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Abstract
The challenges of constructing confidence intervals for a binomial proportion and the deficiencies of
the popular Wald interval in achieving its nominal coverage — particularly when the true proportion
is close to 0 or 1 or when the sample size is moderate — have been well documented (Brown et
al. 2001, 2002). The problem is further compounded when inference is based on complex survey
data. Yet intervals resembling the Wald interval are often applied to complex surveys, an example
being the confidence intervals used in the American Community Survey (ACS). In the literature,
confidence intervals designed for binomial proportions with modifications based on the design effect
are often used for complex surveys. Here, we adopt this approach and study the coverage and
expected length properties of 7 different intervals. We focus on how phenomena such as clustering,
stratification, misspecification of variances, and patterns of variation of stratum expected sampling
fractions and stratum survey attribute-proportions, affect coverage. A simulation study examines
the effect of such factors.

Key Words: Complex Surveys; Proportions; Confidence Intervals; Wald Interval; Design Effect;
Coverage

1. Introduction

Constructing well-calibrated confidence intervals for population proportions based on sur-
vey data presents challenges unless the sample size is quite large. By well-calibrated, we
mean that the interval’s coverage is close to nominal across different values of the true
proportion. Consider a Simple Random Sample (SRS) for a large population where the
sampling fraction is negligible. Then, the problem is that of constructing a confidence
interval for a binomial proportion. In this case, “exact” confidence intervals, which guar-
antee that the nominal coverage is met or exceeded, are available in the literature (see, for
instance, Clopper and Pearson 1934, Byth and Still 1983, and Casella, 1986 )1. However,
these tend to be conservative; they often exceed the nominal coverage and have large ex-
pected lengths. Moreover, methods that guarantee nominal coverage for the binomial case
do not necessarily do so when applied to complex survey data.

Exact tests aside, it has been well documented (Brown et al. 2001, 2002) that construct-
ing confidence intervals for a binomial proportion that consistently achieve coverage that
is close to nominal can be elusive unless the sample size is large, where what constitutes
a “large” sample depends on how close the true proportion is to zero or one. In particular,
Brown et al. highlight erratic coverage as a function of n and p of the Wald interval for a
binomial proportion p based on Y successes, where Y ∼ Bin(n, p). They also propose
alternative intervals which perform better, but still oscillate in their coverage as n and p
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vary. Namely, they propose the Jeffreys interval and the Wilson interval for small sample
sizes along with the Agresti-Coull interval for large sample sizes (see Brown et al. 2001,
Section 5).

The Wald interval is defined as p̂ ± zα/2
√
p̂(1− p̂)/n, where p̂ = Y/n. In complex

surveys, intervals of the form
p̂± zα/2SE, (1)

where p̂ is a survey-weighted estimator of the true proportion and SE is some estimate of its
standard error, are often used. The Wald interval is a special case of (1) for SRS surveys,
and its poor performance when the sample sizes are moderate raises questions about the
use of intervals of the form (1) for more complex surveys, where the misspecification of the
binomial assumption further confounds the problem. Examples of surveys that use intervals
of the form (1) are ubiquitous, but this study was inspired by the American Community
Survey (ACS). The method currently used by the ACS is of the form (1), where p̂ is the
survey-weighted estimator and the standard error is computed based on the Successive
Differences Replication (SDR) Method (Fay and Train, 1995).

The ACS is the largest household sample survey in the United States, sampling approx-
imately 3.5 million addresses yearly. It asks questions about demographic characteristics,
income, education, disabilities, and health insurance, among many others. Despite its large
sample size, cross-classification often leads to small sample sizes for domains of interest.
The ACS is the source of billions of estimates. Due to the sheer quantity and diversity of
estimates produced by the ACS, it may be inpractical to consider sophisticated methods
for use across the board. Here, we consider only simple methods that would be easy to
implement in ACS production. The only inputs for all methods considered are the sample
size, the survey-weighted estimate of the proportion, and a measure of its standard error.

