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Abstract 
This paper provides an overview of methods of adjusting statistical analyses for record linkage error.  It 
also provides new examples of the severe errors that can occur in statistical analyses when there is record 
linkage error. 
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1.  Introduction 
Record linkage (entity resolution) is the method of bringing together records associated with the same 
entity using quasi-identifiers such as name, address, date-of-birth, etc.  While individual quasi-identifiers 
do not uniquely identify entities, a combination of quasi-identifiers may uniquely identify an entity such 
as a person.  The quality of the information (quasi-identifiers) are crucial to the quality of record linkage 
(i.e., low false match error rates, possibly low false nonmatch error rates).   
   Because files (particularly large national files) can yield useful information in statistical analyses, 
various groups are interested in cleaning-up and merging individual files and (possibly) doing additional 
clean-up of merged files to correct for linkage error. 
    A conceptual picture would link records in file A = (ai, …, an, x1, …, xk)  with records in file 
B = (b1, …, bm, x1, …, xk)  using common identifying information (x1, …, xk) to produce the merged file 
A  B = (ai, …, an, b1, …, bm) for analyses.  The variables x1, …, xk are quasi-identifiers such as names, 
addresses, dates-of-birth, and even fields such as income (when processed and compared in a suitable 
manner).  Individual quasi-identifiers will not uniquely identify correspondence between pairs of records 
associated with the same entity; sometimes combinations of the quasi-identifiers may uniquely identify.  
Survey files routinely require cleanup via edit/imputation and administrative files may also require similar 
cleanup.  If there are errors in the linkage, then completely erroneous (b1, …, bm)  may be linked with a 
given (ai, …, an) and the joint distribution of (ai, …, an, b1, …, bm) in A  B may be very seriously 
compromised.  If there is inadequate cleanup (i.e., effective edit/imputation) of A = (ai, …, an, x1, …, xk)  
and B = (b1, …, bm, x1, …, xk) , then analyses may have other serious errors in addition to the errors due 
to the linkage errors.    
   In this paper, we provide some background on the Fellegi-Sunter model of record linkage, methods of 
file clean-up and preparation prior to linkage, current (very primitive) models to estimating record linkage 
error rates and models for adjusting statistical analyses for linkage error.  A new example mimics larger 
situations that might typically be encountered in practice and illustrates how poorly existing methods 
perform. 
 
2.  Background, Methods, Current Research Problems 
In the first subsection, we provide background on the Fellegi-Sunter model of record linkage.  In the 
second, we provide an overview of preprocessing/standardization which can represent a 0.75 proportion 
of improved matching efficacy.  Without the preprocessing/standardization, improving models and 
parameter estimation to yield reasonable improvements in methods of adjusting statistical analyses for 
linkage error would be impossible.  In the third subsection, we provide a full likelihood development for 
the models of this paper that also holds (with a substantial change in notation) for the model of 
Chipperfield et al. (2011).  The advantage of the subsection’s model is that it is based on theory (Winkler 
1993) generalizing the linear constraints of Meng and Rubin (1993) to convex constraints which may 
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improve some of the methods of adjusting statistical analyses for linkage error as they do with general 
edit/imputation (Winkler 2008, 2010).  The fourth subsection describes some of the previous work on 
adjusting statistical analyses for linkage error.  The fifth subsection covers the methods of Chipperfield et 
al. (2011) and applies them to more realistic situations than have been used by prior authors of methods 
on statistical adjustment methods for linkage error. 
 
2.1.  The Fellegi-Sunter Model of Record Linkage 
Fellegi and Sunter (1969) provided a formal mathematical model for ideas that had been introduced by 
Newcombe et al. (1959, 1962).  They introduced many ways of estimating key parameters without 
training data.  To begin, notation is needed.  Two files A and B are matched.  The idea is to classify pairs 
in a product space A  B from two files A and B into M, the set of true matches, and U, the set of true 
nonmatches.  Fellegi and Sunter, making rigorous concepts introduced by Newcombe (1959), considered 
ratios of probabilities of the form: 
 
      R =  P( γ  Γ | M) / P( γ   | U)                                                                        (1)   
 
where γ is an arbitrary agreement pattern in a comparison space Γ.  For instance, Γ might consist of eight 
patterns representing simple agreement or not on the largest name component, street name, and street 
number.  Alternatively, each γ  Γ might additionally account for the relative frequency with which 
specific values of name components such as "Smith" and "Zabrinsky” occur.  Then P(agree “Smith” | M) 
< P(agree last name | M) < P(agree “Zabrinsky” | M) which typically gives a less frequently occurring 
name like “Zabrinsky” more distinguishing power than a more frequently occurring name like “Smith” 
(Fellegi and Sunter 1969, Winkler 1995).  Somewhat different, much smaller, adjustments for relative 
frequency are given for the probability of agreement on a specific name given U.  The probabilities in (1) 
can also be adjusted for partial agreement on two strings because of typographical error (which can 
approach 50% with scanned data (Winkler 2004)) and for certain dependencies between agreements 
among sets of fields (Larsen and Rubin 2001, Winkler 2002).  The ratio R or any monotonely increasing 
function of it such as the natural log is referred to as a matching weight (or score). 
 
