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Abstract 
We propose a model-based extension of weighting design-effect measures for two-stage sampling when 
calibration weighting is used.  Our proposed design effect measure captures the joint effects of a non-
epsem sampling design, unequal weights produced using calibration adjustments, and the strength of the 
association between an analysis variable and the auxiliaries used in calibration. The proposed measure is 
compared to existing design effect measures in an example involving household-type data.  
 
Key words: Auxiliary data; Kish weighting design effect; Spencer design effect; generalized regression 
estimator 
 
 

1. Introduction 
 
The most popular measure for gauging the effect of differential weighting on the precision of an estimator 
is Kish’s (1965, 1992) design-based design effect.  Gabler et al. (1999) showed that, for cluster sampling, 
this estimator is a special form of a design effect produced using variances from random effects models, 
with and without intra-class correlations.  Spencer (2000) proposed a simple model-based approach that 
depends on a single covariate to estimate the impact on variance of using variable weights. 
  
However, these approaches do not provide a summary measure of the impact of the gains in precision that 
may accrue from sampling with varying probabilities and using a calibration estimator like the general 
regression (GREG) estimator. While the Kish design effects attempt to measure the impact of variable 
weights, as noted in Kish (1992), they are informative only under special circumstances, do not account 
for alternative variables of interest, and can incorrectly measure the impact of differential weighting in 
some circumstances.  Spencer’s approach holds for with-replacement single-stage sampling for a very 
simple estimator of the total constructed with inverse-probability weights with no further adjustments.  
There are also few empirical examples comparing these measures in the literature.  Henry and Valliant 
(2013) extended this to gauge the impact of differential calibration weights in single-stage samples. 

 
In particular, the existing measures, reviewed in Section 2, may not accurately produce design effects for 
unequal weighting induced by calibration adjustments.  These are often applied to reduce variances and 
correct for undercoverage and/or nonresponse in surveys (e.g., Särndal and Lundström 2005; Kott 2009).  
When the calibration covariates are correlated with the coverage/response mechanism, calibration weights 
can improve the mean squared error (MSE) of an estimator.  In many applications, since calibration 
involves element-level adjustments, calibration weights can vary more than the base weights or category-
based nonresponse or poststratification adjustments (Kalton and Cervantes-Flores 2003; Brick and 
Montaquila 2009).  Thus, an ideal measure of the impact of calibration weights incorporates not only the 
correlation between the survey variable of interest y  and the weights, but also the correlation between y  
and the calibration covariates x  to avoid “penalizing” weights for the mere sake that they vary. 
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We extend these existing design effects to produce a new measure that summarizes the impact of 
calibration weight adjustments before and after they are applied to two-stage cluster-sample survey 
weights.  The proposed measure in Section 3 accounts for the joint effect of a non-epsem sample design 
and unequal weight adjustments in the larger class of calibration estimators.  Our summary measure 
incorporates the survey variable like Spencer’s model, but also uses a generalized regression variance to 
reflect multiple calibration covariates and the cluster sample design.  In section 4, we apply the estimators 
in a case study involving household-type survey data and demonstrate empirically how the proposed 
estimator outperforms the existing methods in the presence of unequal calibration weights.  
  
 

2. Existing Methods 
 

In this section, we specify notation and summarize the existing design effect measures for cluster 
sampling.  The assumptions used to derive each of these are also presented. 
 
2.1. Notation 

We consider that a finite population of M  elements is partitioned into N  clusters, with sizes iM , and 

denoted by   , : 1, , , 1, , iU i j i N j M    .  On element  ,i j , an analysis variable ijy  is observed.  

The population total of the y ’s is 
1 1

iN M
iji j

T y
 

   and the population variance is 

 2 1
1 1

iN M
y iji j

M y Y 
 

   , where 
1

N
ii

M M


  and Y T M . We select a sample of n  clusters 

and im  elements within cluster i , using two-stage sampling from U  and obtain a set of 

  , : 1, , , 1, , is i j i n j m     respondents. The total sample size of elements is 
1

n
ii

m m


 . 

