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Abstract
One of the important reasons advanced for calibrating household sample surveys to population

totals is the imperfect coverage of target frame populations by operational frame lists. The theo-
retical justification for design-consistency based on calibration depends on the assumption that the
calibration-variable population totals are correct. When the frame list has perceptible differences
from the target population, the calibrated weight-adjustment is no longer design consistent, but
models of the frame may still allow consistent modified calibration estimates. Such models can be
created if the periodically available data used to update frame lists are viewed as time-dependent
covariates driving the rates of unit deletion from and addition to the frame as a time-varying random
process. This paper proposes such a model and discusses how it might be used in the context of the
Census Bureau’s Master Address File.
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Disclaimer. This report is released to inform interested parties of ongoing research and to encour-
age discussion. Any views expressed on statistical, methodological or operational issues are those
of the author and not necessarily those of the U.S. Census Bureau.

1. Introduction

The Master Address File (MAF) is the continuously maintained list of dwelling-unit
addresses used by the US Census Bureau in its two largest data collection efforts, the
Decennial Census and the continuously operating American Community Survey (ACS).
It is the list from which working frames for the census and the ACS are constructed (as
“extracts”), and in the future will serve as the basis for frame construction in several of
the most important sample surveys conducted by the Census Bureau including the Current
Population Survey, Survey of Income and Program Participation, and American Housing
Survey. The MAF is repeatedly updated based on information periodically supplied by
the US Post Office (the Delivery Sequence Files) along with the post-2000 Census Demo-
graphic Area Address Listing, surveys of new construction, and address canvassing for the
decennial census. “Address canvassing” refers to the massive program, last executed in
2009, in which Census Bureau workers compare what they can see on the ground concern-
ing all actual or potential dwelling units with the MAF’s current listings.

The elements of the MAF, or MAFID’s, correspond to unique addresses indexed (“geo-
coded”) to standard Census Bureau geographic units such as the census block. The MAFID’s
are intended to cover all unique locations (in the US and Puerto Rico) of potentially residen-
tial structures. They are identified as group quarters or housing units or ‘invalid addresses’
(business structures or buildings where no one could live), but MAFID’s often have a longer
life than buildings, e.g., when a house is demolished but a new one is built on the same lot.
Therefore, it makes sense to view map locations with MAFID’s as the basic units of the
MAF whose status evolves over time.

As part of the current 2020 Census research effort, Census Bureau researchers (Young
et al. 2014, Tomaszewski and Boies 2014) are developing predictive models for numbers
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of adds and deletes to MAF based on data from the last round of address canvassing con-
ducted in preparation for the 2010 Census. The intended application of such models is to
the targeting of address canvassing for the 2020 Census, potentially allowing address can-
vassing to be done at a much-reduced cost by omitting blocks with the lowest expectation
of producing MAF changes by canvassing. The predictive models of Young et al. (2014) for
block-level counts of adds and deletes, which will be discussed in greater detail in Section 3
below, are based on explanatory variables extracted from several sources of data assembled
as part of the 2009 address canvassing operation, including the US Postal Service Delivery
Sequence Files (DSF) available every 6 months, and the Demographic Area Address List-
ing (DAAL) program following the 2000 Census. These models, which took the form of
zero-inflated generalized linear models, made use only of predictive covariates aggregated
from housing units up to the level of census blocks. They represent data from a snapshot
of MAF changes related to a temporally focused round of address canvassing associated
with the decennial census, although many of the data sources are and will continue to be
recurrent, available periodically.

Several data streams serve the Census Bureau in its efforts to update the MAF housing
inventory for ongoing intercensal surveys such as the ACS. These include the following
specific sources: (i) the Postal Service DSF, generated twice each year, containing many
unit-level status variables for mail delivery, occupancy, and address stability; (ii) geograph-
ically indexed new-construction estimates provided by the Census Bureau’s Manufacturing
and Construction Division – non-mobile homes based on the Survey of Construction, and
mobile home totals based on the Survey of Mobile Home Placements; (iii) the blockgroup-
level Planning Data Base (PDB), containing neighborhood demographics and census and
ACS characteristics; (iv) occasional data from Address Canvassing (in preparation for de-
cennial censuses), observed (but not without error) as described in the Johnson & Kephart
(2013) Census evaluation report; and (v) other data assembled and codified by Geography
Division, such as the classification of blockgroups into Urban and Rural categories based
on population density, on proximity by map-coordinates and roads to urban areas, and on
aerial imagery of pavement surfaces and terrain. It should be mentioned that a significant
proportion of the new addresses provided by DSF require time and additional effort to be
geo-coded, an operation of the Census Bureau’s Geography Division that imposes time-lags
on MAF updating well beyond the 6 months between successive DSF releases.