In the literature, a common approach to constructing intervals for proportions based
on complex sample survey data is to modify methods designed for binomial proportions
based on the design effect/effective sample size (see, for instance, Korn and Grabaurd,
1998, Kott and Liu 2009). The design effect is defined as Deff = Var(p̂)/(p(1 − p)/n),
and the effective sample size is n∗ = n/Deff . The effective sample size n∗ can be inter-
preted as the sample size one would need under an SRS design to obtain the same asymp-
totic CI width obtained under the complex sampling scheme. In practice, p and Var(p̂)
are unknown and must be estimated, for instance, by the survey-weighted estimate p̂ and
a design-based estimate of its variance V̂ar(p̂). The estimated design effect, defined as
D̂eff = V̂ar(p̂)/(p̂(1− p̂))/n, is used when computing the estimated effective sample size,
n̂∗ = n/D̂eff . Then n is replaced by n̂∗ and the binomial count Y by p̂ · n̂∗ in formulas
defining the bounds of confidence intervals for binomial proportions.

Korn and Graubard (1998) study confidence intervals for proportions in complex sur-
veys when the expected number of successes is small. They study four intervals based on
design-effect modifications, including an interval of the form (1), present simulation re-
sults, and compare the intervals using two applications. They recommend the use of the
Clopper-Pearson interval with a modification to the design effect that heuristically adjusts
for the variability of the variance of the estimator. Kott and Liu (2009) study one-sided
intervals for proportions for SRS and stratified SRS surveys. As they note, the intervals
that perform best in the one-sided case may not be the same as those that perform best in
the two-sided case because the latter can have compensating one-sided errors due to the
asymmetric distribution of p̂. Here, we focus on two-sided intervals to conform to ACS
practice.

In this paper, we perform a simulation that aims to control and measure the impact of the
main factors that are thought to influence the performance of intervals, such as clustering,
stratification, the degree of heterogeneity within and between clusters and among strata
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in the population, etc. We also study the degree to which misspecification of the design
effect leads to problems in coverage. We study the performance of several intervals across
many scenarios through the use of a simulation with a factorial design with 864 different
configurations. Some of the features of the simulation are inspired by the ACS and may be
particularly relevant to household surveys, especially in cases where the sample consists of
many relatively small clusters, although the results should be of general interest.

We focus on coverages that are conditional on not obtaining an estimate of 0 (or 1)
for the proportion of interest. The estimated design effect is undefined in the case of zero
estimates, which inevitably mandates arbitrary fix-ups in simulation studies. Instead, we
regard the issue of zero counts as a separate but closely related problem, beyond the scope
of this paper. In the ACS, zero counts are handled through a separate methodology (US
Census Bureau, 2009), and treating their occurrence as a separate problem is consistent
with that practice.

In Section 2, we discuss the details of our simulation, including a short description
of 6 intervals that are candidates to improve upon the performance of the Wald interval.
Our perspective is that a “good” interval generally provides close to nominal coverage
without having a wastefully long expected length. In Section 3 we collect the results of the
simulation, providing conclusions and suggestions for further research in Section 4.

2. A Simulation Inspired by the ACS

2.1 Simulating the Population

We first create a population of size N . The population has J = 4 strata, and in the jth
stratum there are Kj clusters of fixed size c, and Nj units, with Nj = c ∗Kj . In alternative
runs we let c = 1 or c = 3. Populations with many relatively small clusters are common
for household surveys, where all members of a sampled household are often surveyed. For
simplicity, we let all clusters be of equal size c and all strata contain the same number K of
clusters.

The population expected proportion θ is specified within each simulation. It is ap-
portioned into strata population proportions θj either equally, or growing in a linear fash-
ion. For instance, if θ = 0.3 we could have θj = 0.3 for all j or we could have θj =
0.075, 0.225, 0.375, 0.525. This enables the study of different patterns of variation of the
expected stratum proportion and the stratum sampling fraction. More details about the
specific linear relationship among the stratum proportions will be given in the next section.

