply imputed datasets in order to obtain measures of precision for the target esti-
mates. We notice that Bjørnstad (2007) provides a frequentist modification of the multiple
imputation variance formula, for several specific combinations of imputation method and
nonresponse model.

The extension to the Chambers and Ren approach that we propose in this article oper-
ates by adding a second calibration condition so that the variances in the imputed dataset
will also conform to given benchmarks. As a result, the calibrated imputed data will gen-
erally offer the secondary data user the possibility of computing valid point and variance
estimates with simple full–sample formulas.

Our approach shares a similar spirit with Lanke (1983), in the sense the imputed values
are modified so that complete–data formula for the imputed data gives desirable point and
variance estimators. An important difference, however, is that the latter approach addresses
only the case of simple random sampling with a missing completely at random response
mechanism. Our method can be applied to complex surveys by means of the usual stratified
ultimate cluster approximation (Skinner 1989, chap. 2) to variance estimation and, at least
in principle, allows any nonresponse mechanism to be incorporated.

The paper is organized as follows. Section 2 describes the reverse calibration approach
and the proposed extension of interest here. A more detailed discussion for this method
under hot–deck imputation is given in Section 3 and the implementation of the method
is illustrated in Section 4. Finally, in Section 5, we give an overview of the presented
methodology and outline some other aspects to be investigated in further research.
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2. Proposed approach

Consider a finite population of N units indexed by U = {1, 2, ..., N} and let yi be the
value of a survey variable y for the i–th unit, i ∈ U . Some population characteristics of this
variable that may be of interest are the total ty =

∑
i∈U yi, the mean ȳU =

∑
i∈U yi/N

and the variance S2
y =

∑
i∈U (yi − ȳU )2/(N − 1). Suppose that the information about

y is initially intended to be collected on a probability sample A of size n from U . We
assume that A is selected according to a sampling design p(·), which does not depend on
the variable y and yields positive inclusion probabilities πi = Pr{i ∈ A} and πik = Pr{i ∈
A, k ∈ A}. We also assume that it is available a known set of survey weights {wi : i ∈ A}
that, under full observation of the values {yi : i ∈ A}, could be applied to yield valid
estimates of the population parameters. One possible specification for those weights is
wi = π−1i , which yields the weighted estimator of the population total ty

t̂y =
∑
i∈A

wiyi =
∑
i∈A

π−1i yi. (1)

This estimator is design unbiased in the sense that Ep(t̂y) = ty, where Ep(·) denotes
expectation with respect to the sampling design.

Suppose that, after carrying out the survey, r (r < n) units responded to the item y and
m = n− r values were missing. Defining Ri as a response indicator having the value 1, if
yi is observed, and the value 0, if the yi is unobserved, the observed and missing parts of
the sample A are respectively Ar = {i ∈ A : Ri = 1} and Am = {i ∈ A : Ri = 0}.
Consider the use of imputation to create the complete dataset D = {(wi, y∗i ) : i ∈ A},
where wi are the design weights and y∗i is either the observed value of yi, if i ∈ Ar, or an
imputed value for yi, when i ∈ Am.

However, standard full-sample formula, when applied to the imputed dataset D for
point and variance estimation, generally do not produce valid results. For instance, in the
case of the population total ty, the analogous imputed estimator to (1) is

t̂yI =
∑
i∈A

wiy
∗
i (2)

with the associated variance estimator

V̂F (t̂yI) =
∑
i∈A

∑
k∈A

Ωikwiy
∗
iwky

∗
k, (3)

where Ωik = (πik − πiπk)/πik and the subscript F in the variance estimator is to denote
that the formula used is based on the formula that would be used under full response. The
reason that (2) and (3) do not yield valid inferences is because the sampling weights wi and
variance coefficients Ωik correspond to the situation where the yi are fully observed.

2.1 Estimation of population totals

We review here the main idea of the reverse calibration approach of Chambers and Ren
(2004) in the context of estimating the population total ty. However, instead of their setting
where imputation is used to handling outliers in data, we focus here on the treatment of
nonresponse. Suppose a working dataset is completed by taking {(wi, Riyi+(1−Ri)ỹi) :
i ∈ A}, where ỹi is an initial imputed value for yi, if Ri = 0.