 
In the following sections, when a two-stage design is considered, we assume that clusters are selected 
with replacement.  The selection probability of cluster i  on a single draw is ip .  Within cluster i , the 

sample of im  elements is selected via simple random sampling without replacement (srswor). Assuming 
that we have probability-with-replacement (pwr) sampling of clusters, the probability of selection for 

clusters is approximately  1 1
n

i i ip np      (if ip  is not too large), where ip  is the one-draw 

selection probability.  The second-stage selection probability is i ij i m M   for element j  in cluster i .  

Then the overall selection probability is approximately 
 

ij i i i ij i np m M    .  We estimate the total 

from the sample using with the pwr-estimator , 1 1 1 1

1ˆ i in m n mi
pwr y ij ij iji j i j

i i

M
T y w y

np m   
     , 

where  ij i i iw M np m . 
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2.2. GREG Weight Adjustments 

Case weights resulting from calibration on benchmark auxiliary variables can be defined with a global 
regression model for the survey variables (see Kott 2009 for a review).  Deville and Särndal (1992) 
proposed the calibration approach that involves minimizing a distance function between the base weights 
and final weights to obtain an optimal set of survey weights.  Specifying alternative calibration distance 
functions produces alternative estimators.  Suppose that a single-stage probability sample of m elements is 
selected with i  being the selection probability of element i and ix  a vector of p auxiliaries associated 
with element i.  A least squares distance function produces the general regression estimator (GREG): 

  ˆ ˆ ˆ ˆT
GREG HTy x HTx i i ii s

T T g y 


   B T T ,          (1) 

 

where ĤTy i ii s
T y 


  is the Horvitz-Thompson estimator of the population total of y, 

ˆ
HTx i ii s




T x  is the vector of HT estimated totals for the auxiliary variables, 
1

N
x ii
T x  is the 

corresponding vector of known totals, 1 1 1ˆ T
s s ss s s
  B A X V Π y  is the regression coefficient, with  

1 1T
s s ss s s

 A X V Π X , T
sX  is the matrix of ix  values in the sample,  ss idiag vV  is the diagonal of the 

variance matrix specified under the working model (defined below), and  s idiag Π .  In the second 

expression for the GREG estimator in (1),   1 1ˆ1
T

i x HTx s i ig v   T T A x  is the “g-weight,” such that the 

case weights are i i iw g   for each sample element i . 
 

The GREG estimator for a total is model-unbiased under the associated working model, T
i i iy  x β , 

 ~ 0,i iv . The GREG is consistent and approximately design-unbiased when the sample size is large 

(Deville and Särndal 1992).  When the model is correct, the GREG estimator achieves efficiency gains.  If 
the model is incorrect, then the efficiency gains will be dampened (or nonexistent) but the GREG 
estimator is still approximately design-unbiased.  Relevant to this work, the variance of the GREG 
estimator can be used to approximate the variance of any calibration estimator (Deville and Särndal 1992) 
when the sample size is large.  This result holds for multistage sampling and allows us to produce one 
design effect measure applicable to all estimators in the family of calibration estimators. 
 
2.3. Direct Design-Effect Measures 

For a given non-epsem sample   and estimator T̂  for the finite population total T , one definition for the 
direct design effect (Kish 1965) is 
 

      ˆ ˆ ˆ
srswr srswrDeff T Var T Var T .            (2) 

 

where ŝrswr kk s
T M y m


   is the expansion estimator under simple random sampling with 

replacement (srswr) and   2 2
ŝrswr yVar T M m .  We refer to this as a “direct” estimator because it uses 

theoretical variances in the numerator and denominator.  The alternatives that are presented subsequently 
use various approximations to the components in (2).  The design effect in (2) measures the size of the 
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variance of the estimator T̂  under the design  , relative to the variance of the estimator of the same total 
if an srswr of the same size had been used. 
 

We can approximate the variance of any calibration estimator ĉalT  using the approximate variance of the 
GREG (Deville and Särndal 1992), in which case  

      ˆ ˆ ˆ
cal GREG cal srswr srswrDeff T Var T Var T .          (3) 

 
As described in Sec. 3, our proposed design effect is a model-based approximation to (3). 
 
