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Abstract 
We consider the problem of analyzing interval censored data comparing cumulative 
incidence functions by demographic variables in the presence of competing risks. In this 
paper, we explore two methods based on imputation, the EM-type method and Multiple 
Imputation. Basically, we imputed the exact event time for interval censored data and 
take advantage of standard estimation methods for right censored data. We analyzed data 
from the National Children’s Study to estimate cumulative risks of transition between 
Probability of Pregnancy Statuses and to examine the effect of major demographic 
variables. 
 
Keywords: Competing risks, Cumulative Incidence Function, EM, Interval Censoring, 
Imputation, Cause-Specific Hazards. 
 
 

1. Introduction 

In this article, we explore methods based on imputation to analyze interval censored time-
to event data in the presence of competing risks. Wei and Tanner (1990) described two 
imputation methods for analyzing interval censored data: the EM-type method and 
Multiple Imputation. To estimate the survival function, Pan (2000) applied a general 
semi-parametric Cox model on the Multiple Imputation algorithm with interval-censored 
data. We are extending these methods to competing risks models. We considered both 
methods and extend them to a semi-parametric proportional subdistribution hazards 
model which incorporate competing risks in the data. 
 
The statistical analyses were applied to the data from the National Children’s Study (NCS) 
to assess changes in women’s pregnancy intention over time. The Probability of 
Pregnancy Groups (PPG) was created to measure pregnancy intention. 
 
Specifically, the research question is whether time to the first transition from one PPG 
status to another varies by race/ethnicity, age, and marital status. Although the PPG status 
could change after the first transition, it is not the concern of this study. This paper 
focuses on the ongoing investigation of appropriate statistical methods to use to answer 
this question. 
 
This paper is organized as follows. Section 2 describes the data structure from the 
National Children’s Study (NCS). In section 3, the competing risks survival models for 
interval censored data is illustrated. Section 4 presents some analysis results and, finally, 
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section 5 discusses what has been learned from this exploration and provides some 
directions for further research. 
 

2. Data 

This study analyzed the data from NCS, an ongoing longitudinal cohort study designed to 
evaluate the influence of environment exposures on child health and development in the 
United States. The Initial Vanguard Study of NCS is a pilot study conducted in 7 
locations. Pregnant women and women who might become pregnant were invited to 
enroll. After the initial screening, non-pregnant and eligible women were followed up by 
telephone until they became pregnant or until the recruitment period ended. The data 
collection period was from early 2009 to Dec. 2010, by the end of which, 35,000 eligible 
women enrolled. About 13,000 eligible women had at least one follow-up and is the 
sample for the current analysis. 
 
To assess changes in pregnancy intention over time, recruited women were classified into 
PPG status, which includes five categories, low, moderate, high-nontryer, high-tryer, and 
pregnant. These statuses are defined by women’s age, the number months they had been 
trying to conceive, and sexual behaviors. For example, if women were “currently trying” 
to conceive for less than 5 months, they were placed in the high-tryer PPG; if between 5 
and 11 months and age 18-34, they were placed in the moderate PPG; if 12 months or 
more or 5-11 months and age 35-49 they were placed in the low PPG, etc. 
 
As known from the definition, these statuses are not sequential. For example, women 
starting from the low status can change to a high-tryer without going through the 
moderate status. Thus, from one initial status, the potential first transition can be one of 
four resulting statuses 1 . For example, if the initial status is low PPG, the potential 
resulting statuses can be moderate, high-nontryer, high-tryer and pregnant. Each woman 
is at risk of multiple transitions at the same time point. This situation is commonly 
referred to as a competing risks problem. 
 
