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Abstract 
Advances in computing processing and the availability of open source statistical 
platforms have helped develop new graphical tools to analyze and explore data patterns. 
As a proof of concept, a graphical toolbox for nonresponse analysis in survey data was 
developed. The toolbox can be used for exploring nonresponse patterns in samples and 
for evaluating the effectiveness of nonresponse adjustments. The toolbox includes 
descriptive displays (mosaic plots, conditional density plots, and density plots) and 
analytical displays (heat map fit plots and b-plots for nonresponse and adjustment 
factors). The use of the toolbox is demonstrated by conducting several graphical analyses 
of nonresponse patterns in two published papers. Since this is a new approach for 
studying nonresponse, general guidelines need to be developed for this type of analysis. 
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1. Motivation and Proof of Concept 
 
Graphical Methods for Data Analysis (Chambers, Cleveland, Kleiner, & Tukey, 1983) 
was one of the first books on data visualization and graphical methods for data 
exploration published during the personal computer revolution more than 30 years ago. 
Since then and propelled by the continued development of high performance computers, 
graphical methods have become very popular as a way to analyze and discover patterns in 
data. 
 
In contrast to the prevalence of this type of analysis in many statistical fields, graphical 
methods are not as common in survey methodology. Their current use is limited to the 
presentation of survey results in the form of infographics in recent years. One possible 
reason is that there is no easy-to-use software that offers these methods and handles the 
characteristics of survey data at the same time. Although there are some scattered 
functions in some software packages that can be used for this type of analysis; they are 
rarely easy to use and require programming knowledge. 
 
In this paper, the proof of concept of developing graphical tools for survey data is 
evaluated; in particular, for the analysis of nonresponse. As a proof of concept, the 
feasibility and benefits of graphical analyses for exploring nonresponse and evaluating 
nonresponse weighting adjustments are examined. The tool created in this research is 
called NR-Toolbox (Nonresponse toolbox). Although it is a proof of concept, the toolbox 
is very complete. Different analyses on nonresponse and nonresponse adjustments on two 
published articles show how to do graphical analysis and how the toolbox can be used in 
practice.  
 
There are several reasons for the development of graphical tools for the study of 
nonresponse. First, the most important reason is the need to produce timely nonresponse 
adjusted weights. Any method that expedites the creation of analysis weights is worth 
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considering. The second reason is the need to improve the quality of the nonresponse 
adjustments. There are no commonly accepted methods for comparing one type of 
nonresponse adjustment to another. In the literature, nonresponse adjustments are 
compared using Monte Carlo simulations which cannot be implemented in practice. 
Graphical analyses do not require simulation because it can extract statistical signals from 
noise from a single dataset. Graphical analysis takes advantage of the innate human skill 
for summarizing large amounts of information and for detecting patterns when the 
information is presented visually. A third reason, but not less important, is the 
pedagogical value of a tool like this for teaching nonresponse and nonresponse 
adjustments in a way that is easier to understand. Finally, these tools offer a different way 
to look at nonresponse, opening the possibility of new ways to address this problem.  
 
The final goal of this research is the development of a complete toolbox similar to the R 
package VIMGUI: Visualization and Imputation of Missing Values (Templ, Alfons, 
Alexander, & Bernd, 2013). This package presents new ways to visualize missing and 
imputed values. With the help of a graphical user interface (GUI), users can identify 
patterns of missing data and determine the appropriate method to impute missing values. 
In a similar way and with a GUI, the NR-Toolbox would allow users to explore 
nonresponse patterns, to determine the appropriate method to adjust for nonresponse, and 
to evaluate the results of the adjustment with minimal programming. A more ambitious 
goal is to include the different methods for adjusting weights as part of the package. 
 
As in the package VIMGI, the initial version of the NR-Toolbox is based on R, an open 
source environment and programming language for statistical computing and graphics (R 
Development Core Team, 2013). The advantage of R is its availability under the GNU 
General Public License. This type of license allows users to freely run, copy, distribute, 
examine, and eventually modify the code. Since one the strengths of R is professional 
looking graphics, this programming language is well suited for the development of new 
ways to display data.  
 