2.4. Kish’s “Haphazard-Sampling” Design-Effect for Unequal Single-stage Sample Weights  

Kish (1965, 1990) proposed the “design effect due to weighting” as a measure to quantify the loss of 

precision due to using unequal and inefficient weights.  For  1, ,
T

mw ww   denoting the weights from 

a simple random sample without replacement (srswor) of m  elements, this measure is 

    2

22

1K

i ii s i s

deff CV

m w w
 

    

    

w w
, (4) 

 

where    21 2
ii s

CV m w w w


 w  is the coefficient of variation of the weights, and 

1
ii s

w m w


  .  Expression (4) is derived from the ratio of the variance of the weighted survey mean 

under disproportionate stratified srswor to the variance under proportionate stratified srswor when all 
stratum element variances are equal (Kish 1992).  With equal stratum variances, sampling with a 
proportional allocation to strata is optimal, which leads to all elements having the same weight. 
 
2.5. Kish’s Measure for Cluster Sampling Weights 

Kish (1987) proposed a similar measure for cluster sampling.  Assume that there are G  unique weights in 
s  such that the igm  elements within each cluster i  have the same weight, denoted by ig gw w  for 

1, ,g G  , gm  is the number of elements within weighting class g  and 
1

G
gg

m m


  is the total 

number of elements in the sample.  We estimate the population mean Y T M  using the weighted 

sample mean 
1 1

G G
w gj gj gjg j g g j g

y w y w
   

    .  Kish’s (1987) decomposition model for wy  

assumes that the G  weighting classes are randomly (“haphazardly”) formed with respect to ijy , 

assuming that the ijy  have a common variance and that s  is an equal-probability sample in which the 

variation among the gm ’s within s  is not significant.  The resulting design effect is 
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    
2

1
2

1

1 1

G
g gg

KC w c
G

g gg

m w m
deff y m

w m





     
 
  




,         (5) 

where 1
1

n
ii

m n m


   is the average cluster size and c  the measure of  intra-cluster homogeneity.  The 

first component in (5) is the cluster-sample equivalent of (4), and can be written in a similar form using 
the squared CV of the weights if 1gm   .  The second (5) component is the standard design effect due to 

cluster sampling (e.g., Kish 1965).  Expression (5)  may not hold if there is variation in the igm  across 

clusters (Park 2004) or moderate correlation between the survey characteristic and weights (Park and Lee 
2004). 
 
2.6. Gabler et al.’s Measure for Cluster Sampling 

Gabler et al. (1999) used a model to justify measure (5) that assumes ijy  is a realization from a one-way 

random effects model (i.e., a one-way ANOVA-type model with only a random cluster-level intercept 
term plus an error) that assumes the following covariance structure: 

 
2

2

,

, ,

0
ij i j e

i i j j

Cov y y i i j j

i i



  

   
    
 

. (6) 

If the elements are uncorrelated, then (6) reduces to   2,ij i jCov y y     for ,i i j j    and 0 otherwise.  

Gabler et al. (1999) take the ratio of the model-based variance of the weighted survey mean under a 
model with covariance structure (6) to the variance under the uncorrelated errors version and derive  

   1

2
1

2

1

1 1

G
g gg

w g e
G

g gg

m w m
deff y m

w m





      
  




, (7) 

where  1

2
2

1 1 1

n G G
g g ig g gi g g

m w m w m
  

   . They also established an upper bound for (7): 

   2

2
1

2

1

1 1

G
g gg

w g e
G

g gg

m w m
UB deff y m

w m





          
  




, (8) 

where 
2

2 2
1 1 1 1

n G n G
g i g ig g igi g i g

m m w m w m
   

     is a weighted average of cluster sizes.   

 
Park (2004) further extends this approach to three-stage sampling, assuming that a systematic sampling is 
used in the first stage to select the clusters.  Lynn and Gabler (2005) provide examples of special cases of 
(7), such as equal sampling/coverage/response rates across domains.   
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Lynn and Gabler (2005) rewrite 
 

 2

2 2
1

2
1 1

,
G

g g g g gg
g G G

g ig g gg g

Cov m m w m m w
m N

m Var w m w



 







 

 in Gabler et al. (1999)’s 

design effect.  Assuming certain restrictions on the weights, they propose a survey planning 

approximation,      3

2 2
1 1gm m CV n CV        m w , where 

   22 2
1 1

1
G G

g gg g
CV G m m

 
     m  uses the squared CV of cluster sample sizes across clusters, 

and    22 2
1 1

1
G G

g g g gg g
CV w m w m

 
     w  uses the squared CV of weights across observations. 