Suppose it is possible to obtain an unbiased or consistent estimate of ty, namely t̂y0.
For instance, this correct estimate may correspond in the present context to the reweighted
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estimator t̂ywr =
∑

i∈Ar
wiryi, where wir = wi/φ̂i and φ̂i is an estimate of the response

probability of the i–th unit, i ∈ Ar. Hence, the aim of reverse calibration is to create the
complete dataset {(wi, y∗i ) : i ∈ A} where the values y∗i are chosen as close as possible to
the initial values Riyi + (1−Ri)ỹi so that the completed sample imputed estimator

t̂yI ≡
∑
i∈A

wiy
∗
i = t̂y0. (4)

The practical appeal of property (4) is that it allows a simple standard survey total estimator
to reproduce the correct estimate t̂y0 based on the calibrated dataset {(wi, y∗i ) : i ∈ A},
regardless of how complicated t̂y0 is. The terminology reverse calibration reflects the
facts that the imputed variable y∗i plays the role of the auxiliary variables in the traditional
calibration setting of Deville and Särndal (1992) and the roles of y∗i andwi are interchanged
(Chambers and Ren 2004, p. 3337).

In order to find an expression for the calibrated values y∗i , Chambers and Ren (2004)
first restrict y∗i = yi if i ∈ Ar, so that the required task to satisfy condition (4) is equivalent
to the task of finding values {y∗j : j ∈ Am} such that∑

j∈Am

wjy
∗
j = t̂y0 −

∑
i∈Ar

wiyi ≡ t̂ym. (5)

Then, they propose to obtain the y∗j as the values that minimize the distance function

d1(y
∗, ỹ) =

∑
j∈Am

(y∗j − ỹj)2/2qj ỹj (6)

subjected to condition (5), where qj > 0 are known constants to be specified and is assumed
that ỹj > 0 for all j ∈ Am. The resulting solution to this optimization problem is given by

y∗j = ỹj

[
1 + qjwj

t̂ym −
∑

j∈Am
wj ỹj∑

j∈Am
qjw2

j ỹj

]
, j ∈ Am, (7)

which can be seen easily to satisfy (5) and, as a consequence, allow the imputed estimator
to satisfy (4). In (7), many possible choices can be taken for the qj . For instance, one
possible choice is simply qj = 1. Another choice is qj = w−1j , which calibrates the initial
imputed ỹj values through the ratio adjustment t̂ym/

∑
i∈Am

wiỹj .

2.2 Variance estimation

One motivation to extend the reverse calibration approach is that condition (4), a “first–
moment consistency” property for the imputed dataset, allows only reproduction of the
point estimates. Suppose that, in addition to (4), it is desirable that the imputed dataset
also enables simple full–sample variance estimation procedures to reproduce a valid target
variance for t̂yI , say v̂y0. This is what we will term as a “second–moment consistency”
of the imputed dataset. We assume that v̂y0 does not depend on the calibrated data, but it
may or may not depend on the initial imputed values ỹj , j ∈ Am. For example, variance
estimates under missing–at-random assumptions can be derived without using the imputed
values by considering the available information at the respondents of item y. Approaches,
such as those in Rao and Shao (1992) and Shao and Sitter (1996), are examples of variance
estimators that also take into account the imputed values.
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When it comes to the full-sample variance estimator, one could choose the imputed
variance V̂F (t̂yI) given in (3). In simple sampling designs, the use of this variance estimator
is indeed feasible for our purposes, where

V̂F (t̂yI) =
N2(1− n/N)

n(n− 1)

∑
i∈A

(y∗i − ȳ∗)2,

and ȳ∗ is the mean of the imputed data. However, for complex designs, (3) generally
does not have a simple computing expression so it will require the release of the matrix
of Ωik, which is impractical. Hence, we consider instead the simpler full–sample variance
estimator of t̂yI , as if the sample had been selected with replacement, which is given by

V̂F (t̂yI) =
n

n− 1

∑
i∈A

(u∗i − ū∗)2, (8)

where u∗i = wiy
∗
i , i ∈ A, and ū∗ = n−1

∑
A u
∗
i = n−1t̂yI . We assume here an unstratified

design for the sake of simplicity. The extension of (8) to stratified multistage sampling is
based on considering the stratified version of (8).