2. Nonresponse Analysis Graphical Toolbox 
 
The NR-Toolbox is expected meet four objectives of any statistical graphical method 
(Jacoby, 1997):  (1) exploring data, (2) displaying of patterns in the data, (3) checking 
assumptions of statistical models, and (4) communicating results of the analysis. The first 
obstacle in dealing with nonresponse is the way it is plotted. Response is a binary 
variable and any simple plot is not informative as shown in Figure 1. Figure 1a shows the 
response status of adults in a sample by age. Since respondents are indicated as 1’s and 
nonrespondents as 0’s, the graph shows two parallel lines where most dots overlap. If the 
computed response propensities are plotted as shown in Figure 1b, the plot consists of 
parallel lines that are also uninformative. In this example, the response propensities were 
computed as the inverse of the weighting class nonresponse adjustment factor, which is 
constant for records within the same class. To solve this problem, most of the graphical 
functions in the toolbox use smoothing non-parametric techniques.1 These techniques are 
a standard way to visualize signals in noisy data. The signal can be empirical response 
propensities, modeled response propensities, nonresponse adjustment factor, or the 
weights after and before the adjustments. Displays of smoothed data help users focus on 
the distribution of the data instead of focusing on single points. In the NR-Toolbox, the 
main method for smoothing the data is the locally weighted scatter plot smoothing 

1 Nonparametric methods do not use parameters of probability distributions. 
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(LOWESS). The method is modified to handle sampling weights. Other methods to 
smooth data implemented in other functions in the toolbox are splines and kernel density 
estimation. Examples of the smoothed representations of the empirical response 
propensities, modeled response propensities, and other variables related to nonresponse 
are found in the following sections. 
 

  
(a) (b) 

Figure 1: Graphical representation of respondents and response propensities in a telephone survey 
 

3. Displays in the NR-Toolbox 
 
The current displays in the toolbox can be classified as descriptive displays (conditional 
density plot, spine plot, and mosaic plots) and analytical displays (heat map fit plot and b-
plots for response and b-plots for adjustment factors).  
 
3.1 Descriptive Displays 
3.1.1 Simple Descriptive Displays 
Simple descriptive plots or displays include those plots that present the distribution of the 
observations. For the toolbox, the focus is on plots that describe the distribution of both 
the population and sample by response status at the same time (i.e., respondents and 
nonrespondents). Simple plots available in the R core include histograms, cumulative 
plots, box plots, and density plots. However, many of these plots either lack options for 
handling sampling weights or handle other type of weights such as weights normalized to 
1 (as in the function density). Contributed packages such as the package survey (Lumley, 
2012) has graphical functions that handle weights but these are not as straightforward to 
use when combinations of weighted and unweighted plots are needed. In contrast, other 
contributed packages such as the package weights (Pasek, Tahk, Culter, & Schwemmle, 
2014) and ENmisc (Neuwirth, 2013) have functions for weighted histograms and 
weighted box plots that are easier to use and can be easily integrated into the toolbox as 
dependencies. However, having many dependencies on many packages can be an issue if 
those packages are not maintained in future versions of R.  
 
Figure 2 shows an example of a plot created combining simple displays. In this example, 
the plot combines the estimated population distribution by age and boxplots by 
respondent and nonrespondents in a telephone survey. Although the functions in the 
toolbox produce both the weighted and unweighted versions of the plots by default, 
Figure 2 shows only the weighted plot. The graph is created using sampling weights.  
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Figure 2: Empirical age population density and box-plots by response status 
 
The utility of plot is self-evident after a quick inspection. The plot shows that respondents 
and nonrespondents have a different distribution and hence the need to adjust for 
nonresponse. The plot also shows the differences of response by age so age should be 
used when computing the nonresponse adjustments. Simple displays can show the effect 
of the nonresponse adjustments by displaying the similar plots created using the 
nonresponse adjusted weights.  
 
3.1.2 Conditional Density Plots 
Conditional density plots display the population distribution of a categorical variable by 
different values of a continuous (or close to a continuous) variable (Hofmann & Theus, 
2005). This type of plot is ideal for studying the relationship and interaction between a 
categorical variable (i.e., response status) and a continuous variable. Without this plot, 
data is examined in a tabular form. The table would be produced by creating n categories 
of the continuous variable. Then a 2 x n table is produced for presenting numerically the 
distribution of the categorical variable (i.e., response status). There is no need to create 
these categories in conditional density plots. Figure 3 show the weighted and unweighted 
conditional plots of the response propensities by age in a telephone survey. The plot 
shows that younger adults tend to respond at a lower rate than older adults, and most 
older adults have a flat response pattern. 
 