The purpose of listing these data sources for MAF updates is to emphasize that they
could be used to support a regular time-evolving database through which predictive models
for the MAF might be derived. Such a database could be used not only in Targeted Address
Canvassing — the application envisioned in 2020 Census research — but in forecasting and
estimating the likely discrepancies over time between the MAF listing and the true status
on the ground of potentially residential structures in the US.

The goal of this paper is to describe the way in which a time-dependent database of
housing-unit and area-level covariates could be used to estimate frame errors based on the
MAF. The overall perspective advanced here is that the MAF is necessarily a stochastic pro-
cess, that is, a listing of units whose individual status varies nondeterministically over time,
but evolves through mechanisms that can be described through regression relationships in
terms of a sufficiently detailed set of time-dependent covariates. We begin, in Section 2,
by distinguishing the true target population of residential housing structures, which we call
the ideal frame, from the working frame of MAF entries or of extracts (for the purpose of a
particular survey) from which designed survey probability samples are drawn. We briefly
argue in Section 2 that in survey analyses which make use of calibration or population con-
trols – and this is true of essentially all Census Bureau surveys – the discrepancies between
ideal and working frames enter survey estimates primarily but not exclusively through er-
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rors in the frame totals of calibration variables. In Section 3, we describe the data inputs and
statistical form of the single-time-point models of Young et al. (2014) currently under study
for Targeted Address Canvassing and their relation to latent state models which explicitly
take time dynamics into account. Section 4 introduces the class of Markovian models with
exogenous time-dependent covariates that we propose should be used to describe the time-
evolving MAF, and discusses how to define the underlying Markov-process state-space. In
Section 5, we show how Markovian models like those of Section 4 would lead to predicted
frame transition rates and therefore also to predictions of numbers of transitions (adds and
deletes at unit level, aggregated to suitably chosen geographic areas). Some remarks about
the fitting of the models in Section 4 are also made in Section 5, but unless the database
of time-dependent covariates is available at unit level, this leads to some partially unsolved
technical problems. Finally, we conclude in Section 6 with a summary of our proposal for
a time-evolving and regularly updated US unit-level housing database and its application to
the estimation of survey frame errors, a proposal which naturally leads to suggestions for
further research.

2. Ideal versus Working Frames: the Role of Calibration

Calibration, raking or “generalized raking” are terms used to refer to the most important
ways in which statisticians analyzing the results of a survey attempt to correct for possible
errors of frame coverage (Deville and Särndal 1992, Fuller 2009). The idea is that one
collects survey data including not only the outcome variable Yi of interest, for sampled and
responding units i, but also some auxiliary variables Xi. The auxiliary variables here are
assumed to be vectors of unit-level measurements known or observed for all sampled units
(whether they respond to the survey or not) for which the target population totals are also
known. Since the target population U∗ is generally not precisely the same as the working
frame list U from which the probability sample is drawn, we must distinguish these two
underlying frame populations.

The probability sampling design of a survey generates inverse inclusion probability
(base or design) weights di = 1/πi, where πi is the probability that unit i in the working
frame U is included in the sample, where the sample is denoted S ⊂ U . Denote by n the
number of elements of S (usually assumed nonrandom) and by N the number of elements
of U . Let Ri denote the indicator that a unit i responds (or would respond if sampled) to
the survey; let t∗X =

∑
i∈U∗ Xi be the vector total of Xi over the target-population, and

tX =
∑

i∈U Xi be the corresponding total over the working frame. Assume further, from
now on, that Xi has first coordinate 1 for all i ∈ U .

For notational simplicity, we denote for any attribute Zi, scalar or vector, tZ ≡
∑

i∈U Zi,
so that for example tRX =

∑
i∈U RiXi and t(1−R)Y =

∑
i∈U Yi(1 − Ri). Similarly, we

denote t̂Z ≡
∑

i∈S di Zi, the Horvitz-Thompson design-weighted survey estimator.
With t∗Y =

∑
i∈U∗ Yi as the population parameter to be estimated, and Xi as calibra-

tion variables, one version of the linear-calibration estimator (when there is no separate
nonresponse adjustment) is defined by

t̂Y,cal =
∑
i∈S

wi Yi , wi = di Ri

{
1 + (tX −

∑
j∈S

djRjXj)′
( ∑

j∈S

djRjXjX
′
j

)−1
Xi

}
Here the weights wi are equivalently defined as minimizers of the loss-function∑

i∈S Ri (wi−di)2/(2di) which quantifies the difference between the design and adjusted
weights, subject to the calibration constraint

∑
i∈S wi Xi = tX .