 
2.7. Park and Lee’s Measures for Unequal Cluster Sampling 

Park and Lee (2004) extend the Gabler et al. (1999) design effect to account for unequal sampling 
weights within a two-stage cluster sample that selects 2m   elements from each PSU: 

    *ˆ 1 1HTy ydeff T m W   
, (9) 

where 
   

   

12 2
1

2 2
1

1 1

1 1

N
yB yii

N
yB i yii

N S m S

N S M S







  


  




,    212
1

1 iM
yi i ij ij

S M y Y



    is the within-cluster 

variability,    212
1

1
N

yB i ii
S N M Y Y


    is the across-cluster variability among cluster means, 

22
* 0

2 2 21
0

1
N yii i

y i
y i

CVm Q Y
W

mCV p M Y

  
         

 , 2 2 2
y yCV Y , 2 2 2

yi yi iCV S Y , and 
1
iM

i ij ii
Y y M


 .  The 

term  i i i iQ M M p M   is equal to zero if i ip M M  or the cluster probability of selection is 

proportional to the cluster size iM . The equivalent of (9) for the weighted sample mean is  

    *
01 1PL w ddeff y m W    , (10) 

where    * 2 2 2 2 2
0 01

1
N

d y i i i dii
W m CV Q p M D Y CV m


  , 2 2 2

di di iCV S D , 

1 1
iN M

iji i
D d M

 
  , and 

1
iM

i ij ij
D d M


  for the transformed variable ij ijd y Y  . 

 
2.8. Spencer’s Model-based Measure for Single-Stage pwr Sampling 

Spencer (2000) derives a design-effect measure to more fully account for the effect on variances of 
weights that are correlated with the survey variable of interest.  This measure was not developed for 
cluster sampling, but we used this modeling approach in Sec. 3 for a proposed design effect.  The sample 
is assumed to be selected with varying probabilities and with replacement (pwr).  Suppose that ip  is the 

one-draw probability of selecting element i , which is correlated with iy  and that a linear model holds for 
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iy : i i iy p     .  A particular case of this would be i ip x  , where ix   is a measure of size 

associated with element i .  If the entire finite population were available, then the ordinary least squares 

estimates of   and   are A Y BP   and     2i i ii U i U
B y Y p P p P

 
     , where ,Y P  

are the finite population means for iy  and ip .  The finite population variance of the residuals, 

 i i ie y A Bp   , is      22 2 1 2 21 1e yp i yp yi U
N y Y   


     , where yp  is the finite 

population correlation between iy  and ip .  The usual base weight under pwr-sampling is   1
i iw np

 .  

The estimated total studied by Spencer is ,
ˆ
pwr y i ii s

T w y


 , with design-variance 

   21
,

ˆ
pwr y i i ii U

Var T n p y p T


 
 

in single-stage sampling.  Spencer substituted the model-based 

values for iy  into the pwr-estimator’s variance and took its ratio to the variance of the estimated total 
using srswr to produce the following design effect for unequal weighting (see Appendix in Spencer 2000; 
modified for our notation): 

  2 22
2

2 2 2

2
1 1

we w e ew e w
S yp

y y y

m AmA mW mW
Deff

M M M M

     


  

 
      

 
. (11) 

Assuming that the correlations in the last two terms of (11) are negligible, Spencer approximates (11) 

with the first two terms in (11), where   11 1i ii U i U
W N w nN p

 
    is the average weight in 

the population.  When yp  is zero and y  is large, measure (11) is approximately equivalent to Kish’s 

measure (4).  However, Spencer’s method does incorporate the survey variable iy , unlike (4), and 

implicitly reflects the dependence of iy  on the selection probabilities ip .   