  

(a) (b) 
Figure 3: Weighted and unweighted conditional density plots by age 
 
The conditional density plots function in the R core (cdplot) does not handle sampling 
weights. A modified version in the NR-Toolbox overcomes this limitation. However, 
additional research is needed for computing the optimal values of the parameters for the 
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estimated density function. Mathematically, the density is approximated by a 
combination of Gaussian kernel densities over the range of the data. The default value of 
the parameter for the bandwidth bw, which affects how smoothed the lines are drawn, 
may not be the best for weighted data.  
 
The conditional density plots can also examine more than two response statuses such as 
response statuses for eligible respondents, eligible nonrespondents, ineligible, and 
unknown eligibility which are common in telephone surveys. 
 
3.1.3 Sipinographs 
Another useful plot for nonresponse analysis is the spine plot or spinogram. Spine plots 
are an extension of stacked bar plots (a type of histogram) with varying bar widths 
(Hummel, 1996).  The width of the bar is a function of the number of observations 
represented by the bar. In weighted data, the width of the bar represents the estimate of 
the total population. Figure 3 shows the spine plot for the empirical propensities for 
persons 17 years old or younger2 in a telephone survey. The plots show that the response 
for children (ages 0 to 11 years old) is very different than the response for adolescents.  
Furthermore, the response seems to be flat within these groups.  
 

  

(a) (b) 
Figure 4: Weighted and weighted Spine plot of response propensity by age. 
 
The current R core function spineplot does not handle sampling weights. A modified 
version of this function in the toolbox overcomes this limitation. Although the spine plot 
looks similar to the cumulative density plot, the mathematical foundations are very 
different. The spine plot does not estimate the conditional density of the population. The 
spine plots are just simple histograms where the continuous variables are categorized 
before the bars are drawn. 
 
A further improvement is drawing a band with different colors on the top of stacked bars 
to indicate the standard errors of the estimates for each bar. This can be useful when there 
is a need to determine if the response propensities are statistically different across the 
bars. 
 
3.1.4 Mosaic Plots 
Sometimes there is a need to examine the interactions between response and more than 
one categorical variable at the same time. Mosaic plots are ideal to examine these 

2 Children ages 0 to 11 are not interviewed directly. The interviewed person is the most knowable 
adult of the sampled child. On the other hand, adolescents age 12 to 17 are interviewed after 
permission is obtained from the parent or guardian. 
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interactions (Emerson, 1998; Friendly, 1994). A mosaic plot is a graphical representation 
of frequency tables (Meyer, Zeileis, & Hornik, 2006). The plot consists of tiles with areas 
proportional to the total number of records in the entry of the table. In the cases of a 
weighted frequency table, the areas correspond to the estimate of the population totals. 
The function mosaic in the package vcd is very complete and automatically handles the 
content of the tiles, split direction for each dimension, graphical parameters of the tiles’ 
content, spacing between tiles, and labeling (Meyer, Zeileis, & Hornik, 2013). The 
function mosaic handles weighted counts as long they can be represented as a table object 
in R.   
 
Figure 5 shows the weighted and unweighted mosaic plots of the extended interview 
response propensities of a telephone survey. In this example, the plots are created using 
auxiliary variables for sample type (landline phone sample, cell phone sample), sex 
(male, female), and the indicator for whether the screener respondent is the sampled adult 
or not.  In this survey, the cell sample is small as shown by the area in the unweighted 
tiles. However, it represents a population larger than the population in the landline 
sample as shown by the weighed titles. Another piece of information that can be gathered 
from the plot is that males and females in the landline sample respond at different rates. 
In contrast, this difference is not observed in the cell phone sample. The plot also shows 
that there is an interaction between sex and the cases where the sampled adult was the 
screener interview respondent. These adults tend to be females and they have a larger 
response propensity than adults who were not the screener interview respondent. 
Although the mosaic plots are mainly used for categorical variables, they can also be 
created using categorized continuous variables.  
 