The calibration estimator t̂Y,cal uses only the working frame information including
calibration-variable totals presumed to come also from the working frame. Under general
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conditions, we show that t̂Y,cal is a design-consistent estimator of tY . These conditions are
slightly more complicated than those given by Deville and Särndal (1992) because unlike
that paper, our version of the calibration estimator simultaneously adjusts for nonresponse.
For a formulation like the one here, see Särndal and Lundström (2005, Chap. 6).

In a superpopulation large-sample setting, under general conditions on the representa-
tiveness of the samples drawn, on the largest magnitudes of Xi and Yi (as functions of N ),
and on the uniform positivity of the smallest eigenvalues of

∑
i∈U Ri Xi X

′
i,

t̂RX = tRX + OP (
N√
n

) , t̂RY = tRY + OP (
N√
n

) , t̂RY X = tRY X + OP (
N√
n

)

as both n and N get large and are nonrandom, and∑
ı∈S

di Ri Xi X
′
i =

∑
i∈U

RiXiX
′
i + OP (N/

√
n)

Then it follows immediately from the last displayed equations that

β̂r ≡
[ ∑

i∈S

di Ri Xi X
′
i

]−1
t̂RY X = βr + OP (

1√
n

)

where βr ≡ (
∑

i∈U Ri Xi X
′
i)
−1 tRY X , and similarly that

t̂Y,cal = t̂RY + (tX − t̂RX)′ [
∑
i∈S

di Ri Xi X
′
i

]−1
t̂RY X

= tRY + (tX − tXR)′ [
∑
i∈U

Ri Xi X
′
i

]−1
tRY X + OP (

N√
n

)

Now, substituting the definition of βr and making using of the identity∑
i∈U Ri Xi (Yi − β′rXi) = 0 that it implies, we find

t̂Y,cal = tRY + (tX − tRX)′ βr + OP (
N√
n

) = β′r tX + OP (
N√
n

) (1)

So far, we have not assumed anything about the mechanism of nonresponse or about the
approximate equality of ideal and working frame totals. Typical assumptions about the non-
response mechanism, with the flavor of the pseudo-randomization model (Fuller 2009) or
the Missing at Random assumption, would restrict the dependence of the jointly distributed
random variables (R, Y,X) in such a way that P (R = 1 |Y, X) = P (R = 1 |X) with
probability 1. In the present setting — where Xi and Yi are viewed as finite-population
attributes that are unknown but not random, while Ri are viewed either as binary random
variables or constants with general dependence on i — the proper form of the assumption
that responders are like nonresponders in their (X, Y ) relationships is that for βr defined
as above, N−1 ∑

i∈U Xi (Yi−β′rXi) is close to 0 as N, n get large. Specifically, assume

N−1
∑
i∈U

Xi (Yi − β′rXi) = oP (1/
√

n) as n, N → ∞ (R)

This assumption says that the working-frame least-squares regression coefficient vector β
is very close to the coefficient vector βr defined from the responder-subset of U
(i.e., from the subset of units i for which Ri = 1). Under this assumption, combined
with (1), t̂Y,cal = tY + OP (N/

√
n), and the top-order OP (N/

√
n) remainder term here

is exactly the same as in equation (1).
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The assumption (R) holds for example when n = oP (N) if the covariate-vectors Xi are
discrete with finitely many levels Xi = xj , 1 ≤ j ≤ k, with k fixed as N gets large, and
either if the response indicators Ri are random and independently identically distributed
for i ∈ Cj ≡ {a ∈ U : Xa = xj} for each j, or if the proportions of responders Ri = 1
within the cell Cj tend to a limit pj as N gets large, and the subset {i ∈ Cj : Ri = 1} is
chosen by simple random sampling from Cj .

Now we can complete our discussion of the effect of discrepancies between the ideal
and working frames. The survey estimators used in practice are, like t̂Y,cal in (1), based
upon the working frame, which are design-consistent (after normalization by N ) for the
total-parameter t′X βr over the working frame. In the real situation where tY = tX

′ β
may differ from the target-population total t∗Y = t∗X

′ β∗, the inconsistency in the estimator
manifests itself in two ways: in the difference tX − t∗X between the calibration totals in
the two frames, and also in the difference between the frame least squares coefficients
β = (

∑
j∈U XjX

′
j)
−1 ∑

j∈U XjYj and β∗ = (
∑

j∈U∗ XjX
′
j)
−1 ∑

j∈U∗ XjYj . Thus,
even if the calibration variable totals t∗X associated with the ideal frame U∗ were available
from an external source to replace the totals tX in the calibration constraints, the ideal-
frame design consistency of t̂Y,cal would not be guaranteed, since the coefficient vectors β
and β∗ would not in general be the same. However, if one could reasonably assume that
β = β∗, then the foregoing arguments based on (1) show under assumption (R) that a
revision of the working-frame calibration totals tX to bring them into line with the ideal-
frame totals t∗X would eliminate the inconsistency of t̂Y,cal.