 
 

3. Proposed Design Effect Measures 
 
Henry and Valliant’s (2013) approach in single-stage sampling can be extended to produce a new 
weighting design effect measure for a calibration estimator in cluster sampling.  We produce the design 
effect in four steps: (1) constructing a linear approximation to the GREG estimator; (2) obtaining the 
variance of this linear approximation; (3) substituting our model-based components into the GREG 
variance; and (4) taking the ratio of the model-based variance to the variance of the pwr-estimator of the 
total under srswr.   
 
First, a linearization approximation to the GREG estimator (Exp. 6.6.9 in Särndal et al. 1992) assuming 
clusters are selected pwr is 

 
 

, ,

, ,

ˆ ˆ ˆ ˆ

ˆ ˆ

i

T
GREG pwr y x pwr x

T
pwr y x pwr x U

T
ij ij x Ui s j s

T T

T

w e
 

  

 

  

T T B

T T B

T B

  (12) 
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where xT  is the known population total of x , ,
ˆ

pwr xT  is the vector of pwr-estimators, UB  is the 

population coefficient, T
ij ij ij ue y  x B  is the residual for element ,i j , and T

ijx  is a row vector of 

calibration covariates.  From (12), ˆ
i

T
GREG x U ij iji s j s

T w e
 

  T B  .  Under the two-stage sampling 

assumptions (Sec. 2.1),  ij i i iw M np m  and the approximation variance of the GREG in (12) is also the 

variance of 
ˆ

ˆ
i

T
GREG x U i ij i ii s j s

i eii s

T M e np m

w T

 







 


T B 
, (13) 

where   1
i iw np

  and ˆ
i

ei i i ijj s
T M m e


  .   

 
The design-variance of (13) is 

 

   
2 2 2

1 1 1

2 2
2 2

1 1

1 1ˆ 1
1

1
1

i

i

N N MUi i i
GREG i U ij Ui i j

i i i i i

N NUi i i
U Ueii i

i i i i

e M m
Var T p E e e

n p np m M M

e M m
E S

n p np m M


  


 

   
          

   
          

  

 


,  (14)  

where 
1

N
U iji

E e 
 , 

i
Ui ijj U

e e 
 ,  22 1

1
iM

Uei i ij Uij
S M e e


  , and 

1
iM

Ui ij ij
e e M


 .  The 

true deff for ĜREGT  is defined as  

     ˆ ˆ ˆ
True GREG GREG srswrdeff T Var T Var T . (15) 

 
3.1. Valliant et al.’s Relative Variance Deff 

Valliant, Dever, and Kreuter (2013, Sec. 9.2.3) give a design effect for totals in cluster samples using the 
ratio of the relative variance of the estimator of the total when clusters are selected pwr and m  elements 
within clusters are selected via srswor over the equivalent expression under srswr.  Their measure can be 
modified by using (14) which uses the GREG-based residuals.  Assuming that m  elements are selected in 
each cluster, the relative variance of the GREG (i.e., the variance of the GREG over the squared total) can 
be rewritten as 

     ˆ ˆ 1 1GREG srswr e eRelVar T RelVar T k m     , (16) 

where    2 2
ŝrswr yRelVar T nmY ,  2 2 2

e e e eB B W   ,  22 2 2
1

N
e i Ui i Ui

B p e p E T 
   is the 

between-cluster relative variance component, 2 2 2
1

N
e i Ueii

W M S T


  is the within-cluster component, 

       2 2 2 2 2 2
e e e e e yk B W RelVar T B W T    , where T

ij ij ij Ue y  x B  is the residual for element 
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ij, T
ijx  is a row vector of calibration covariates (including an intercept if one is used), and  

i
U iji U j U

E e
 

  .  Using the form of the relative variance in (16), the associated design effect is 

   ˆ 1 1VDK cal e edeff T k m     . (17) 

 
When calibration is more efficient for a given y -variable, the term ek  will be less than 1 and acts as a 
dampening factor, reducing the overall design effect. 
 
3.2. An Alternative Deff 

We follow Spencer’s approach and substitute model values in variance (14) to formulate a design-effect 
measure.  However, here we substitute in the model-based equivalent to ie , not iy , as Spencer does. 
 