  

(a) (b) 
Figure 5: Weighted an unweighted mosaic plots for nonresponse 
 
Another type of plot not described here is the contour plot. This plot explores the 
interaction between response and two continuous variables. The plot is computed using 
generalized additive methods for binary data so the smoothed propensities represented by 
the contours are bounded between 0 and 1. 
 
3.2 Analytical Displays  
3.2.1 Heat map fit plot 
The plots in previous sections are mainly descriptive and display the response patterns 
and their interactions with one or more auxiliary variables. The next plot is used to 
evaluate how well the response propensities are modeled. The heat map fit plot was 
proposed by Esarey and Pierce (2012a) as a diagnostics tool for logistic regression. The 
plot is used for assessing the fit quality and testing for misspecification in binary 
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dependent variable models.  Applying this plot in nonresponse analysis, the diagnostic 
contrasts the modeled propensities (computed using logistic regression) and the empirical 
propensities (computed using nonparametric methods). If the model is a good fit, the line 
formed by these propensities lie on top of the 45° angle line.  
 
There is a package called heatmapFit that produces the heat map fit plot (Esarey & 
Pierce, 2012b). However, this package cannot be used for nonresponse modeling because 
it does not handle sampling weights. Furthermore, logistic regression is hard-coded in the 
source code of the package preventing its use for other types of adjustments such as 
weighting classes or calibration. The NR-Toolbox includes a function that produces this 
plot using weights. The input parameters of the modified function are the observed 
response indicators, the modeled propensities, and sampling weights. The empirical 
propensities are estimated using nonparametric LOWESS regression using the package 
gam (Hastie, 2013). At this stage of development of this function, the heat colors, which 
represent the level of significance for the goodness of fit of the model in the original plot, 
are not implemented. The Esarey and Pierce (2012b) plot uses bootstrap to generate 
colors of the levels of significance. Since sampling weights are used and these depend on 
the sample design, additional research is needed to determine if the same approach works 
for survey data.  
 
Figure 6 shows two examples of these plots produced by the toolbox. In this figure, the 
goodness of fit of the nonresponse adjustment computed is assessed using weighting 
classes for the sample data in Figure 1b. In Figure 6a, all relevant variables were used to 
compute the weighting classes while the adjustment Figure 6b ignored age. Since the 
model is misspecified in the figure (e.g., there is an omitted variable), the modeled 
response propensities (i.e., computed as the inverse of the nonresponse adjustments) have 
an S-shaped curve.  
 

  

(a) (b) 
Figure 6: Heat fit plots of nonresponse adjustment using weighting classes 
 
Notice that not only the heat map fit plot but all other plots used for diagnostics of 
goodness of fit for binary variables can be used to assess the fit of modeled response 
propensities, which is a binary dependent variable. Furthermore, the modified heatmapFit 
function with sampling weights can be used as a diagnostic plot for modeling any binary 
variables in survey data (i.e., variables such as indicators for whether the respondent is a 
smoker, obese, uninsured, etc.).  
 
Another diagnostics plot in the toolbox for modeled response propensities not described 
here is the separation plot proposed by Greenhill, Ward, and Sacks (2011). One extension 
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of the heat map fit plot is the evaluation of modeled propensities in domains. There are 
cases where the modeled propensities and the corresponding nonresponse adjustments 
work well for the whole population. Despite this, the model can have a bad fit for some 
domains. This type of checking is similar to diagnostics checks based on worm plots. 
 
3.2.2. B-plots 
A more complex plot is the b-plot, which displays in the same graph the propensity to 
respond and the distribution of the dependent variable in different vertical axes. The b-
plot was initially created to visualize the interaction of the observed response propensities 
and the dependent variable in simulation studies in the literature. However, the b-plot can 
be also used for auxiliary variables. Figure 7a shows the basic form of the b-plot. The left 
axis (red) indicates the population density of the dependent variable and on the right axis 
(blue) indicates the empirical propensity to respond. In this example, the response 
propensity has a decreasing monotonic pattern and it is dependent of the variable y (e.g., 
larger values of y are less likely to respond that those with smaller y values). However, 
large values of y represent a small proportion of the population. 
 