The PPG status was evaluated at the initial screening and each follow-up call. The 
frequency of the follow-up calls after the initial screening varied according to their initial 
PPG status. Women classified as having a moderate PPG were called every 3 months, 
and women classified as having a low PPG were contacted every 6 months from May 
2009 to December 2009 and every 3 months thereafter. The high-tryer and high-nontryer 
PPG women were contacted at one, two, and four months after being so identified. 
Therefore, the observed time-to-transition is considered as interval censored, in that the 
timing of any transition within the interval is not known. In addition, the time interval 
between assessments is not constant, due to the screening schedule, nonresponding 
follow-up calls and variations of the call time in field operations. As mentioned 
previously, the protocol of the screening schedule for women with the low initial status 
changed from 6 months to 3 months at December 2009. A woman may not be located or 
may refuse to respond for one screening and come back to the study in the next screening, 
hence the time interval is wider than requested in the protocol. Furthermore, it may take 
several telephone calls to get a response, so that the exact screening time may vary 
around the protocol schedule. 
  

1 Pregnant is not considered as an initial status. 
                                                           

JSM 2014 - Survey Research Methods Section

1580



3. Method 

To accommodate the special data features discussed above, competing risks and interval 
censored, we are considering imputation models to fill in the exact time within the time 
interval and take advantage of existing competing risks survival models. This section 
starts with introducing the existing competing risks models and the imputation method 
for interval censored data, and then demonstrates the combined models considered in the 
analysis of the current data. 
 
3.1 Competing Risks 
A simple model called Cause-Specific Hazards (CSH) model (e.g. Lee and Wang, 2003) 
has been widely used to analyze the competing risks data. This type of model utilizes 
regular survival models, such as Cox proportional hazards model, by treating any 
transitions other than the one of interest as right censored. This treatment assumes that 
the competing risks are independent, which means that individuals censored at time t 
should be representative for those still at risk at that time. 
 
However, this assumption is not satisfied in our study. For example, a woman who 
changes from moderate to low PPG status is less likely to change to high-tryer, compared 
to the rest of the sample. 
 
The Cause-Specific Subdistribution Hazards (CSSH) model from Fine and Gray (1999) is 
for competing risks models where the “independence” assumption does not hold. The 
hazard function is defined as below: 
 

𝛾𝑘(𝑡,𝑋) = lim
∆𝑡→0

1
Δ𝑡
𝑃𝑟{𝑡 ≤ 𝑇 ≤ 𝑡 + Δ𝑡,  𝑗 = 𝑘|T ≥ 𝑡 ∪ (𝑇 ≤ 𝑡 ∩ 𝑗 ≠ 𝑘), 𝑥) 

 
where 𝛾𝑘(𝑡, 𝑥) represents the subdistribution hazard, which is the limiting function for 
the probability of transition 𝑘 within the time interval Δ𝑡 after time t, conditioning on no 
transition 𝑘 before time t and transitions other than k happening before t. 𝑥 represents the 
covariates. 
 
In this model, competing transitions (𝑗 ≠ 𝑘) are not treated as censored, but are still kept 
in the risk set. The assumption for this proportional hazards model is 
 

𝛾𝑘(𝑡,𝑋) = 𝛾𝑘0(𝑡)𝑒𝑋𝛽 
 
where 𝛾𝑘0 denotes the baseline hazard of the subdistribution for transition 𝑘. As 
summarized by Kohl and Heinze (2013), for such a model the partial likelihood of the 
subdistribution hazards model is defined as 
 

𝐿(𝛽) = �
exp (𝑥𝑙𝛽)

∑ 𝑤𝑙𝑖exp (𝑥𝑖𝛽)𝑖=𝑅𝑙

𝑟

𝑙=1

 

 
where 𝑟 is the number of all time points (𝑡1< 𝑡2 < ... < 𝑡𝑟) where transition 𝑘 occured, and 
𝑥𝑙  is the covariate row vector of the subject experiencing transition 𝑘  at 𝑡𝑙 . The 
denominator for the likelihood at each time point is constructed based on the risk set 𝑅𝑙, 
which is defined as 
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𝑅𝑙 = {𝑖;  𝑡𝑖 ≥ 𝑡 ∪ ( 𝑡𝑖 ≤ 𝑡 ∩, 𝑗 ≠ 𝑘)} 

 
At each time point tl, the set of individuals at risk Rl includes those who are still at risk of 
any transitions and those who have had a competing transition before time point tl . The 
weights wli are attached to each case in the risk set. The weight 𝑤𝑙𝑖 = 1 for the cases 
without any transition prior to tl. For cases with competing events before tl, time-
dependent weights are defined as 
 

𝑤𝑙𝑖 =
𝐺�(𝑡𝑖)

𝐺�(𝑚𝑖𝑛 (𝑡𝑖, 𝑡𝑙))
 

 
where 𝐺�(∙) denotes the Kaplan-Meier estimate of the survival function of the censoring 
random variable, i.e., the probability of still being followed-up at t. These latter 
individuals have weights 𝑤𝑙𝑖 ≤ 1, which decrease with time. For the purpose of simplicity, 
no ties in event times are assumed. 
 