Suppose that the second-stage sampling fraction is negligible, i.e., 0i im M  .  To match the theoretical 

variance formulation in (14), consider the model T
ij U ij U ijy A e  x B , where ,U UA B  are the finite 

population model parameters, and ijx  from previous sections is equal to  1ij ijx x .     

 

Similar to Henry and Valliant (2013), we simplify things by reformulating the model as T
ij ij ij Uu y  x B , 

such that ij ij Ue u    and incorporate i U iM   not as a cluster-level (random) intercept, simply an 

algebraic expression.  The model assuming a random intercept i  and error term is equivalent to Gabler 
et al.’s (1999) random effects model.  
 
Substituting the GREG residuals ije  into the variance (14) and taking its ratio to the variance of the pwr-

estimator in srswr,   2 2ˆ
srs srswr yVar T M nm  will produce our approximate design effect due to 

unequal calibration weighting.  Assuming that the iM  are large enough such that  1 1i iM M    and 

the within-cluster sampling fractions are negligible, we obtain the following approximate design effect: 

   

 2 2 2 2

22 2 2 2 2

1 2 2 2 2

2 2,

2 2 2 2 1

2

2
ui

u
G

y y

w u w uu w u w N i i U

i
iy y

nmWN U U nmN U
deff

M nM

nmN M w Snm

mM M



  

    

 

      

 



  



    
 

 
   . (18) 

 

where   
i

T
i ij ij Uj U

u y   x B , 1
1

N
ii

U N u
  , 1

1
N

i Ui
N M  

  , 

1
1

N
ii

M N M
  , 1

1
N

i ii
U N u 

  ,     212
1

1 i

ui

M
U i ij ij

S M u u


   ,  
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 22 1
1

N
u ii

N u U



  ,  22 1

1
N

ii
N  

  ,   1
1

N
w ii

N W W 
  , and  

  1
1

N
u i ii

N u U  



   .  The  -components are the finite population correlations 

between the terms within each subscript.   
 
Some approximations to (18) exist.  If the correlations in (18) are negligible, then we obtain 

 2 2 22 2 2 2 2

0 2 2 2 2 2 1

2
uiN i i Uu

G i
iy y y

M w SU U mN UmW N m
deff

M M mnM M

    

  




     
   
 
 

 , which can 

be estimated with the correlation terms removed from (18).  Assuming that iM  are close enough such 

that iM M , i iM M    , and 2 0  , then (18) becomes  

   

 2 2

2 22 2

1 2 2 2 2 2

2

2 2 2 2 1

2
ui

u U
G

y y y

w U u u wu w u M i U

i
iy y

U M mN UNmW
deff

M M

nmN M w Snm

mM M

  

  

     

 



 




        
 


   . (19) 

The Kish measure is also a special case of (19), when there are no cluster-level effects.  In particular, 

suppose that for all elements 0ij x , and there is no cluster sampling. Then, ij iju y , 2 2
u y   , 

U M MY  , 2 2
u y 

 , and 2

2 0   , and (19) reduces to nmW M .  The estimator of this from 

a particular sample is Kish’s measure,  Kdeff w , defined in (4). 

 

When the relationship between the calibration covariates x  and y  is strong, the variance 2
u   should be 

smaller than 2
y .  In this case, measure (18) is smaller than the Kish and Park and Lee estimates.  

Variable weights produced from calibration adjustments are thus not as “penalized” (shown by overly 
high design effects) as they would be using the Kish.  However, if we have “ineffective” calibration, or a 

weak relationship between  x  and y , then 2
u   can be greater than 2

y , producing a design effect greater 

than one.  This is illustrated in Sec. 4 with a population that mimics household-type data.  We also 
examine the extent to which the correlation components in our proposed design effect (18) are significant, 
or large enough to influence the exact measure. 
 