The extended reverse calibration we propose in this article is based then on finding the
values y∗i as close as possible to the the values Riyi + (1 − Ri)ỹi so that

∑
i∈Awiy

∗
i =

t̂y0 and V̂F (t̂yI) = v̂y0 are simultaneously satisfied. These requirements impose the two
calibration conditions∑

j∈Am

wjy
∗
j = t̂y0 −

∑
i∈Ar

wiyi ≡ t̂ym

∑
j∈Am

w2
jy
∗ 2
j =

n− 1

n
v̂y0 −

(∑
i∈Ar

w2
i y

2
i −

t̂2y0
n

)
≡ t̂yym,

(9)

where we assume that t̂y0 and v̂y0 are such that t̂yym is strictly positive. Again, keeping the
restriction that y∗i = yi if i ∈ Ar, then the y∗j (j ∈ Am) could be found by minimizing the
distance function d1(y∗, ỹ), in (6), subjected to (9). However, instead of d1, we use a more
general expression

d2(y
∗, ỹ) =

∑
j∈Am

(y∗j − ỹj)2/2Qj (10)

where Qj > 0 does not depend on y∗j but can depend on wj and ỹj in any chosen way. By
applying the Lagrange multipliers method, the solution can be seen to be given by

y∗j ≡ y∗j (λ1, λ2) =
ỹj + λ1wjQj
1− 2λ2w2

jQj
, j ∈ Am, (11)

where λ = (λ1, λ2)
> solves

f1 ≡ f1(λ) =
∑
j∈Am

wjy
∗
j − t̂ym = 0

f2 ≡ f2(λ) =
∑
j∈Am

w2
jy
∗ 2
j − t̂yym = 0.

(12)

Because equations (12) cannot in general be solved analytically, a numerical approxima-
tion for λ must be sought. A simple method to obtain this approximation is the Newton–
Raphson algorithm.

Next, we give some remarks to highlight the usefulness of the extended approach.
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Remark 1 The proposed reverse calibration approach defined by (11) is feasible whenever
the system of nonlinear equations (12) can be solved. The solution of these equations is to
be undertaken “in office” and, hence, it may be seen as an additional stage of the preparation
of the data before dissemination. The approach offers a useful procedure for secondary data
analysts to obtain valid point and variance estimation in the presence of nonresponse and
imputation. The usual complications associated with the correct treatment of nonresponse
and the use of imputation are embedded into the computation of the targets t̂y0 and v̂y0. But
these are tasks for survey analysts possessing resources and more information to guarantee
that those estimates are indeed valid. Under this perspective, the secondary data user has
only to apply the simple standard estimation procedures (2) and (8) on the single–imputed
data to reproduce the valid targets.

Remark 2 Confidence intervals for the population total of ty or smooth functions g(ty)
can be easily constructed by applying standard software on the calibrated data. Conditions
to make these inferential procedure valid are the usual assumptions (Haziza 2009, p. 235)
of asymptotic normality and unbiasedness, or asymptotic unbiasedness, for the estimator
that generated the target t̂y0 and also the assumption of consistency of the estimator by
which v̂y0 is based upon. Then, by construction, the standard confidence interval based on
the calibrated data

t̂yI ± zα/2{V̂F (t̂yI)}1/2,

where zα/2 is the 1 − α quantile of the standard Normal distribution, has approximately
100(1 − α)% coverage for ty. This interval has wider scope than the one that could be
obtained by applying the methods proposed by Lanke (1983) and discussed by Sedransk
(1985), where the presented formulas relate simple random sampling under a uniform re-
sponse mechanism. The interval also enables the secondary data analyst to use a simple
formula to make inferences not only for the population total ty, but also inferences for
smooth functions g(ty) using

g(t̂yI) ± zα/2|g′(t̂yI)|{V̂F (t̂yI)}1/2,

where g′(·) denotes the first derivative of g(·).

Remark 3 Stochastic or random imputation are commonly used procedures to compensate
for item nonresponse surveys. A drawback is that the total variance of the imputed estima-
tor will increase due to a non–zero imputation variance component. And it causes some
extra difficulty for variance estimation. The application of the proposed reverse calibration
approach can eliminate the extra imputation variance, while allowing the secondary user
to obtain the valid variance estimate using the simple full-sample formula (8). An illustra-
tion will be given for hot-deck imputation in Section 3, with comparisons to the alternative
approaches in the literature.