Similar to the Cox proportional hazards model, the subdistribution hazards model 
requires no assumed distribution for the baseline hazard function, which is empirically 
estimated. SAS Macro %PSHREG is readily available to implement this model. 
 
3.2 Interval Censored Data 
Another feature of the NCS data in this study is interval censoring. Non-pregnant eligible 
women were periodically followed up to assess the current PPG status. If the status for 
one follow-up is different to that of the previous screening, a transition can be identified. 
But the timing of the transition within the interval between the two screenings is not 
known. 
 
If the time interval is constant, a regular survival analysis can be conducted simply by 
using the time interval as the analysis time unit. However, this is not the case in this study 
as mentioned in Section 2. 
 
Another approach to deal with interval censored data is to impute the exact transition 
time and then apply the existing analysis method for right censored data. This method is 
preferred in this study, as the theory for the subdistribution hazards model and the 
corresponding SAS macro are readily available. 
 
Two algorithms are discussed in the literature, Multiple Imputation (MI) and the EM-type 
method. Wei and Tanner (1990) and Pan (2000) discuss the MI method for the interval 
censored data. Wei and Tanner (1990) briefly mention the EM-type method, but no full 
discussion is available. However, for both methods, the application to competing risks 
data is never explored. 
 
We will consider both methods in this paper and details are provided in the next section. 
 
3.3 Combined Models 
Diagram 1 summarizes the data features of this study and the corresponding statistical 
models available. This paper explores the combined models to analyze interval censored 
data in a competing risks model through imputation methods. 
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Diagram 1. Data features, existing statistical methods and the combined model 
 
3.3.1 Combined Model using Multiple Imputation 
The combined model starts with imputing an exact time in the time interval and then 
applies the subdistribution hazards model to estimate the parameter and the baseline 
survival function. As the estimated density function (or the survival function) is needed 
for the imputation, an iteration procedure is conducted between the imputation and the 
estimation of parameters and the baseline survival function. Multiple imputed values are 
created to account for uncertainty within the time intervals. Furthermore, for all the 
transitions based on the same initial status, separate survival models are fitted in sequence 
to impute the time for the corresponding transitions. Note that this method may not be 
considered as a proper MI method as it is not based on a Bayesian framework and no 
prior distribution is specified for the parameter. Multiple imputed values were used to 
account for uncertainty within time intervals, but may not have the same feature as the 
MI method discussed by Rubin (1987). Specifically, the MI method takes the following 6 
steps: 
 

1. Initial imputation: For all transitions, generate j sets of right-censored 
observations as initial time points for modeling, where j=1,…, m. This 
study used 10 imputations. 

2. Model fitting: For transition outcome k, fit the Proportional 
Subdistribution Hazards model to estimate 𝜷�𝒋(𝒌)

(𝒊)  and then baseline 

survival function �̂�𝑗(𝑘)0
(𝑖) , where j=1,…, m, 𝑖 is the iteration number and k 

is the transition type. 

3. Combine estimates: calculate estimates based on Rubin’s (1987) formula 
𝜷�(𝒌)

(𝒊+𝟏) = 1
𝑚
∑ 𝜷�𝒋(𝒌)

(𝒊)
𝑗 , �̂�(𝑘)0

(𝑖+1) = 1
𝑚
∑ �̂�𝑗(𝑘)0

(𝑖)
𝑗  and 

Combined Model 

Interval 
censoring 

Proportional 
Subdistribution 

hazards 
Imputation 

Competing Risks 
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𝑉𝑎𝑟(𝜷�(𝒌)
(𝒊+𝟏)) = 1

𝑚
∑ 𝑉𝑎𝑟 �𝜷�𝒋(𝒌)

(𝒊) �𝑗 + (1 + 1
𝑚

)(∑ [𝜷�𝒋(𝒌)
(𝒊) − 𝜷�(𝒌)

(𝒊+𝟏)]2𝑗 )/(𝑚−
1) , where the first term in the variance formula represents the within 
imputation variance and the second term represents the between 
imputation variance. 