From this point of view, the development in the paper is aimed at modeling the changes
in a frame like MAF between updates in order to estimate differences t∗X − tX . If both
(R) and β = β∗ are tenable assumptions, then estimates of these differences could allow
calibration estimators constructed from a working frame to be brought closer to consistency.

Remark 1 The superpopulation-based assumptions provided here under which linear cali-
bration estimators simultaneously adjusting for nonresponse (design-consistently when the
working frame is the ideal frame), can also be extended to generalized calibration or raking
estimators. Such estimators arise when a different loss function

∑
i∈S di H(wi/di− 1) is

used to measure differences between design and adjusted weights (based on a function H
such that H(0) = H ′(0) = 0 and H ′′(0) = 1), instead of the quadratic one leading to
linear calibration. The theoretical machinery for proving design consistency is given by
Deville and Särndal (1992) in the absence of nonresponse. When nonresponse is taken into
account, the theory of Deville and Särndal shows that a generalized calibration estimator is
design-consistent for β′r tX and is asymptotically equivalent to the linear calibration esti-
mator t̂Y,cal in the sense that the difference between the two estimators is oP (N/

√
n). Thus

the discussion above concerning the effect of ideal versus working frame discrepancies ap-
plies equally when raking (the case H(z) = (1+z) log(1+z)−z) or a pseudo-empirical
likelihood method (H(z) = − log(1+z)+z) is adopted subject to calibration constraints.

3. Latent State Models for Frame Inclusion

We consider next some of the models which have been and might be fitted to data consist-
ing of variables at unit and aggregated (block) levels describing frame elements before and
after frame updating, together with indicators at unit level of frame additions and frame
deletions. We have argued in the Introduction that unit additions and deletions could be
studied statistically for the Census Bureau MAF through periodically updated unit-level
descriptors and MAF status descriptors over time. The point of view advanced here is
that unit-level or aggregated MAF (or other frame) status descriptors should be viewed
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as a time-evolving stochastic process, with status changes (adds or deletes), new arrivals
(i.e., new frame elements arising through new construction or conversion from other uses
like businesses or splittings of previous frame elements), and removals (demolitions, con-
demned structures, zoning changes from residential to business, and purging of duplicates).

Current efforts at modeling frame changes have focused on counts of adds and deletes
of frame units at block level as a result of a single round of address canvassing. Young
et al. (2014) studied the counts respectively of block-level adds N+

b and deletes N−
b as a

result of address canvassing in 2009-2010, in preparation for the 2010 Census, in terms of
predictor variables observed before canvassing through the Postal Service Delivery
Sequence Files, the post-2000-Census DAAL program, and new-construction and vacancy
surveys. The predictor variables used are described in some detail by Young et al. (2014),
but fall into the following broad categories:

(1) Geographic characteristics of blocks. Variables in this class include address-types
(city-style, rural-route, or non-city) cross-classified with DSF coverage indicators,
indicators of American Indian or Native Hawaiian Homeland status, Urban indicator,
and indicator that the block was matched to the Census Bureau’s TIGER integrated
geographic database. Other variables of this sort that could have been included are
found in the regularly updated Planning Data Base containing summary characteris-
tics of census block-groups from the most recent ACS and decennial census.

(2) Characteristics of individual housing structures. These variables included a Trailer-
as-HU indicator, indicators that a unit was included in the previous census or the
MAF, had a small multi-unit address, was excluded from USPS delivery statistics,
had one of a defined set of postal delivery types (business curbline mailbox, residen-
tial curbline mailbox, cluster mailbox in restricted community, etc.), is seasonally
occupied, is vacant, or had one of several categories of ‘valid’ or ‘invalid’ address.
Several of the variables mentioned here are characteristics of address stability as seen
by the Postal Service, and the DSF files contain other such variables.

In the data explorations of Young et al. (2014), the unit-level variables were aggre-
gated or recoded to block-level variables (e.g., indicators of at least one address of various
types in the block), and interactions or other recodes combining multiple variables were not
considered. Thus, some of the variables found by Young et al. to drop out of variable-
selection screening might still play a role in models allowing interactions, and unit-level
models of the types fitted by Young et al. (2014) with predictors selected from an expanded
set of explanatory variables have yet to be tried.