A “success” in the population, with indicator variable Yjkl, where j is the stratum, k
is the cluster, and l is the unit within the cluster, is simulated in a hierarchical fashion as
follows:

Yjkl|pjk ∼ Bernoulli(pjk)

pjk|πj ∼ Beta(τπj , τ(1− πj))
πj ∼ Uniform(θj(1− γ0), θj(1 + γ0)). (2)

The parameters τ , γ0 and θj , j = 1, . . . , J are specified within each simulation, and
they control features of interest within the population. For instance, notice that τ controls
the degree of heterogeneity within clusters. The quantity 1/(1 + τ) is the intra-cluster
correlation for the binary survey attribute of interest when c > 1. A large τ implies large
within-cluster heterogeneity relative to that between clusters. The last level in the hierarchy
given by expression (2) allows for further variation in the proportions than is stipulated by
the linear relationship between the θj . This is particularly interesting in the case where the
θj are constant over strata. The simulation parameter γ0 can be set to 0 if no additional
variation is desired.
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2.2 Simulating the Sampling Design

After the population has been generated, it is sampled Nr times. The sampling design
features stratification, and when a cluster is selected, all its units are selected. This setup is
inspired by the ACS, with a cluster playing the role of a household.
We specify the overall sampling fraction f and the stratum sampling fractions fj , j =
1, . . . , J as follows:

θj = θ
(

1 + b0 (j − J + 1

2
)
)

, fj ∝ θa1j (2θ − θj)a2 , 1 ≤ j ≤ J.

Note that as previously mentioned, the θj are either constant or increase linearly as j in-
creases. The quantities b0, a1, and a2 can be specified in each simulation run, and they
are chosen to conform to four scenarios of interest regarding the relationship between the
stratum sampling fractions and the expected stratum population proportions:
C: b0 = a1 = a2 = 0 level θ’s, f ’s
I: b0 = 3/(2J − 2), a1 = 1, a2 = 0 ↗ θ’s, ↗ f ’s
D: b0 = 3/(2J − 2), a1 = 0, a2 = 1 ↗ θ’s, ↘ f ’s
H: b0 = 3/(2J − 2), a1 = 1, a2 = 1 ↗ θ’s, ∩ shaped f ’s.

The purpose of the choice b0 = 3/(2J − 2) in the scenarios I, D, and H, when J = 4,
is to fix the smallest of the ratios θj/θ as 1/4, and the largest as 7/4.

As an example, suppose θ = 0.3 and the sampling fraction f was such that the overall
sample size is n = 80. Then, under Scenario C, nj = 20, 20, 20, 20, θj = 0.3, 0.3, 0.3, 0.3,
and under Scenario D, nj = 35, 25, 15, 5, θj = 0.075, 0.225, 0.375, 0.525. Note that with
no clustering, scenario C would resemble most closely the case of an SRS. Under scenario
D, on the other hand, there is large variability among stratum sample sizes, which in turn
may lead to unstable estimates of the stratum variances for small overall sample sizes. This
will have an impact on the estimation of the design effect, as will be discussed subsequently.
The choices of parameters b0 and γ0 need to be constrained in order not to let attribute-
proportions θj and πj fall outside the range (0, 1). Moreover, some rounding is necessary
in the stratum sample sizes, so that the stratum and overal sampling fractions may differ
slightly from those initially specified.

Once the stratum sample sizes have been determined, we take an SRS in each stratum
accordingly for each of Nr = 10, 000 simulation runs.

2.3 A Factorial Design

In the simulations presented in Section 3, some simulation parameters are fixed and some
can take one of several values, creating a factorial design. We let the population size N =
10, 000, and let the number of strata J = 4. Then the cluster size c is either 1 or 3,
where c = 1 represents no clustering. The sample sizes are n = 30, 40, 50, 80, 160, 240,
the population expected proportion θ = 0.05, 0.1, 0.3 and the parameters related to the
clustering and stratification are τ = 10, 10000 , γ0 = 0, 0.2, 0.4. Again, there are four
different scenarios that describe the relationship between the stratum sampling fractions
and the stratum expected population proportions, denoted in Section 2.2 as C, I,D, and H.
Note that we are studying 2 ∗ 6 ∗ 3 ∗ 2 ∗ 3 ∗ 4 = 864 simulation-parameter combinations.