Remark 4 The response sample may contain representative outliers (Chambers and Ren
2004). Suppose that the benchmark targets t̂y0 and v̂y0 are based on some appropriate
robust estimation methods which curtail the contributions of the outliers. The reverse cal-
ibration conditions (9) may need to be adjusted accordingly. Let Ao denote the identified
outliers, where Ao ⊂ Ar, and replace (9) with∑

j∈Am

wjy
∗
j +

∑
j∈Ao

wjy
∗
j = t̂y0 −

∑
i∈Ar\Ao

wiyi

∑
j∈Am

w2
jy
∗ 2
j +

∑
j∈Ao

w2
jy
∗ 2
j =

n− 1

n
v̂y0 −

 ∑
i∈Ar\Ao

w2
i y

2
i −

t̂2y0
n

 ,
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i.e. leading to imputation of both the outliers and the nonrespondents. The first constraint
was proposed by Chambers and Ren (2004). The second one is included under the our
approach to facilitate full-sample variance formula based on the imputed dataset. We notice
that the choice of Qj in d2 may differ for the units in Am and Ao.

2.3 Preserving variability

It is sometimes argued that, for certain data analyses, the imputed values should preserve
the variance of the observed item values of y (Sedransk 1985, p. 448). This property is
connected with the estimation of the finite population variance S2

y using the imputed data.
One way to attain this property by the proposed approach is as follows. Let

t̂yyI =
∑
i∈A

wiy
∗2
i

be the completed sample imputed estimator of the population total of y2, that is tyy =∑
i∈U y

2
i . The weighted sample variance of the imputed data can be expressed as

ŝ2yI ≡
∑

i∈Awi(y
∗
i − ȳI)2∑

i∈Awi − 1
=

t̂yyI

N̂ − 1
−

t̂2yI

N̂(N̂ − 1)
,

where ȳI =
∑

i∈Awiy
∗
i /
∑

i∈Awi is the weighted sample mean of the imputed dataset
and N̂ =

∑
i∈Awi. A second–moment consistency property for the imputed dataset could

be phrased so that ŝ2yI reproduces a given ŝ2y0. This could be taken, for instance, as the
reweighted estimator s2ywr =

∑
i∈Ar

wir(yi − t̂ywr/
∑

i∈Ar
wir)

2/[
∑

i∈Ar
wir − 1]. The

second–moment property can be attained by minimizing the distance function d2(y∗, ỹ)
constrained to t̂yI = t̂y0 and ŝ2yI = ŝ2y0. In this case, the optimal y∗j (j ∈ Am) values are

y∗j =

[
1

Qj
− 2λ2

N̂ − 1

]−1 [ ỹj
Qj

+ λ1 −
2λ2t̂y0

N̂(N̂ − 1)

]
, j ∈ Am, (13)

and λ = (λ1, λ2)
> as the solution to (12) using t̂ym = t̂y0 −

∑
Ar
wiyi and

t̂yym = (N̂ − 1)ŝ2y0 +
∑
i∈Ar

wiy
2
i −

t̂2y0

N̂
. (14)

Again, since the solution can not be usually expressed analytically an one could apply
Newton–Raphson algorithm.

It is important to notice that t̂yym in (14) is generally different from t̂yym in (12). It
follows that it is generally not possible to calibrate the data to satisfy both ŝ2yI = ŝ2y0 and
V̂F (t̂yI) = v̂y0, so that a decision must be taken on the estimation targets to be reproduced.
Another possibility is to disseminate two calibrated variables according to each estimation
purpose. Either way, it serves as a reminder that genuinely all-purpose single imputation is
impossible. Only the true data can do that.

One possible extension for this preservation of variability property is the estimation of
covariances and correlation coefficients between survey variables. This can be achieved by
adding constraints relative to the cross–product totals. Some earlier work with this goal is
Cohen (2003). A recent reference, taking into account constraints in the imputed data, is
Gelein et al. (2014).
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3. Hot–deck imputation

To focus on the main idea, consider simply the estimation of the population total ty based on
a subsampleAr of r respondents of a simple random sample without replacementA of size
n. Assume that the nonresponse process follows a uniform response mechanism so that
missing observations are imputed by hot–deck imputation, where the imputed values ỹj ,
j ∈ Am, are chosen by m = n− r independent random draws from the set {yi : i ∈ Ar}
with replacement. Based on the data {(wi, Riyi + (1 − Ri)ỹi) i ∈ A}, the resulting
hot–deck imputed estimator of ty is

t̂yI,HD ≡
∑
i∈A

wiỹj =
r

n
Nȳr +

m

n
N ỹm, (15)

where ȳr = r−1
∑

i∈Ar
yi is the mean of respondents and ỹm = m−1

∑
j∈Am

ỹj is the
mean of the imputed observations for the nonrespondents.