Letting X◦
b denote vectors of block-level predictor variables, and N+

b , N−
b respectively

denote the block-level counts of adds and deletes, the models fitted by Young et al. (2014)
were of the form of Zero-Inflated Latent State Models, in which the counts N+

b or N−
b ,

assumed independent across distinct block indices b, are represented in the form Nb =
εb · νb, where εb is a binary variable satisfying a logistic regression

P (εb = 1 |X◦
b ) = (1 + exp(−β′X◦

b ))−1

and νb is a count random-variable (conditionally independent of εb given X◦
b ) following a

Poisson or Negative-Binomial Generalized Linear Regression Model with rate-parameter
exp(γ′ X◦

b ). The essence of this model is that εb ∈ {0, 1} is a latent state describing the
entire block b which, when equal to 0, indicates that the count Nb (of frame changes, adds
or deletes) must be 0.

The zero-inflated models were first introduced in Lambert (1992), in the setting of
manufacturing defects, where the latent state εb was an indicator of a manufacturing process
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being out of control, and the count of actual defects νb observed in the out-of-control state
was taken to be Poisson with log-rate following a linear model in terms of covariates.
At least implicitly, Lambert envisioned the underlying time-dynamics of manufacturing
processes passing stochastically in and out of control. Analogously, one might consider
models for the time-evolution of the latent states εb each of which indicates whether the list
of frame units within block b can change in a current round of updates.

Models including mechanisms of change of state over time have been studied in many
forms in the statistical literature. Earliest and most prevalent are Markovian models with
observable states, and such models are readily extended to allow regression-type modifica-
tions of single-time-step transitions or transition rates as a function of covariates, as in Slud
and Kedem (1994). A more elaborate discussion of likelihood inference for continuous-
time models with transition intensities driven by continuous-time exogenous (unmodeled)
covariates is given by Slud (1992). Models of this type are often expressed in terms of
transition intensities that are themselves functions of covariates that may also be time-
dependent stochastic processes. Semiparametric survival-time regression models of this
type have been very prominent in biostatistics for more than 20 years (Andersen et al. 1993).

Different sorts of models have been devised for the time dynamics of Markov processes
in which an important part of the state is unobservable. There is a huge literature on Hidden
Markov models, with widely divergent fields of application ranging from computer recog-
nition of audio speech signal sequences to automatic recognition of genes within DNA
sequences. Common to all of these papers is a discrete sequence process (Mt, εt) in which
the Mt sequence is observable but the latent states εt are not, and usually εt is modeled as
a Markov process within a finite-dimensional parametric family while the observable se-
quence variables Mt are assumed conditionally independent given the sequence {εs}s.
In these models, the unobserved states {εs}s are interpreted as an unobserved ‘context’
given which the observables follow relatively simple conditional models f(Mt | {εs}s) =
f(Mt | εt−j , j = 0, . . . , k) that may themselves contain unknown parameters. These mod-
els may all be viewed as mixed-effect Markov chain models, in which the latent states εt

are discrete components of heterogeneity incorporated into a Markov chain model for the
observables. Among many other papers on zero-inflated count time-series, one which may
be viewed as a mixed-effect time series state-space model is Wang (2010).

An important class of Hidden Markov models in social science settings is the Mover-
Stayer model (Vermunt 2004). This model is assumed to govern populations of independent
individuals, each of whom at each time is a member of one of two unobservable groups
(latent classes), whose composition changes with time. (These might be “movers” or
“stayers” in settings where social behavior related to transiency is of interest; or adher-
ents to one of the two major political parties in models of political behavior.) These models
appear also in biostatistics, where the Markov chain for transitions of the observable vari-
ables given the latent states often have a generalized linear structure in terms of individual
covariates. See for example the 1999 Biometrics paper of Albert on a mover-stayer model
for longitudinal disease markers.

We seek in this section to place the zero-inflated generalized linear models of Young
et al. (2014), for block-level counts of MAF adds and deletes from address canvassing,
into a broader context of statistical models that incorporate temporal dynamics. Many
of those are latent-state hidden Markov models, generally analyzed using some variant
of the EM algorithm. They are mixture models, and when they are driven by covariates
through regression models, require observations of units for many successive time-points,
and even then can be very hard to fit. The alternative to latent-state modeling, in a data-
rich environment such as MAF, is to define states explicitly through recoded groupings
of unit-level covariates, after clustering covariate-defined cells with very similar observed
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behavior. That is the approach preferred and advocated here for time-dependent modeling
of unit-level MAF frame transitions.