In each simulation, we compute coverage and expected width, conditional on not ob-
taining an estimate of 0 or 1 for p, for the Wald interval and for the six additional methods
described in Section 2.5, using both n∗ and n̂∗. The details of how n∗ and n̂∗ are computed
are given in the next section.
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2.4 Population and Sample Quantities of Interest

Denote the population count in stratum j and cluster k as Yjk· and the population count in
stratum j as Y··j . That is,

Yjk· =
∑
i∈Cjk

yjkl , Y··j =

Kj∑
k=1

Yjk· =

Kj∑
k=1

∑
l∈Cjk

yjkl

where Cjk denotes the set of units belonging to cluster k in stratum j.
The population total Y of the yikj counts is Y =

∑J
j=1 Y··j , and the

corresponding standard sample-weighted estimator, based on SRS samples Sj of nC
j clus-

ters is

Ŷ =
J∑
j=1

Nj

c nC
j

∑
k∈Sj

∑
l∈Cjk

yjkl =
J∑
j=1

Nj

c nC
j

∑
k∈Sj

Yjk·

The confidence intervals that we study for the population proportion Ȳ = Y/N are
based on this point estimator together with the ‘model’ nC, ∗ (Ŷ /N) ∼ Binom(nC, ∗, Ȳ ),
where nC, ∗ is an appropriately defined ‘effective sample size’. Note that Ȳ is the random
frame-population average, with E(Ȳ ) equal to the theoretical proportion θ.

2.4.1 Effective Sample Size

Two different effective sample sizes are used in our simulations, a ‘true’ one based on the
actual simulated (frame) population, and one which must be estimated from sampled data
as must be done with real survey data.

Using the notation nC as the number of sampled clusters, f = c nC/N , as the over-
all sampling fraction, Kj as the number of clusters in stratum j, and fj = c nC

j /Nj =
nC
j /Kj as the sampling fraction within the jth stratum, we have the true variance for the

survey estimator Ŷ equal to

V (Ŷ ) =

J∑
j=1

K2
j (1− fj)
nC
j

s2Y·xj , s2Y·xj =
1

Kj − 1

Kj∑
k=1

(
Yjk· −

Yj··
Kj

)2

The corresponding sample-estimated variance is given as

V̂ (Ŷ ) =

J∑
j=1

K2
j (1− fj)
nC
j

ŝ2Y·xj , ŝ2Y·xj =
1

nC
j − 1

∑
k∈Sj

(
Yjk· −

Ŷj··
nC
j

)2

In terms of these variances, whether true (known) or estimated in the simulations, the
(population-level) design effect is defined as

Deff =
n V (Ŷ )

Y (N − Y ) (1− f)
, D̂eff =

n V̂ (Ŷ )

Ŷ (N − Ŷ ) (1− f)
.

The standard definition of effective sample size, which we adopt in our simulation study
both in a true and estimated version is:

n∗ =
Y (N − Y )(1− f)∑J

j=1(K
2
j /n

C
j )(1− fj) s2Y·xj

, n̂∗ =
Ŷ (N − Ŷ )(1− f)∑J

j=1(K
2
j /n

C
j )(1− fj) ŝ2Y·xj

.

We impose the artificial fix-up in our simulations that estimated effective sample sizes
are never allowed to be less than 5. In addition, we adopt the fix-up that n̂∗ ≤ 2n. This is
to avoid absurdities resulting from extreme values of the estimated design effect.
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2.5 Alternatives to the Wald Interval for a Binomial Proportion