 

4. Empirical Example Using Household Data 
 
The MDarea.pop dataset in the R PracTools package (Valliant et al. 2014) is used in this section as 
an example.  This dataset contains 403,997 persons generated from data from the 2000 decennial U.S. 
Census for Anne Arundel County in the state of Maryland and is described in detail in Valliant et al. 
(2013).  Individual values for each person were generated using models. Groupings to form the variables 
PSU and SSU were done after sorting the census file by tract and block group within tract.  
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We treated block groups within Census tracts as the cluster (PSU) and selected persons as the elements 
(SSU).  PSUs with a small number of persons (less than 500) were excluded, leaving a pseudo-population 
of 274 PSU’s and 397,065 elements.  A poststratified estimator was used, with poststrata defined by the 
cross-classification of gender and 15 age groups (less than 5, 5-9, 10-14, 15-17, 18-21, 22-24, 25-29, 30-
34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65 and older).  Thus, the weighting groups are post-strata, 
which cut across the PSU’s and SSU’s. 
 
We examine six variables of interest, y1, y2, and y3, fictitious continuous variables on the file, created 
an additional variable y4 using a linear model with the poststratification variables as covariates, and two 
binary variables indicating presence/absence of insurance coverage and a hospital stay.  Figure 1 shows a 
pairwise plot of the pseudo-population, including plots of the variable values against each other in the 
lower left panels, histograms on the diagonal panels, and the correlations among the variables in the upper 
right panels.  This plot mimics household-type data patterns.       

 
Figure 1. Pseudopopulation Values and Loess Lines for Design Effect Evaluation 

 
 
Eight design effects are compared, with results shown in Table 1: 
 
 The direct design effect measure Truedeff  computed from (15).  This reflects the combined effects of 

cluster sampling and poststratification; 
 

 The Kish measure Kdeff  (4) computed using the GREG weights 
 

 The Kish measure KCdeff  (5) for cluster sampling; 
 
 Park and Lee’s measure PLdeff  in (10); 

 
 VDKdeff  in (17); 
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 Three proposed measures: (i) 1Gdeff , the exact proposed design effect in (18), (ii) 0Gdeff , the zero-

correlation approximation to 1Gdeff , and 2Gdeff , the equal-cluster sized approximation (19).  All of 
these are meant to show the precision gains (if any) of the cluster sampling combined with GREG 
estimation. 

 
Note that we do not include the Gabler et al. (1999) or Lynn and Gabler (2005) measures, which 
correspond to design effects of the weighted survey mean.  Park and Lee (2004) describe the 
circumstances in which design effects for means and totals are different.  Since our proposed design effect 
is for estimation of totals, we focus our empirical comparison on comparing it to only the existing 
measures for totals. 
 
The results are shown in Table 1. 
 

Table 1. Population Design Effects, by Variable of Interest 
 Variable of Interest 

Design Effects 1y * 2y * 3y * 4y * Hospital 
Stay** 

Insurance 
Coverage** 

Truedeff  0.9 1.4 5.2 0.1 1.3 1.1 

              
Kish             

     Single-stage Kdeff  3.0 3.0 3.0 3.0 3.0 3.0 

     Cluster KCdeff   3.0 4.0 14.9 3.5 3.7 3.0 

              

Park and Lee PLdeff  1.3 1.4 5.4 1.3 1.4 1.0 

              

Valliant et al. VDKdeff   0.9 1.4 5.2 0.1 1.3 1.1 

               
Proposed             

     Exact 1Gdeff   0.9 1.5 5.5 0.3 1.5 1.1 

     Zero-corr. approx. 0Gdeff  1.0 1.6 7.6 0.3 1.6 1.1 

     Equal cluster approx. 2Gdeff   3.0 3.9 54.9 25.3 27.7 1.7 

  * continuous variables;  ** categorical variables 
 
The true population design effects, denoted by Truedeff , for the calibration totals range from 0.1 for 4y  to 

5.2 for 3y .  These are population values, not subject to sampling variability.  Notably they are less than 

one for 1y  and 4y , which means that poststratifying by age and gender will improve estimates of these 
variables’ totals. 
 