4. Update Imputed values: repeat the imputation in step 1, based on 
estimated 𝜷�(𝒌)

(𝒊+𝟏) and �̂�(𝑘)0
(𝑖+1). 

5. Repeat steps 2-4 for each transition outcome 

6. Repeat steps 2-5 until 𝜷�(𝒌)
(𝒊)  converges 

 
3.3.2 Combined Model using EM-type of Method 
The EM-type method uses a similar iteration procedure as the MI method. The 
differences include the following features: 1) only one set of imputed data is produced, 2) 
initial imputations can be purposefully set to diverse values, such as interval mid-point, 
end point, etc., and 3) Imputed length of time is the expectation of all time points within 
the interval weighted by the density distribution, rather than random draws from the 
distribution. 
 
Under the framework of the EM-type method, the expectation step is the imputation of 
the exact time using the expectation of time given estimated 𝜷�(𝒌)

(𝒊)  and �̂�(𝑘)0
(𝑖)  . Then in the 

maximization step, 𝜷�(𝒌)
(𝒊+𝟏) and �̂�(𝑘)0

(𝑖+1) are estimated using the updated imputation of time 
and maximum likelihood method in the subdistribtuion hazards model. 
 
After 𝜷�(𝒌)

(𝒊)  converges, we added one step to account for uncertainty within the time 
interval by drawing multiple imputed values based on the estimates from the last iteration 
𝜷�(𝒍𝒂𝒔𝒕) and �̂�0

(𝑙𝑎𝑠𝑡). These multiple draws are not strictly multiple imputation as Rubin 
(1987) discussed and may not fully account for the uncertainty within the time interval. 
 

4. Analysis Results 

Both the MI method and the EM-type method were implemented to all the transitions. As 
an example, the analysis results for the transition from low to moderate is presented to 
illustrate the assessment of the methods. In the survival models, covariates include age 
(<25 (reference), 25-29, 30-34, 35+), race/ethnicity (Hispanic, Non-Hispanic White 
(reference), NonHispanic Black, NonHispanic Asian, NonHispanic other), and marital 
status (currently married (reference), currently not married). For the purpose of simplicity, 
no time varying covariates were considered. 
 
Table 1 shows the transition rates for the low initial status. Among the 7,504 women with 
a low initial status, 30.2% were observed to change to moderate in the first transition, 5.5% 
changed to other status and 64.3% did not have any transition until the end of the 
observation period. 
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Table 1. Transition rates for the low initial status 
 

Category Transition Rate (%) 
Low to Moderate 30.2 
Low to Other transitions 5.5 
Right Censored 64.3 
Total 100 
Sample size (Initial status=LOW) 7,504 

 
4.1 Convergence 
As both models involve iteration processes, convergence was evaluated. The convergence 
criteria that Pan (2000) used are 1) the difference between parameter estimates in 
adjacent iterations less than 0.01 or 2) the number of iterations larger than 50. As 
multiple models are fitted for the competing risks, convergence may be harder to achieve 
than in Pan (2000)’s paper. 
 
To fully evaluate our models, we ran over 100 iterations, each of which contains a run 
across all the transition types. The parameter estimates were then plotted to evaluate the 
convergence. 
 
As an example, graph 1 shows the parameter estimates of age 25-29 vs. age <25 across 
iterations for the EM-type method, controlling for race/ethnicity and marital status. The 
x-axis shows the iteration number after the 30th iteration, where the estimates stabilize, 
and the y-axis shows the parameter estimates. The blue line is for the model using mid-
time point in the interval as the initial length of time and the red line using the upper end 
time. Both lines converged to the same neighborhood, although there is still a variation 
between -0.093 and -0.103. We found similar patterns for other parameter estimates for 
EM-type method. 
 