We consider 6 different alternatives to the Wald interval in our simulation. The Clopper-
Pearson interval is a well-known interval which is generally regarded as conservative in
the Binomial case. The Agresti-Coull interval is recommended by Brown et al. (2001)
for large sample sizes and for its parsimony, and for moderately sized intervals the Wilson
and Jeffreys intervals are recommended. The Jeffreys interval is actually derived from a
Bayesian perspective, so that it is a credible interval rather than a confidence interval. Its
name is somewhat of an abuse of nomenclature, as stated by Brown et al, since Jeffreys
did not introduce this interval but rather introduced the Jeffreys prior, which is known to
have good frequentist properties. The Jeffreys prior is proportional to the square root of the
Fisher information, in the univariate case, and for the Binomial distribution it turns out to
be a beta distribution. The beta family is the conjugate family for the binomial distribution.
As an alternative credible interval to the Jeffreys Interval we use the uniform prior in the
binomial-beta conjugate family. We also include an Arcsine Square Root Interval with a
modification that performed well in Gilary et al. (2012). More details on these intervals, as
well as their explicit formulas, are given in the appendix.

In all intervals, to adjust for the design effect due to complex sampling we replace n by
the effective sample size n∗ or its estimated version n̂∗, and we replace x by the effective
sample count, defined as Ŷ · n∗ or its estimated version, Ŷ · n̂∗.

3. Analysis of Results

3.1 The Case of No Clustering

Figure 1 displays the coverages of all 7 confidence interval methods resulting from 10,000
iterations for each simulation configuration that has no clustering (c=1) under scenario C.
The vertical axis denotes the coverage based on n̂∗ and the horizontal axis represents the
coverage based on n∗. Each of the 756 points in the scatterplot shows the n∗-coverage
and n̂∗-coverage for a specific method and a fixed set of simulation parameters. Hence
it is possible to compare the two types of coverage and also to make evaluations on each
individually. The square in the center represents a measure of simulation error. To better
visualize what the coverage is using n̂∗, envision projecting all points to the vertical axis
(and, analogously, project to the horizontal axis to visualize the n∗-coverage).

Two intervals are highlighted in red and black, the Wald Interval and the Clopper-
Pearson interval, respectively. We see that overall, the Wald interval can display severe un-
dercoverage using both n∗ and n̂∗, with some cases of extreme overcoverage. The Clopper-
Pearson, on the other hand, tends to display overcoverage. This overcoverage comes at the
cost of high expected widths, as can be seen in Table 1, which displays average lengths over
all simulation replications for all configurations, using n̂∗ with no clustering and θ = 0.1.
Note that for all sample sizes, the Clopper-Pearson interval displays the greatest average
lengths. In fact because the Clopper-Pearson interval can also be expressed in terms of the
beta quantiles (Brown et al., 2001), it can be shown that the Jeffreys and Uniform intervals
are always contained in the Clopper-Pearson. The Wald interval has small average lengths,
but this is due to its severe undercoverage. The results using n∗ are very similar and only
slightly narrower (not shown).

This suggests that neither of these intervals are good candidates for application to sur-
veys such as the ACS. Similar patterns also occur in the other 3 scenarios (D, I, and H)
with no clustering (plots not shown).

Recall that scenario C has equal stratum proportions and stratum sample sizes. This
makes this case somewhat similar to the simple binomial case, where Brown et al. also find
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CI n=30 n=40 n=50 n=80 n=160 n=240
Wald 0.203 0.178 0.162 0.132 0.093 0.076
JeffPr 0.216 0.186 0.166 0.133 0.093 0.076
UnifPr 0.223 0.191 0.170 0.135 0.094 0.076
ClPe 0.246 0.210 0.185 0.145 0.100 0.080
Wils 0.224 0.192 0.171 0.135 0.094 0.076

AgCo 0.240 0.205 0.180 0.141 0.096 0.078
Assqr 0.223 0.191 0.170 0.135 0.094 0.076

Table 1: Conditional expected lengths for θ = .1, c = 1, averaged over all simulation con-
figurations, computed based on n̂∗. Configurations include t = 10, 10000, γ0 = 0, .2, .4,
scenario C, I , D, or H .

that the Wald interval has severe undercoverage problems, and that the Clopper-Pearson
interval is wastefully conservative. Due to the equal stratum sample sizes, we would expect
the variance estimator (7) to be most stable in scenario C, compared to scenarios where the
sampling sizes differ across strata and have some strata with particularly unstable estimates
of the stratum sampling variance. We see some difference between the n∗-coverages and
the n̂∗-coverages, but these are not as pronounced as what we will see under other scenarios.