  

Figure 7: Response and adjustment factor b-plots 
 
Based on this b-plot, strategies that model the propensity as a constant across the range of 
the variable y will not remove the bias. A better strategy is to model response as a 
continuous monotonic variable; however the final model selection depends on the 
available auxiliary variables. As a side note, if the nonresponse mechanism is MCAR 
(missing completely at random) the visual representation of the propensity is a horizontal 
line across the range of y. If nonresponse is MCAR, then a simple overall adjustment is 
enough to remove bias. 
 
An extension of the b-plot can visually present the effect of the nonresponse adjustment 
factor for different values of the dependent or auxiliary variables. This effect is computed 
as the smoothed curve of the ratios 𝜏𝑖’s defined as  𝜏𝑖 = 𝑟𝑖/𝜑𝚤� , where 𝑟𝑖 is the response 
indicator and 𝜑𝚤� ,  is the modeled propensity. If the modeled propensities are successful in 
removing the bias, the visual representation of this effect is a horizontal line crossing the 
vertical axis at 1. This plot is called b-plot for adjustment factors (in contrast to the b-plot 
for response). The theory behind this plot and the role of the ratios 𝜏𝑖’s will be presented 
in a future paper. Figure 7b is one example of this plot. This example displays the effect 
of adjustment factors shown in blue is close to horizontal line at 1; therefore, the 
adjustment is expected to remove the nonresponse bias. Note that different models for 
estimating propensities can achieve this flat pattern. However, in most cases, the model 
that produces propensities with smallest variability is expected to be more efficient (i.e., 
lowest variance). The variability of the adjustment factor is not observed in the current 
version of the b-plot. This would look like a cloud of dots hovering above and below the 
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adjustment factor line. Future versions of this plot will have an option for displaying this 
cloud.  
 

4. Examples of Nonresponse Graphical Analysis  
 
This section describes two examples of nonresponse graphical analysis of two previously 
published articles using the NR-Toolbox. This type of analysis is new so there are no 
guidelines on how to proceed. However, these examples show what steps should be 
considered. In the first example, after analyzing the nonresponse pattern, alternative 
nonresponse adjustments are proposed based on the observations from the graphical 
analysis. In the second analysis, the graphical analysis is used to explain some 
unexpected results reported in the article. 
 
4.1 Example 1: Graphical analysis of Kang & Schafer (2007)  
Kang and Schafer (2007) compared alternative strategies for estimating a population 
mean with incomplete data. The model used to simulate response is 
𝜑𝑖 = 𝑙𝑜𝑔𝑖𝑡−1(−𝑧1𝑖 + 0.5𝑧2𝑖 − 0.25𝑧3𝑖 − 0.1𝑧4𝑖)  where 𝒛𝒊 = (𝑧1𝑖, 𝑧2𝑖 , 𝑧3𝑖, 𝑧4𝑖)𝑡  is 
multivariate normally independently distributed with parameters 𝑁(𝟎, 𝑰). However, the 
auxiliary variables 𝒛𝒊’s are not observable. Instead, the variables  𝒙𝒊 = (𝑥1𝑖,𝑥2𝑖, 𝑥3𝑖, 𝑥4𝑖)𝑡 
are available for respondents and nonrespondents. The observed auxiliary variables are 
defined as 𝒙𝒊 = (𝑒𝑥𝑝(𝑧1𝑖/2), 𝑧2𝑖/(1 + 𝑒𝑥𝑝(𝑧1𝑖))  + 10 , (𝑧1𝑖𝑧3𝑖/25 + 0.6)3, (𝑧2𝑖+𝑧3𝑖  +
20)2)𝑡. As mentioned in Kang and Shafer (2007), “except by divine revelation,” it is 
impossible for an analyst to formulate a correct model for 𝜑𝑖  based only on the observed 
auxiliary variables 𝒙𝒊 ’s. Kang and Shafer (2007) indicate that analysts would use a 
modeled propensities from logistic regression on the 𝒙𝒊’s despite being incorrect. The 
reason is that the regular diagnostics including those model checks suggested by Hinkley 
(1985) make the model looked trustworthy and give no reasons to change it. 
 
The first part of the analysis, we evaluate if a graphical analysis can determine if modeled 
propensities from a logistic regression on the 𝒙𝒊’s produces biased estimates of the total 
without running simulations. In the second part, we evaluate better models for adjusting 
for nonresponse are proposed based on the graphical analysis. 
 