Graph 2 shows the same parameter estimates for the MI method. According to the graph, 
the parameter estimates didn’t stabilize within 100 iterations. This instability is also 
found for other parameter estimates using the MI method. 
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Graph 1. Parameter estimates of age 25-29 vs. age <25 across iterations for the EM-type 
method 
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Graph 2. Parameter estimates of age 25-29 vs. age <25 across iterations for the MI 
method 
 
4.2 Shrinkage for EM Estimates 
In the EM-type method, the exact time is imputed with the weighted average of all the 
time points within the interval. Using this algorithm, the imputed values never took the 
values on the two ends of the intervals, and hence will never be imputed to the extreme 
small time values or the extreme large values in the possible range of the event time. If 
we compare the imputed time to event based on the EM algorithm and the imputed 
valued based on random draws, the distribution based on the EM algorithm shrinks to the 
middle. As the estimate of interest is a regression type of parameter, which is not a simple 
average of the times, and is in an exponential form, the estimate could be biased due to 
this shrinkage. Table 2 compares the parameter estimates from the last iteration of the 
EM-type method and those from the random imputation based on the density function 
estimated from the last iteration of the EM-type method. For the runs using different 
initial values, a shift of parameter estimates was observed and confirmed the potential 
bias based on the EM-type method. Similar shifts were observed for other parameter 
estimates as well. 
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Table 2. Comparing the parameter estimates from the last iteration of 
the EM-type method and that from the random imputation based on the 

density function estimated from the last iteration 
 

Age 25-29 vs. Age <25 
Point Estimate at 
the last iteration 

Point Estimate based on 
multiple draws 

EM-type Midpoint -0.099 -0.109 
EM-type Upper Endpoint -0.097 -0.107 

 
4.3 Variance Estimates using EM-type Method 
After the convergence of the EM-type method, multiple draws from the time interval 
were conducted to form multiple imputed data sets and take into account the uncertainty 
within the time interval. Table 3 shows the variance estimates from this step. The 
estimates for age 25-29 vs. age <25 is presented for two runs using different initial time 
points, the midpoint and the upper end point. 
 
As shown in the table, the between imputation variance accounts for a small portion of 
the overall variance, which would not be reflected by single imputation. The last column 
shows that the remaining variation of the estimate across iterations from the EM-type 
method accounts for an ignorable amount of variation compared to the overall variance. 

 
Table 3. Variance Estimates using the EM-type method 

 

Age 25-29 vs. 
Age <25 

Point 
Estimate 

Between 
Imputation 
Variance 
(in 10-4) 

Within Imputation 
Variance (in 10-4) 

Overall 
Variance 
(in 10-4) 

Variance among 
the last 25 
iterations (in 10-4) 

EM-type  
Midpoint -0.109 4.6 86.8 92.3 0.02 
EM-type  
Upper 
Endpoint -0.107 4.8 86.8 92.6 0.03 
 

5. Discussion and Future Study 

This paper explored two imputation algorithms to analyze interval censored data under 
competing risks model. Both algorithms demonstrate some drawbacks when analyzing 
the NCS pre-pregnancy data. 
 

• Using the EM-type method, the point estimates and variance estimates converge 
using different initial values. The between imputation variance accounts for a 
small portion of the overall variance. However, the parameter estimates may be 
biased due the shrinkage of the imputed event time. 

• The MI method did not converge within the 100 iterations, using 10 imputations. 

 
For the next stage of this research, we will consider the following steps. 
 

• The exploration will be extended to reflect some recent developments in the 
literature. A parametric model for interval censored data and competing risks 
(Hudgens, Li, and Fine, 2014) has been published and will be considered. 
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• Simulation studies based on a simplified data structure may be helpful to 
understand the convergence issue of the MI method. 

• If a proportional hazards model can be used for this analysis, the extension to 
include time varying variables should be evaluated. When the proportional 
hazards assumption is not satisfied, interaction terms with time may be needed to 
extend the model. 
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