Figure 2 examines how other methods do relative to each other when no clustering is
present. In this picture we see some additional trends: namely, that the Agresti-Coull inter-
val and the Arcsine Square Root Interval tend to be more conservative than the others. The
Wilson, Uniform, and Jeffreys perform somewhat similarly to each other overall. Returning
to Table 1 to take a closer look at the average conditional lengths, we see that the Agresti-
Coull interval tends to be the widest on average, second only to the Clopper-Pearson. The
average lengths for the other intervals are comparable, with the Jeffreys interval tending to
be a little narrower. The results for θ = 0.05 and θ = 0.3 follow similar trends.

3.2 The Case of Clustering (c=3)

Figure 3 is similar to Figure 1 except it shows results with clustering, namely with c = 3.
Again, we see that the Wald interval does very poorly overall, showing many cases of
severe undercoverage regardless of whether we use the estimated or true design effect. The
Clopper-Pearson again appears to have great overcoverage, particularly when using n∗.
However, there are some cases of undercoverage for the Clopper-Pearson as well when it
comes to the n̂∗-coverage. Table 2 shows average lengths over all scenarios with θ = 0.1
and c = 3 for the different CI methods over different sample sizes. Again, the Clopper-
Pearson emerges as the widest interval, followed by the Agresti-Coull.

In Figure 3 a larger difference becomes apparent between the coverages based on n∗

and n̂∗ than in Figure 1. This may be attributed to two reasons: first, scenario D features
larger differences between the stratum sampling sizes, which would result in more unsta-
ble estimates of the sampling variance for strata that have smaller sample sizes. Another
explanation may be that clustering slows down the convergence of the estimated sampling
variance to the true sampling variance. Figure 4 contrasts the case of clustering vs. no
clustering in n∗-coverages and n̂∗-coverages for the better behaved intervals, excluding the
Wald and Clopper-Pearson. It suggests that much of the undercoverage resulting when
clustering is present is due to the estimation of the design effect.

Figure 5, analogous to Figure 2, examines all scenarios with clustering (c = 3) for the
5 better-behaved intervals. It shows that when using n̂∗ to compute the coverages, it is hard
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CI n=30 n=40 n=50 n=80 n=160 n=240
Wald 0.210 0.184 0.160 0.135 0.098 0.081
JeffPr 0.231 0.193 0.166 0.136 0.098 0.081
UnifPr 0.240 0.199 0.171 0.138 0.099 0.081
ClPe 0.266 0.218 0.186 0.149 0.105 0.085
Wils 0.240 0.199 0.171 0.138 0.099 0.081

AgCo 0.258 0.212 0.181 0.144 0.101 0.083
Assqr 0.241 0.199 0.170 0.138 0.099 0.081

Table 2: Conditional expected lengths for θ = .1, c = 3, averaged over all simulation con-
figurations, computed based on n̂∗. Configurations include τ = 10, 10000, γ0 = 0, .2, .4,
scenario C, I , D, or H .

to ascertain which interval is superior to the others, if any. Projecting all the points to the
horizontal axis shows that some of the trends that we saw in the case with no clustering
persist when n∗ is used, such as the conservativeness of the Agresti-Coull and Arcsine
Square Root intervals. Table 2 also shows a tendency for the Agresti-Coull to be a bit
wider and a mild tendency for the Jeffreys to be narrower, although the Jeffreys, Uniform,
Wald, and Arcsine Square Root again are comparable.

4. Conclusions

The above analysis suggests that under all scenarios, the Wald interval is unreliable and
often undercovers when used in the setting of complex surveys. The Clopper-Pearson is
wastefully conservative, particularly in cases where the design effect can be estimated with
more accuracy, such as Scenario C with no clustering. Clustering leads to greater volatility
of the estimated design effect, which in turns leads to lower coverages. Moreover, differ-
ential sampling fractions among strata may result in very unstable estimates of the design
effect and may add to the coverage problem. Differences between coverages based on n∗

and n̂∗ suggest great benefits can potentially be reaped from improving the estimation of
design effects. This paper sheds some light on some important phenomena that govern the
performance of confidence intervals for proportions for complex surveys. Future research
will further explore how features of the simulation, and their interactions, affect coverage.
We would also like to assess the impact of heterogeneities between and within clusters and
among strata on coverages and expected lengths for all the intervals.