 

 
Figure 8: B-plot for simulation example in Kang & Schafer (2007) 
 
The first step of the graphical analysis is to explore the response pattern of the observed 
variables. Figure 8a to 8d show the b-plots for the auxiliary variables 𝒙𝒊’s. As shown in 

 
 

JSM 2014 - Survey Research Methods Section

1692



Figure 8a and b, variables 𝑥1𝑖  and 𝑥2𝑖  are problematic since the relationship with the 
response is far from a smooth sigmoidal curve. Figure 9a shows the heat map fit plot of 
the propensities from a logistic regression on the 𝒙𝑖’s. The plot shows that the model 
does not have a good fit because the curve does not match the 45° line; however, the 
model is not as bad as we initially thought despite of not observing the variables 𝒛𝑖’s 
(Robins, Sued, Lei-Gomez, & Andrea, 2007; Samii, 2011). However, there is little room 
for improvement using the variables 𝒙𝑖’s. 
 

 

Figure 9: Heat fit plots for different nonresponse adjustments 
 
For the second research question, a better logistic model can be created using transformed 
variables. New auxiliary variables were created using the Box-Cox power transformation. 
The b-plots for response of the transformed variables are shown in Figure 8e to 8h. The 
transformation has the largest impact on variable 𝑥1𝑖 which is shown as 𝑡𝑥1𝑖 in Figure 8e. 
Because the response propensity is not monotonic for the transformed variable 𝑡𝑥2𝑖, the 
logistic model included the interaction of the coefficient for 𝑡𝑥2𝑖  and the categorical 
variable created as 𝛿(𝑡𝑥2𝑖 > 9.3). The heat map fit plot for the modeled propensities 
using the transformed auxiliary variables is shown in Figure 9b.  
 
A nonparametric model for modeling the propensities using the transformed variables 
was also developed. The nonparametric model uses LOWESS smoothing regression with 
a generalized additive model (GAM). The GAM modeled propensities are shown in 
Figure 9c. The last two models and the corresponding adjustment factors are expected to 
produce close to unbiased estimates of the total. The precision of these two nonresponse 
adjusted estimates is not evaluated in this paper. 
 
4.2 Example 2: Graphical Analysis of Kreuter and Olson (2011) 
Kreuter and Olson (2011) explored the relationship among the response, outcome 
variable, and auxiliary variables correlated to both response and outcome through a large 
simulation study. The article does not use survey data and their recommendations are 
based on the simulation results; hence, the importance of understanding the relationships 
among the variables that affect nonresponse in the simulation.  
 
Kreuter and Olson (2011) can be seen as two separate analyses. In the first analysis, the 
bias of the unadjusted mean is studied under different relationships among the propensity 
to respond, dependent variable, and auxiliary variables. In the second analysis, the 
effectiveness in removing the bias of different nonresponse adjusted estimators of the 
mean is evaluated in terms of bias and relative root mean squared error (RMSE) using the 
RMSE of the unadjusted mean as a reference. All nonresponse adjustment estimates of 
the mean are computed using estimated propensities from logistic regression with 
different omitted variables.  
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In the Kreuter and Olson (2011) simulation, the propensity to respond is modeled as 
𝜑𝑖 = 𝑙𝑜𝑔𝑖𝑡−1(1 + 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖)  where 𝒛𝒊 = (𝑧1𝑖, 𝑧2𝑖)𝑡  is the vector of auxiliary 
variables independently distributed as 𝑀𝑁��00�, �1𝜌

𝜌
1��. The dependent variable 𝑦𝑖  is a 

linear function of 𝒛𝒊’s defined as 𝑦𝑖 = 10 + 𝛽1𝑧1𝑖 + 𝛽2𝑧2𝑖 + 𝑢𝑖  where 𝑢𝑖~𝑁(0,1). The 
auxiliary variables 𝒛𝒊’s influence response through the parameters 𝛾1 and 𝛾2 and affect 
the population y through the parameters 𝛽1, and 𝛽2.The simulation created 54 different 
populations corresponding to parameters 𝛽1 = 0.1, 2, and 4; 𝛽2.=0.1, 2, 4, -0.1, -2, and -
4; and 𝜌 = 0, 0.2, and  −0.2. For each artificial population, nine response patterns were 
generated using the parameters 𝛾1 =0.1, 1, and 3; and  𝛾2 = 0.1, 1, and 3.  A total of 486 
scenarios were simulated. For each scenario, four estimates of the mean of y were 
computed using the estimators in Table 1. Three estimators were computed using 
modeled propensities from logistic regression with different omitted auxiliary variables 
(e.g., both 𝑧1𝑖 and 𝑧2𝑖, either 𝑧1𝑖 and 𝑧2𝑖).  
 