The Kish single-stage Kdeff  is simply   2
1 CV   w , which is constant regardless of the variable of 

interest.  The cluster sample extension KCdeff  are all very large, 3.0 or higher.  The Park and Lee 
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PLdeff ’s account for the unequal cluster weights but all exceed one.  This also occurred for the 

approximations, 0Gdeff  and 2Gdeff .  This means for all of these alternatives, the deff’s are too large.  In 

particular, one would incorrectly believe that calibration would not be beneficial for 1y  and 4y .  The 

Valliant et al. VDKdeff  equals Truedeff  since they are based on the same formula; the alternative 

estimator 1Gdeff  is very close to Truedeff . 
 
While the Park and Lee PLdeff  was not designed to capture the gains in calibration, it could by 

incorporating the ek -factor used in VDKdeff .  The other components between these two deff’s were 
nearly identical.  This is shown in Table 2. 
 

Table 2. Valliant et al. and Park and Lee Deff Components, by Variable of Interest 
 Variable of Interest 

Design Effect Component 1y * 2y * 3y * 4y * Hospital 
Stay** 

Insurance 
Coverage** 

Park and Lee PLdeff  

     *
yW  

       
      1 1m    

 
0.000 

 

0.011 
 

0.256 

 
0.000 

 

0.017 
 

0.413 

 
0.000 

 

0.185 
 

0.444 

 
0.000 

 

0.012 
 

0.290 

 
0.000 

 

0.015 
 

0.350 

 
0.000 

 

0.004 
 

0.094 

Valliant et al. VDKdeff  

     e  

     ek  

      1 1 em    

      1 1e ek m      

 
0.008 

 

0.733 
 

0.198 
 

0.145 

 
0.018 

 

0.980 
 

0.420 
 

0.412 

 
0.200 

 

0.888 
 

4.802 
 

4.262 

 
0.001 

 

0.104 
 

0.017 
 

0.002 

 
0.013 

 

0.964 
 

0.302 
 

0.291 

 
0.004 

 

0.997 
 

0.091 
 

0.091 
  * continuous variables;   ** categorical variables 
 
The   and e  values are close, such that differences between these deff’s are due to the ek -factor.  
While the Park and Lee PLdeff  was not designed to account for calibration efficiency, Table 2 
demonstrates how it can easily be adapted by incorporating ek . 
 
 

5. Discussion, Limitations, and Conclusions 
 

We propose new design effects that gauge the impact of calibration weighting adjustments on an 
estimated total in cluster sampling.  Existing design effects include Kish’s (1965) “design effect due to 
weighting” and Park and Lee’s (2004) for unequal two-stage cluster weights.  Neither of these reflect 
efficiency gains due to calibration.  The Kish deff is a reasonable measure if equal weighting is optimal or 
nearly so, but does not reveal efficiencies that may accrue from sampling with varying probabilities.  The 
Park and Lee deff does signal whether the HT (or pwr) estimator in varying probability sampling is more 
efficient than srs, but does not reflect any gains from using a calibration estimator.   
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The new design effects introduced in Sec. 3 measure the impact of both sampling with varying 
probabilities and of using a calibration estimator, like the GREG, that takes advantage of auxiliary 
information.  As we demonstrate empirically, the proposed design effects do not penalize unequal weights 
when the relationship between the survey variable and calibration covariate is strong.  We also 
demonstrated empirically that the correlation components in the proposed measure 1Gdeff  can be 
important in some situations.  It is not overly difficult to calculate these components, so we recommend 
incorporating them when possible to avoid overly high estimates of the design effects.  In cases where the 
auxiliary information is ineffective or is not used, the proposed measure approximates Kish’s Kdeff .   
 
One of our proposed measures, 1Gdeff , uses the model underlying the general regression estimator to 

extend the Spencer measure. The other alternative, VDKdeff , has a form similar to the familiar 

 1 1m    found in many texts.  The survey variable, covariates, and weights are required to produce 

both new design effects.  Since the variance (14) is approximately correct in large samples for all 
calibration estimators, the new design effects should reflect the effects of many forms of commonly used 
weighting adjustment methods, including poststratification, other forms of the GREG estimator, and 
raking.  Although design effects that do account for these adjustments can be computed directly from 
estimated variances, it is important for practitioners to understand that the existing deff’s do not reflect 
any gains from those adjustments. The alternative deff’s introduced in this paper, thus, serve as a 
corrective to that deficiency. 
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