The unconditional expectation of this estimator with respect to the joint distribution of
the sampling (p), response (R) and imputation (I) mechanisms is given by

E[t̂yI,HD] = EpR[EI(t̂yI,HD |A,Ar)]. (16)

Because the imputation expectationEI [ỹm |A,Ar] = ȳr, it follows thatEI [t̂yI,HD |A,Ar] =
Nȳr and, as ȳr is pR–unbiased for the population mean of y, t̂yI,HD is unbiased for
ty. For the variance of (15), we note first that the imputation variance VI [ỹm |A,Ar] =
(r−1)s2yr/(mr), where s2yr =

∑
i∈Ar

(yi− ȳr)2/(r−1) is the variance of the respondents.
Then, the unconditional variance of t̂yI,HD is

V (t̂yI,HD) = VpR[EI(t̂yI,HD |A,Ar)] + EpR[VI(t̂yI,HD |A,Ar)]

= VpR[Nȳr] + EpR

[
N2m

2

n2
r − 1

r

s2yr
m

]
. (17)

The second component in (17) is an inflation term that is due to the positive hot–deck
imputation variance, which is a main drawback of hot-deck and any other unconstrained
random imputation methods. One can modify the hot-deck imputation in a way that avoids
the imputation variance. However, unconstrained hot-deck or not, the secondary user will
need extra effort to apply special variance estimation method based on the imputed data, as
explained below.

To start with, both Bayesian and non-Bayesian methods can be used to estimate the vari-
ance of unconstrained hot-deck imputed sample mean. Under the approximate Bayesian
bootstrap (Rubin and Schenker, 1986), one needs to resample the full data set including the
nonresponse indicators, so that the number of missing observations as well as the observed
y-values will vary form one bootstrap replicate sample to another. Notice that, Kim (2002)
demonstrated that the corresponding variance estimator has a non–negligible negative bias
in moderate sample sizes, which could be minimized upon a modification in the algorithm
underlying the approximate Bayesian bootstrap method. For a frequentist approach, Rao
and Shao (1992) propose a jackknife method. For each jackknife replicate sample where
an observed value is deleted, all the imputed values need to be adjusted by an amount that
is equal to the difference between the jackknife replicate response sample mean and the
initial response sample mean, to reflect the fact the donor set if changed by jackknife.

Next, the data provider can apply a constrained hot-deck imputation that does not result
in extra imputation variance, by modifying them imputed values so that their mean is equal
ȳr. One method by Chauvet et al. (2011) uses the idea of balanced sampling and employs
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a special algorithm to select the residuals to adjust the imputed data in order to satisfy
the benchmark mean constraint. It is possible to incorporate additional auxiliary variables
available for the full sample.

A simpler method to eliminate the imputation variance in (17), in this situation without
auxiliary variables, is the adjusted random imputation method of Chen et al. (2000). It
uses the imputed values ỹj = ȳr + (z̄∗j − z̄∗m) for j ∈ Am, where z̄∗j is an independent
random draw from {yi : i ∈ Ar} with replacement, and z̄∗m = m−1

∑
j∈Am

z̄∗j . Hence, by
construction, EI [ỹm |A,Ar] = ȳr and VI [ỹm |A,Ar] = 0.

The variance of the imputed estimator (15), provided it is constrained to the observed
response sample mean in one way or another, is given by

V (t̂yI,HD) = VpR[Nȳr] = N2

(
1

n
− 1

N

)
S2
y +N2Ep

{
ER

[(
1

r
− 1

n

)
s2y |A

]}
, (18)

where ER[· |A] denotes the expectation under the conditional distribution of the observed
number of respondents, r, given the original sample A. Since ER[s2yr |A, r] = s2y and
EpR[s2yr] = S2

y , an unbiased estimator of V (t̂yI,HD) is

V̂unb = N2

(
1

n
− 1

N

)
s2yr +N2

(
1

r
− 1

n

)
s2yr = N2

(
1

r
− 1

N

)
s2yr. (19)

The sample variance of the imputed values is given by

s2yI =
1

n− 1

∑
i∈Ar

(yi − ȳI)2 +
∑
j∈Am

(ỹj − ȳI)2


where ȳI = (rȳr + mỹm)/n = ȳr, and EI(s2yI |A,Ar) = (r − 1)s2yr/r
.
= s2yr when

r is large. So the full–sample SRS variance estimator, which uses n−1 instead of r−1, is
expected to under–estimate the variance. An approximate unbiased estimator of (18) can
be obtained on replacing s2yr by s2yI in (19). However, without explicitly deriving (19)
first, one would not be able to clarify the relationship even in this special case. Thus,
Chen et al. (2000) suggest the jackknife variance estimator, which requires adjusting the
jackknife imputed values so that the jackknife variance estimator is algebraically equal to
the variance estimator for mean imputation.