Table 1: Estimator of mean used in Kreuter and Olson (2011) 
 
Estimators Description 
UADJ No adjustment (or adjusted by 𝜑�𝑖0 =1/r) 
PHAT_Z1  Adjusted using variable 𝑧1𝑖 in  𝜑�𝑖

𝑧1 = 𝑙𝑜𝑔𝑖𝑡−1(𝛾0� + 𝛾1� 𝑧1𝑖) 
PHAT_Z2 Adjusted using variable 𝑧2𝑖 in  𝜑�𝑖

𝑧2 = 𝑙𝑜𝑔𝑖𝑡−1(𝛾0� + 𝛾2� 𝑧2𝑖) 
PHAT_Z1Z2 Adjusted using variables 𝑧1𝑖 and  𝑧2𝑖 in  𝜑�𝑖

𝑧1𝑧2 = 𝑙𝑜𝑔𝑖𝑡−1(𝛾0� + 𝛾1� 𝑧1𝑖 + 𝛾2� 𝑧2𝑖) 
 
The bias of the unadjusted mean can be approximated by the formula 𝐵𝑖𝑎𝑠�𝑦�𝑢𝑎𝑑𝑗� ≈
𝐶𝑜𝑣(𝑦,𝜑)/𝜑� (Lessler & Kalsbeek, 1992). Kreuter and Olson (2011) evaluated the bias of 
the unadjusted mean through the simulation. However, an algebraic expression to 
examine the bias can be obtained using the Taylor series approximation. The algebraic 
expression of the numerator is 𝐶𝑜𝑣(𝑦,𝜑) ≈ 𝑒𝛾0(𝛽1𝛾1 + 𝛽2𝛾2)/(1 + 𝑒𝛾0)2.  This 
expression makes it easier to understand the conditions where the unadjusted mean is 
unbiased.  
 

Relative Ratio of Root Mean Squared Error Estimated Means  

  

(a) (b) 
Figure 10: Estimated means and RMSE for the response pattern 𝛾1 = 𝛾2 = 3 (Source: Kreuter 
and Olson, 2011) 
 

 
 

JSM 2014 - Survey Research Methods Section

1694



Kreuter and Olson (2011) report that when the influence on response is strong (i.e., 𝛾1 =
𝛾2 = 3) and the population parameters are such that  𝛽1 = −𝛽2, the unadjusted mean is 
unbiased. In this case, the effect on nonresponse is said to cancel each other out because 
of the opposite signs between  𝛽1 and 𝛽2. In these scenarios, the unadjusted mean is very 
efficient compared to the other estimators as shown by the relative RMSE marked in red 
in Figure 10a. Although this is correct, there are many more conditions where the 
unadjusted mean is also unbiased. The unadjusted mean is unbiased when 𝐶𝑜𝑣(𝑦,𝜑) =
0, that is when   𝛽1𝛾1 = −𝛽2𝛾2 . When  𝛽1 = −𝛽2 , the unadjusted mean is unbiased 
independently from the strength of the influence 𝛾1 and 𝛾2  are as long as 𝛾1 = 𝛾2 . In 
other words, their influence on response does not necessarily need to be strong to yield an 
unbiased unadjusted mean. Figure 11 shows the b-plots for response for other situations 
where the unadjusted mean is also unbiased. In Figure 11a, the influence on response is 
not strong (𝛾1 = 1  and  𝛾2 = 1). In Figure 11b, where    𝛽1 ≠ −𝛽2 , the effects on the 
population do not cancel each other out. In Figure 11c, influences on response and the 
population are mixed. The b-plots for response of these situations show a flat response 
pattern. 
 