4. Conditional Markov Models with Time-dependent Covariates

What might a Markovian model for the units of a frame list (MAF) look like? We will
assume that existing MAF units (MAFID’s) i are each uniquely1 associated with block
indices b = b(i) and equipped with a vector of covariates Xi(t) and one of a finite set
of state-labels Mi(t) ∈ {D, 1, 2, . . . ,K} at time t. Here the state D stands for Deleted
and will be treated as an absorbing state, labelling a unit as an irreversibly invalid address.
View the covariates Xi(t) as time-evolving but non-random frame attributes, which is to
say a complicated set of unknown non-random functions of time associated with population
units. In this setup, the ideal frame U∗ = U∗(t) itself is a stochastic process, which by
convention retains all units with Mi(t) = D, but which is also subject to an immigration
process according to which new units enter the frame at times of nonhomogeneous block-
specific Poisson processes with rates µb(s) = exp(α′ Zb(s)), where Zb(s) are observable
block-level time-dependent covariates. Finally, the state Mi(s) for unit i ∈ U∗(t) would
move independently j 7→ k for t < s ≤ t + 1 according to a transition intensity which
depends on the set X(t) of all covariate processes only through the unit-i covariates, in the
form

λ
(i)
j,k(s |X(t)) = λj,k(s |Xi(t)) = exp(βj,k

′ Xi(t)) (2)

where {βj,k : j 6= k, j = 1, . . . K, k = D, 1, . . . ,K} and α are unknown vectors of
parameters. There is no need to parameterize rates of transition from state D, since we
assume that state is absorbing, so that any unit entering state D remains there forever.

According to this formulation, units in the frame population follow independent Markov
processes driven by covariates governed by (2), and new units enter the frame according to
block-specific inhomogenous Poisson processes with rates that may change as block-level
covariates Zb(t) do. The observable unit-level covariates Xi(t) might also contain some
block-level covariates, and all covariates are assumed to be observable at integer time-unit
intervals as new DSF and construction and vacancy survey data come online. However,
although the states Mi(s) might be partially updated at regularly spaced integer times t,
states are not ascertained completely except just after address canvassing. As mentioned in
the Introduction, full and correct information about frame inclusion is not truly available
even from address canvassing, but we make the oversimplifying assumption that covariates
and states are observed at integer times t, e.g. at the 6-month intervals when DSF updates
have been received and processed. The frame size is then unknown only between integer-
time updates, so that at time s ∈ (t, t + 1], intermediate frame changes between t and t + 1
are missing data. If properly specified and fitted, the model might be used — as described
in the next section — to forecast the frame changes up to the next update-time t + 1.

The states Mi(t) themselves have not yet been defined clearly, since it is proposed
to define them after data explorations as a result of clustering of transition intensities in
unit-level models fitted from a database of regularly updated frame-unit covariates summa-
rizing neighborhood characteristics, address and postal-delivery stability, along with unit
occupancy and residential status. The interpretations of the states — essentially as labels
for classes of units defined from covariates with roughly similar rates of transition to the
Delete-state D — will be discussed more fully in Sec. 4.1 below.

In the notations of this section, the data used in fitting the zero-inflated GLM
models of Young et al. (2014) are obtained from a single interval (t, t + 1] during which

1This is a somewhat over-optimistic assumption of no geo-coding errors and no duplicates.
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an address-canvassing operation takes place, and the block-level counts of adds and deletes
are aggregated from unit-level data as

N+
b =

∑
i∈U∗(t+1)

I[b(i)=b, Mi(t+1)6=D] −
∑

i∈U∗(t)

I[b(i)=b, Mi(t) 6=D] (3)

and
N−

b =
∑

i∈U∗(t)

I[b(i)=b, Mi(t+1)=D] (4)

4.1 Discussion of States in the MAF Setting

Several special definitions and interpretations regarding the handling of MAFID’s should
be taken into account in any model of the type described in Section 4.

• The units being indexed, the MAFID’s, should in principle consist of all map-spots
with potentially residential dwelling units.

• Two types of frame changes might be considered ‘adds’: first are those representing
residential conversions of MAFID’s currently identified as ‘invalid addresses’, like
businesses or some other type of structure on MAF; and second are the genuinely
new units, which might either be completely new construction or else splitting of
structures like garages or sheds or subdivision of houses or apartments to create new
dwelling units which would receive new MAFID’s. Note that a MAF add based on
splitting would generate a new MAFID so that the corresponding rates in a proper
model would involve splitting from individual units with unit covariates, while other
adds would not be associated with any single existing unit, and the rates of immigra-
tion of these would be based only on block-indexed covariates.

• To account for states related to deletes, some changes of MAFID valid addresses to an
invalid status should, if potentially reversible, not be treated as removal of the unit or
entry into the absorbing state D, but rather as entry into a class K of dormant quasi-
deleted units from which (rare) returns to valid-address status can occur. Deletes
associated with demolished structures do sometimes retain their MAFID’s, and new
construction on that same site in the future would constitute a special type of add
transition linked to a specific address rather than to the block as a whole.