Our preliminary comparison of the intervals leaves us with the Wilson, Jeffreys, Uni-
form, and Arcsine Square root as the primary contenders.

APPENDIX

A. Details of Intervals

A.1 Beta(.5, .5) Conjugate Prior (Jeffreys Interval)

Let the conditional distribution of the count X given p be binomial. The Jeffreys prior
distribution is assumed for p and is a Beta(.5, .5).

The resulting (1− α) ∗ 100% credible interval is:

L(x, n) = Beta(α/2;x+ 1/2, n− x+ 1/2)
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U(x, n) = Beta(1− α/2;x+ 1/2, n− x+ 1/2)

where x and n represent the binomial count and number of trials, and where Beta(α; a, b)
represents the α quantile of the Beta(a,b) distribution.

A.2 Beta(1, 1) Conjugate Prior (Uniform Interval)

This CI assumes a conjugate prior Beta(1,1), which is the uniform distribution. The corre-
sponding (1− α) ∗ 100% credible interval is:

L(x, n) = Beta(α/2;x+ 1, n− x+ 1)

U(x, n) = Beta(1− α/2;x+ 1, n− x+ 1)

A.3 Clopper-Pearson Interval

The Clopper-Pearson interval is based on exact binomial tails but can be expressed as:

L(x, n) =
v1Fv1,v2(α/2)

v2 + v1Fv1,v2(α/2)

U(x, n) =
v3Fv3,v4(1− α/2)

v4 + v3Fv3,v4(1− α/2)

where v1 = 2x, v2 = 2(n− x+ 1), v3 = 2(x+ 1), v4 = 2(n− x), and Fd1,d2(β) is the β
quantile of an F distribution with d1 and d2 degrees of freedom (Korn and Graubard, 1998).

A.4 Wilson Interval

Like the Wald interval, the Wilson interval is derived from an asymptotic pivot. For the
Wald interval the pivot is (p − p̂)/(

√
p̂(1− p̂)/n) and for the Wilson interval the pivot is

(p− p̂)(
√
p(1− p)/n). The Wilson interval bounds are

x+ k/2

n+ k2
± kn1/2

n+ k2
(p̂q̂ + k2/(4n))1/2

where k represents the (1− α/2)100th quantile of the normal distribution.

A.5 Agresti-Coull Interval

The Agresti-Coull Interval uses the same formula as the Wald interval, namely p̂±k
√
p̂(1− p̂)/n,

except rather than using x/n for p̂ it uses the center of the Wilson region. Here x̃ = x+k2/2
and ñ = n+ k2, p̃ = x̃/ñ, and the CI is p̃± k

√
p̃(1− p̃)/ñ.

A.6 Arcsine Square Root Interval

The Arcsine Square Root Interval features a variance stabilizing transformation, namely
arcsin

√
p, with a modification. We set p̂ = (x + 1/2)/(n + 1) to correct a marked anti-

conservative tendency (see Gilary et al., 2012). Hence the bounds are:(
sin2(max(0, arcsin

√
x+ .5

n+ 1
− z√

4m
)) , sin2(min(

π

2
, arcsin

√
x+ .5

n+ 1
+

z√
4m

))
)
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Figure 2: Scatterplots of all Scenarios with No Clustering, Excluding Wald and Clopper-
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Figure 3: Scatterplot of Scenario D with Clustering
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Figure 4: Scatterplots of conditional coverages using n∗ and n̂∗ contrasting the case of
c = 1 and c = 3 for all intervals excluding the Wald and Clopper-Pearson
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Figure 5: Scatterplots with clustering, all scenarios, excluding Wald and Clopper-Pearson
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