In short, whether the hot–deck imputation is unconstrained or constrained, the sec-
ondary user is left to deal with the problem of variance estimation. The reverse calibration
approach is helpful since, on the one hand, it provides a simple means for the data provider
to obtain constrained random imputation data without the extra imputation variance, and,
on the other hand, it allows the secondary user to obtain valid variance estimate using sim-
ple full–sample formula, without the need to apply a special variance estimation method
tailored for the missing data problem.

Put the estimation targets t̂y0 = Nȳr and v̂y0 = V̂unb, where V̂unb is given in (19).
Let ỹj , j ∈ Am, denote the initial imputed values obtained by unconstrained hot–deck
imputation. Let the calibrated imputed values be given by (11) using wj = N/n, Qj = 1,
and (λ1, λ2) as the solution of (12) with t̂ym = t̂y0 −

∑
i∈Ar

wiyi = Nȳr(1 − r/n) and
t̂yym = (n−1)v̂y0/n−(

∑
i∈Ar

w2
i y

2
i−t̂2y0/n). Hence, by applying the original full–sample

weights wi = N/n to the calibrated data y∗i , i ∈ A, we have by construction that

t̂yI ≡
∑
i∈A

wiy
∗
i = Nȳr = Nȳ∗
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where ȳ∗ is simply the imputed sample mean, and, taking with u∗i = wiy
∗
i ,

V̂F (t̂yI) =
n

n− 1

∑
i∈A

(u∗i − ū∗)2 = N2 s
∗ 2

n
= V̂unb

where s∗ 2 is simply the sample variance of the imputed dataset. Evidently, the calibration
condition based on the first target t̂y0 = Nȳr eliminates the imputation variance of the un-
constrained hot–deck imputation, and the second constraint ensures that the valid variance
estimate v̂y0 = V̂unb is reproduced for t̂yI . The full-sample formulas allows the secondary
user to treat the imputed sample as if it were a simple random sample without nonresponse,
which is particularly convenient.

4. Numerical illustration

In this section, we illustrate the implementation of the reverse calibration approach for
mean and hot–deck imputation. We consider an artificial finite population of N = 300

Table 1: Observed dataset

i wi yi1 yi2

1 10 ∗ ∗
2 10 ∗ 5.92
3 10 95.97 5.58
4 10 101.76 13.16
5 10 101.01 12.50
6 10 99.32 ∗
7 10 ∗ ∗
8 10 91.90 ∗
9 10 ∗ 11.29

10 10 100.24 4.95
11 10 ∗ 6.26
12 10 103.73 12.04
13 10 93.75 9.62
14 10 ∗ 11.43
15 10 97.32 12.57
16 10 102.41 6.77
17 10 111.20 10.39
18 10 95.61 ∗
19 10 ∗ 19.21
20 10 97.42 13.84
21 10 ∗ 4.45
22 10 ∗ ∗
23 10 ∗ 10.46
24 10 ∗ 5.41
25 10 ∗ 7.36
26 10 108.51 6.61
27 10 ∗ 5.90
28 10 ∗ 4.29
29 10 ∗ 12.77
30 10 ∗ 8.10
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elements with two items y1 and y2. The values of these variables were generated from
the N(100, 52) and G(shape = 10/3, scale = 3) distributions, rounded to two dec-
imal places. The dataset on Table 1 corresponds to a nonreplacement simple random
sample of n = 30 observations from this population. The columns of this table gives
the identifier, sampling weight and observed values of y1 and y2 for the elements in the
sample. The responding values on these two variables were generated by independent
Bernoulli sampling with response probabilities 0.5 and 0.7, respectively. Taking into ac-
count the sampling design and the uniform response mechanism, valid targets for the im-
puted estimators and its variances are based on the reweighted estimates t̂y0 = Nȳr and
v̂y0 = N2

(
r−1 −N−1

)
s2yr, where ȳr and s2yr are the sample mean and variance of the

respondent elements for an item y. The values of these estimates are given in Table 2.