5. Estimates and Predictions of Frame Transitions

Because of the necessary technicalities described in Section 4.1 requiring some adds in
MAF to be treated as Markov-process ‘immigration’ and others as unit splittings and still
others as state-transitions, we consider in this section only deletes in discussing how model
parameters would be estimated and used to forecast frame changes at the next future update-
period. The response data available up to discrete update-time t for use in model fitting
would be the indicators I[Mi(u)=D] for units i ∈ U∗(u − 1) for u = 1, 2, . . . , t, with the
corresponding covariates Xi(u − 1). These observed delete-indicators would, according
to the model, have expectations conditional on covariates and Mi(u − 1) = j equal to
time-homogeneous Markov-process transition probabilities

Pj,D(u− 1, u |Xi(u− 1)) = Pj,D(0, 1 |Xi(u− 1)) (5)

where we explicitly disallow the possibility that adds within (u − 1, u] could also become
deletes within the same update-period, and we note that under the model (2) the Markov
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transitions are time-homogeneous because the transition regression coefficients βj,k are not
time-dependent. The probability of transition from j to D in the time-interval (u − 1, u]
must allow for all trajectories within the time-interval in which unit i starting at state j hits
intermediate states before landing in D; but all of the intermediate transition-steps share the
same covariates Xi(u− 1) since, according to our formulation in Section 4, the covariates
do not change between successive integer update times.

If we consider the situation as of time t, delete-indicators I[Mi(u)=D] for units
i ∈ U∗(u − 1) for u ≤ t are the data, with conditional expectations of observables at
time u − 1 expressed as (5). The forecast probabilities for time t + 1 deletes would be
Pk,D(0, 1 |Xi(t)) for i ∈ U∗(t), Mi(t) = k.

These probabilities, both for model-fitting and forecasting, are simple enough to be
useful only when the probabilities of two or more transitions within any single update-
interval are negligible. This is an assertion about the small length of update-intervals
compared to typical occupation times for units in a fixed state (other than D). For the
remainder of this section, we assume this to be true. In that case, standard continuous-time
Markov chain theory tells that for i ∈ U∗(u− 1) and Mi(u− 1) = j,

Pj,D(0, 1 |Xi(u− 1)) ≈ 1 − exp
(
−

∫ u

u−1
exp(βj,D

′ Xi(s)) ds
)

(6)

and that these probabilities are small for each such i. Using conditional independence
of the indicators I[Mi(u)=D] across i, given data up to time u − 1, it can be argued that
the block-level aggregate counts

∑
i∈U∗(u−1) I[b(i)=b, Mi(u)=D] of time-u deletes will be

approximately Poisson distributed with parameter∑
i∈U∗(u−1)

I[b(i)=b] exp(βMi(u−1),D
′ Xi(u− 1))

The corresponding forecast for the count of deletes in block b at time t + 1, based on
parameters {βj,D} and covariates as of time t, is obtained from

∑
i∈U∗(t): b(i)=b

I[Mi(t+1)=D]
D≈ Poisson

( ∑
i∈U∗(t): b(i)=b

exp(βMi(t),D
′ Xi(t))

)
(7)

Indeed, the expression for Poisson parameter on the right-hand side of (7), with parameter
estimates substituted for parameters βjD would be the forecast for the count of deletes
in block b at time t + 1. Such forecasts (augmented by predictions not given here for
corresponding counts of block-level adds) would be used to modify the control totals tZ
for various attributes Z, to make them closer to the desired totals t∗Z before using them as
calibration constraints.

In estimating or forecasting frame deficiencies, e.g., the number of deletes between
successive updates, there is no need to estimate transitions λj,k among states j, k =
1, . . . ,K if the shortness of time-intervals between successive updates implies that the
probabilities of multiple transition steps within those short intervals can be ignored.

5.1 Zero-Inflated Type Model as Special Case

In the setting we are now considering, where the probabilities of two or more state-transitions
for a unit i within a single update interval (u − 1, u] are sufficiently small to be ignored
by comparison with the single-transition probabilities on the right-hand side of (6), a zero-
inflated model for counts can arise as a special case. Suppose that data are available only
from the single update time-interval (0, 1], and that the covariates Xi(0) entering into (2)
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consist only of X◦
b at the block level (i.e., are identical for all i with b(i) = b). Suppose

further that the units have only two non-absorbing states, so that K = 2, where states 1 and
2 respectively correspond to ‘stable’ addresses with very rare transitions to the Delete state
(λ1D ≈ 0) and to less stable addresses for which the transition intensities λ2D modeled by
(2) are not so small.