 

Figure 11: Other scenarios where the unadjusted mean is unbiased 
 
In general, the unadjusted mean is unbiased when influences on response and population 
expressed by the terms of the products   𝛽1𝛾1  and −𝛽2𝛾2 have the same value but 
opposite signs so both terms cancel each other out. This situation is unique and such a 
balance in situations with many influences may be difficult to occur in actual surveys. 
Here, the graphical analysis let us discover other scenarios not evaluated in the 
simulations where the unadjusted mean is unbiased. 
 
In the second part of the graphical analysis, we examine other scenarios that are difficult 
to explain where the behavior of some nonresponse adjusted estimators of the mean seem 
counterintuitive. In the scenarios, “…when either z variable is a moderate to strong 
predictor of the Y variable and a moderate to strong predictor of propensity, then 
including only one z variable in the adjustment model substantially increases the bias of 
the estimate. That is, accounting for only one of the competing influences on propensity 
will actually damage (i.e., increase the bias) survey estimates,” (Kreuter and Olson, 
2011). Some estimates in these scenarios are represented by green squares in the second 
and third panels in Figure 10b. To observe the bias, a green line connecting the squares is 
drawn on the plot. The line shows how the bias increases as the value of 𝛽1 changes from 
0. 1 to 4 for the estimator of the mean PHAT_Z2, which accounts for only one of the 
competing influences (e.g., 𝛾2). 
 
To graphically explore these scenarios, two types of b-plots and the heat map fit plots for 
the auxiliary variable 𝑧2𝑖 that is used to model the propensities for the adjustment were 
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produced. These plots are shown in Figure 12 and 13 for the populations with 
parameters  𝛽2 = 4, 𝛽1 =0.1, 2, and 4; and response pattern with parameters  𝛾1 = 3 and 
𝛾2 = 3 . All these plots indicate that the estimates should be unbiased (all observed 
propensities are modeled correctly). The reason for the increasing bias is found in the 
b-plots of the dependent variable y shown in Figure 14. The b-plots for response show 
that the parameters of simulation population create a specific response pattern where a 
portion of the population does not have any practical chance to respond while others 
respond with certainty. Cases with no chance to respond are located to the left of the 
vertical line in the plots. The population shifts to the left with respect to the response 
propensity curve as the value of 𝛽1 increases (see Figure 14 a, b, and c). The fraction of 
the population without a probability to respond becomes larger despite the response 
propensities on auxiliary variable 𝑧2𝑖  being modeled correctly. In other words, the 
simulation is creating a form of undercoverage, which increases (i.e., larger bias) as 𝛽1 
increases. The b-plots for the adjustment factors in Figure 14 c, d, and e show the effect 
on the adjustment factors when we try to adjust for this undercoverage using logistic 
regression. The curves are far from horizontal lines at 1. Even cases that responded with 
certainty have adjustment factors larger than one. In these scenarios, there are violations 
of the assumptions for the nonresponse adjustment since the method requires the response 
propensities to be bounded and away from 0 (Robins, Rotnitzky, & Ping, 1994). Many 
scenarios in the simulation study do not have response propensities away from 0. Using 
modeled propensities from logistic regression is not the best way to adjust for 
nonresponse/undercoverage in these situations. It is uncertain if these scenarios were 
planned in the simulation in Kreuter and Olson (2011) but this explanation is not reported 
in the article. The graphical analysis enabled us to identify the reasons of these results. A 
graphical analysis can us help examine the simulations and determine if they produce 
extreme conditions not intended in the study. 
 

 
Figure 12: B-plots for auxiliary variable  𝑧2𝑖 
 

 
Figure 13: Heat map fit plots for propensities modeled using auxiliary variable  𝑧2𝑖 
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Figure 14: B-plots for dependent variable y 
 

5. Summary 
 
As a proof of concept, graphical tools can be implemented and used to analyze 
nonresponse in survey data. This type of graphical analysis has not been reported in the 
literature. The main limitation for a more extensive use of this type of analysis is the 
additional development work needed to complete the NR-Toolbox. This is connected to 
current time commitments and funding. There are also some theoretical and practical 
issues that need to be addressed. The theoretical issues include the computation of 
standard errors and their visualization in current displays, the application to domains in 
survey data, and the inclusion of new plots. Practical issues are the integration with 
current R packages, the survey data limitations of current package limitations, and the 
development of the GUI.  Although the current version of the toolbox is not ready for 
primetime, its utility and potential has been demonstrated by examining the nonresponse 
patterns in two papers. 
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