Table 2: Unbiased estimates of the population totals of y1
and y2 and respective unbiased variance estimates

Item t̂y0 v̂y0

y1 30003.21 177370.99
y2 2761.00 49903.76

Table 3 gives a working dataset created to demonstrate the computing steps of the
reverse calibration approach for both variables. In this table, Ri1 and Ri2 are the item
response indicators; column ỹi1 is the imputed variable for y1 obtained by replacing the
missing values of that variable by the mean of the item responding units ȳ1r = 100.011 plus
a zero mean random noise. The addition of this random noise is because mean imputation
has no variation among the imputed data, making then impossible to calibrate those values
to satisfy both the first and second order constraints; column ỹi2 corresponds to entries in
yi2 with the missing values imputed by hot–deck imputation. The values were selected by
independent draws from the item respondent values; and, finally, the entries y∗i1 and y∗i2 are
the reverse calibrated values obtained by (11) and (12) using as preliminary imputed values
the modified mean imputed variable ỹi1 and the hot–deck imputed ỹi2, respectively.

The computing process to apply the reverse calibration method on the initial imputed
variables ỹi1 and ỹi2 is as follows. Given the estimates in Table 2, the values of the calibra-
tion constraints are by (9)

t̂ym = t̂y0 −
∑
i∈Ar

wiyi =

{
16,001.71, for y1,

552.20, for y2,

t̂yym =
n− 1

n
v̂y0 −

(∑
i∈Ar

w2
i y

2
i −

t̂2y0
n

)
=

{
16,137,263.23, for y1,

65,791.93, for y2.

Hence, the calibrated values y∗i1 and y∗i2 in Table 3 can be computed by running separately
the reverse calibration procedure, defined by (11) and (12), with Qj = 1 and the corre-
sponding values of t̂ym and t̂yym above, for each case. Note the reverse calibration proce-
dure changes, by construction, only the initial imputed values and not any of the observed
values. The dataset to be disseminated could be formatted as in the simple layout of Table
4, with a single set of weights and a single imputed variable for each item. The secondary
user needs just to use the simple expressions (2) and (8) to obtain the reverse calibration
estimates of the population total and its variance. These estimates follow easily by noting
that the sample total and variance of the values {wiy∗i1 : i ∈ A} and {wiy∗i2 : i ∈ A} are
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Table 3: Working dataset for calibrating the imputed data

i wi Ri1 yi1 ỹi1 y∗i1 Ri2 yi2 ỹi2 y∗i2

1 10 0 ∗ 96.25 95.14775 0 ∗ 13.16 14.63372
2 10 0 ∗ 102.98 107.79921 1 5.92 5.92 5.92000
3 10 1 95.97 95.97 95.97000 1 5.58 5.58 5.58000
4 10 1 101.76 101.76 101.76000 1 13.16 13.16 13.16000
5 10 1 101.01 101.01 101.01000 1 12.50 12.50 12.50000
6 10 1 99.32 99.32 99.32000 0 ∗ 12.50 13.62223
7 10 0 ∗ 99.34 100.95652 0 ∗ 4.95 2.05137
8 10 1 91.90 91.90 91.90000 0 ∗ 10.39 10.38852
9 10 0 ∗ 96.07 94.80937 1 11.29 11.29 11.29000

10 10 1 100.24 100.24 100.24000 1 4.95 4.95 4.95000
11 10 0 ∗ 100.41 102.96797 1 6.26 6.26 6.26000
12 10 1 103.73 103.73 103.73000 1 12.04 12.04 12.04000
13 10 1 93.75 93.75 93.75000 1 9.62 9.62 9.62000
14 10 0 ∗ 93.46 89.90294 1 11.43 11.43 11.43000
15 10 1 97.32 97.32 97.32000 1 12.57 12.57 12.57000
16 10 1 102.41 102.41 102.41000 1 6.77 6.77 6.77000
17 10 1 111.20 111.20 111.20000 1 10.39 10.39 10.39000
18 10 1 95.61 95.61 95.61000 0 ∗ 11.29 11.76782
19 10 0 ∗ 102.98 107.79921 1 19.21 19.21 19.21000
20 10 1 97.42 97.42 97.42000 1 13.84 13.84 13.84000
21 10 0 ∗ 93.91 90.74887 1 4.45 4.45 4.45000
22 10 0 ∗ 90.53 84.39494 0 ∗ 5.41 2.75635
23 10 0 ∗ 107.17 115.67583 1 10.46 10.46 10.46000
24 10 0 ∗ 91.48 86.18081 1 5.41 5.41 5.41000
25 10 0 ∗ 103.27 108.34437 1 7.36 7.36 7.36000
26 10 1 108.51 108.51 108.51000 1 6.61 6.61 6.61000
27 10 0 ∗ 105.20 111.97250 1 5.90 5.90 5.90000
28 10 0 ∗ 98.76 99.86620 1 4.29 4.29 4.29000
29 10 0 ∗ 96.66 95.91849 1 12.77 12.77 12.77000
30 10 0 ∗ 102.92 107.68642 1 8.10 8.10 8.10000