Then if
nbk =

∑
i∈U∗(0), b(i)=b

I[Mi(0)=k] for k = 1, 2

denotes the number of block-b units initially in the frame in state k, the rarity of 1 7→ D
transitions implies

N−
b ≡

∑
i∈U∗(0), b(i)=b

I[Mi(1)=D] ≈
∑

i∈U∗(0), b(i)=b

I[Mi(0)=2] · I[Mi(1)=D]

Then equation (7) at t = 0 implies that

N−
b

D≈ Poisson
(

nb2 exp(β′2DX◦
b )

)
(8)

where for blocks with nb2 = 0, the approximate distribution of N−
b should be interpreted

as degenerate at 0.
However, if the available data at time 0 includes only X◦

b and not {nb1, nb2}b, then
the Markov-transition dataset has random but unobservable initial states, and N−

b has an
approximate mixture distribution, with

P (N−
b = m |X◦

b ) ≈ E
(
dpois(m , nb2 exp(β′2DX◦

b )) |X◦
b

)
for m ≥ 1 (9)

where dpois(m,λ) ≡ e−λ λm/m! denotes the Poisson probability mass function for
nonnegative integers m, and the expectation on the right-hand side of (9) is taken with
respect to the conditional probability mass function of nb2 given X◦

b . The model given in
equations (8) and (9) is a zero-inflated type of model for block-level deletes. The zero-
inflation portion of the model is precisely the conditional probability P (nb2 = 0 |X◦

b ), and
might be approximated by a logistic or other generalized-linear regression as a function of
X◦

b . The count N−
b , conditionally given nb2 > 0, is then a mixture of Poisson regression

distributions. Thus, the count distribution may no longer follow an exponential-family
generalized linear model.

We have seen in this special setting that zero-inflated count mixture models arise nat-
urally in the unit-level Markovian model of Section 4, when data are available only in
block-level aggregates and the numbers of units in different non-Delete states at the be-
ginning of a single update interval are unobservable. More generally, statistical inference
of parameters in the Markov model presents technical challenges when only block-level
aggregated data are available, a problem closely related to that studied by Gill (1988).

6. Conclusions and Further Research

This paper has advocated the point of view that the address frame for a repeatedly con-
ducted survey is a stochastic process, and that the unit- and area-level information used
to refresh the frame should be viewed as data. The Census Bureau collects such data as
part of the regular Delivery Sequence Files that it receives from the U.S. Postal Service,
from the national surveys on New Construction, Housing Vacancy, and Mobile Homes
that it conducts, from geographic databases that it maintains, and from the occasional
address canvassing operations it undertakes as part of decennial census preparations.
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Master Address File updates have in the past not been regarded as a data resource from
which forecasts and estimates of frame errors might be made in terms of the dynamics of
adds and deletes, but they could be developed into such a resource. This is an especially
timely possibility because of the Census Bureau’s current initiative to develop models of
counts of block-level MAF adds and deletes, from past address canvassing, and to apply
them to Targeted Address Canvassing in the 2020 Census.

A Markovian model of unit-level MAF status-changes has been proposed here, with
covariate-based groupings of addresses as states. The definition of such states has been
discussed in terms of underlying mechanisms of change and instability for individual
residential housing units. However, the definition of such states must ultimately depend
on analysis of data and tentative description of the rates of occurrence of adds and deletes
in terms of block and unit level covariates. A specific conclusion from the proposals made
here is that this kind of unit-level transitional analysis, from MAF updating data made as
detailed as possible, should be high on the Census Bureau’s research agenda. Such research
would simultaneously support future targeting operations for MAF updating, and also fu-
ture application to estimates and forecasts of MAF errors as experienced in the major na-
tional surveys that the Bureau conducts. Estimation and forecasting could be accomplished
using regularly observed update-data through models of the sort proposed here.

The considerations of this paper suggest several specific directions of MAF update data
analysis and modeling research:

• Targeting in address canvassing and specification of states for Markov models of
unit address status both require an effective disaggregation of addresses into groups
or clusters within which the rates of occurrence of adds or deletes are very similar,
and across which these rates are as different as possible.

• It is very important that future modeling efforts concerning the rates of local adds
and deletes in terms of covariates should be more detailed than has been tried so far,
incorporating unit-level address covariates and block-group level neighborhood data
available through the Planning Data Base, as well as interactions of these.

• As far as possible, models are needed also for unit-level rates of adds and deletes in
terms of covariates available from regularly updated data sources, and not just from
decennial address canvassing.

• Separate models for rates of block-level occurrence of New Construction should be
developed.

• The process of developing models for unit-level address-status changes will clarify
whether models for adds and deletes must take account of a few different mecha-
nisms for MAF additions and deletions, in particular of the distinctions discussed in
Section 4.1 between those additions and deletions logically related to area-level vari-
ables — such as the ones from new construction or re-zoning — and those resulting
from resident behaviors at the unit level such as the splitting or merging of separate
dwelling units at a single address.
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