30003.21 and 5912.366 for y1 and 2761 and 1663.459 for y2. Then,

t̂y1I =
∑
i∈A

wiy
∗
i1 = 30003.21, t̂y2I =

∑
i∈A

wiy
∗
i2 = 2761,

V̂F (t̂y1I ) = n[sample variance of (wiy
∗
i1)] = 30(5912.366) = 177371 and

V̂F (t̂y2I ) = n[sample variance of (wiy
∗
i2)] = 30(1663.459) = 49903.76.

Hence, the standard expressions for the imputed estimator and its variance, apart from
rounding error, reproduce the targets t̂y0 and v̂y0 for both cases. Note the estimates are
produced without making use of the item response indicators.

A nicer looking output for the calibrated dataset in Table 4 is obtained by rounding the
calibrated variables y∗i1 and y∗i2 to have the same number of decimal places as the original
values. Of course, the rounded calibrated data may no longer match exactly the calibration
constraints. For example, by rounding y∗i1 and y∗i2 to two decimal places, the resulting esti-
mates are t̂y1I = 30003.21, t̂y2I = 2761, V̂F (t̂y1I ) = 177370.4 and V̂F (t̂y2I ) = 49905.08.
A more refined rounding algorithm may be used if it is deemed necessary.
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Table 4: Calibrated dataset for dissemination

i wi Ri1 y∗i1 Ri2 y∗i2

1 10 0 95.14775 0 14.63372
2 10 0 107.79921 1 5.92000
3 10 1 95.97000 1 5.58000
4 10 1 101.76000 1 13.16000
5 10 1 101.01000 1 12.50000
6 10 1 99.32000 0 13.62223
7 10 0 100.95652 0 2.05137
8 10 1 91.90000 0 10.38852
9 10 0 94.80937 1 11.29000

10 10 1 100.24000 1 4.95000
11 10 0 102.96797 1 6.26000
12 10 1 103.73000 1 12.04000
13 10 1 93.75000 1 9.62000
14 10 0 89.90294 1 11.43000
15 10 1 97.32000 1 12.57000
16 10 1 102.41000 1 6.77000
17 10 1 111.20000 1 10.39000
18 10 1 95.61000 0 11.76782
19 10 0 107.79921 1 19.21000
20 10 1 97.42000 1 13.84000
21 10 0 90.74887 1 4.45000
22 10 0 84.39494 0 2.75635
23 10 0 115.67583 1 10.46000
24 10 0 86.18081 1 5.41000
25 10 0 108.34437 1 7.36000
26 10 1 108.51000 1 6.61000
27 10 0 111.97250 1 5.90000
28 10 0 99.86620 1 4.29000
29 10 0 95.91849 1 12.77000
30 10 0 107.68642 1 8.10000

5. Discussion

The proposed reverse calibration approach gives a way of calibrating a single dataset in
the form {(wi, y∗i ) : i ∈ A} so that valid estimates of the population total and its variance
estimator can be recovered by a weighted imputed estimator and a simple complete–sample
variance formula. The approach is feasible whenever the system of equations (9) can be
solved. The advantage of this approach is the possibility of reproduction of correct estima-
tion of the parameter of interest under sampling and nonresponse using simple statistical
standard formulas. This may benefit not only secondary data users that are external to the
survey organization, but also users inside the organization that do not have the capability
or information required to obtain the correct target estimates.

For this research, we have already developed an algorithm to allow the calibration
method to be applied in a stratified multistage survey. For the future investigations, it is
of interest to extend the proposed approach to a multivariate setting and also to parameter
estimation in pre–specified population domains.
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