The decision rule is given by: 
 
   If R > T, then designate pair as a match. 
 
   If T  R  T, then designate pair as a possible match 
        and hold for clerical review.                                                                                  (2) 
 
   If  R < T, then designate pair as a nonmatch. 
 
The cutoff thresholds T and T are determined by a priori error bounds on false matches and false 
nonmatches.  Rule (2) agrees with intuition.  If γ Γ consists primarily of agreements, then it is intuitive 
that γ Γ would be more likely to occur among matches than nonmatches and ratio (1) would be large.  
On the other hand, if γ Γ consists primarily of disagreements, then ratio (1) would be small.  Rule (2) 
partitions the set γ  Γ into three disjoint subregions.  The region T  R  T is referred to as the no-
decision region or clerical review region.  In some situations, resources are available to review pairs 
clerically. 
   Fellegi and Sunter (1969, Theorem 1) proved the optimality of the classification rule given by (2).  
Their proof is very general in the sense in it holds for any representations γ  Γ over the set of pairs in the 
product space A  B from two files.  As they observed, the quality of the results from classification rule 
(2) were dependent on the accuracy of the estimates of P( γ  Γ | M) and P( γ  Γ | U).   
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   Figure 1 provides an illustration of the curves of log frequency versus log weight for matches and 
nonmatches, respectively.  The two vertical lines represent the lower and upper cutoffs thresholds T and 
T, respectively.  The x-axis is the log of the likelihood ratio R given by (1).  The y-axis is the log of the 
frequency counts of the pairs associated with the given likelihood ratio.  The plot uses pairs of records 
from a contiguous geographic region that was matched in the 1990 Decennial Census.  The clerical 
review region between the two cutoffs primarily consists of pairs within the same household that are 
missing both first name and age (the only two fields that distinguish individuals within a household). 
 

 
 
For the 1990 Decennial Census, we had to estimate specific parameters in each of 457 regions.  The 
clerical review region consisted almost entirely of individuals within the same household who were 
missing both first name and age (the only two fields for distinguishing individuals within a household). 
 
2.2.  Data Preparation 
The methods for cleaning up data prior to the data being run through the matching routines account for 
between 50% and 75% of matching efficacy; improved parameter estimation account for the remaining 
improvement in matching efficacy.  To facilitate the preprocessing, individuals need to assure that names 
and addresses are broken into corresponding components for comparison, that dates and other fields are in 
forms that can be compared directly with appropriate algorithms, and that minor typographical error and 
its effect on the likelihoods is dealt with automatically. 
 
 
Table 1.   Examples of Name Parsing 
                           
       Standardized____         
 
 1.  DR John J Smith MD    
 2.  Smith DRY FRM 
 3.  Smith & Son ENTP__      
 
 
                 Parsed_____________________                      
    PRE FIRST MID LAST  POST1 POST2 BUS1 BUS2     
 1. DR  John    J Smith  MD 
 2.               Smith             DRY  FRM 
 3.               Smith       Son   ENTP_____       
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The name standardization (Table 1) and the address standardization (Table 2) are absolutely crucial to 
accurate matching.  Although there are much more advanced methods of standardization (Agichtein and 
Gani 2004; Cohen and Sarawagi 2004), we do not need the methods for most types of high quality person 
lists. 
 
 
Table 2.  Examples of Address Parsing 
                           
       Standardized 
                         _ 
 1.  16 W Main ST APT 16   
 2.  RR 2 BX 215 
 3.  Fuller BLDG SUITE 405   
 4.  14588 HWY 16 W_______        
                                                              
 
                            Parsed___________________________                             
     Pre2 Hsnm  Stnm   RR Box  Post1 Post2 Unit1 Unit2  Bldg__   
 
 1.  W    16    Main             ST          16                 
 2.                     2  215 
 3.                                              405    Fuller 
 4.       14588 HWY 16                 W______________________    
 
 
 
Table 3.  Different Date Formats 
 
April 15, 1960 
1960Apr15 
04/15/1960 
 
 
Table 4.  Examples of Fields having Minor Typographical Error 
 
F1a     William 
F1b    Willam 
 
F2a     Roberta 
F2b    Rburta 
 
F3a    Jones 
F3b    Janes 
 
 
2.3  Basic Parameter Estimation and Error-rate Estimation 
The development in this section is due to that of Winkler (1988) and extended to semi-supervised learning 
in Winkler (2002).  The notation is slightly more general because it deals with the representational 
framework of record linkage.  The underlying computational algorithms are almost identical to those in 
Chipperfield et al. (2011).  Let i be the agreement pattern associated with pair pi.  Classes Cj are an 
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arbitrary partition of the set of pairs D in A  B.  Later, we will assume that some of the Cj will be subsets 
of M and the remaining Cj are subsets of U.  Specifically,  
 
  P(i | ) = i 

|C| P(i | Cj; ) P(Cj ;  )                                                          (3) 
 
where (i is a specific pair, Cj is a specific class, and the sum is over the set of classes.  Under the Naïve 
Bayes or conditional independence (CI), we have 
 
   P(i | Cj ; ) =  k  P(i,k | Cj ; )                                                                         (4) 
 
where the product is over the kth individual field agreement ik in pair agreement pattern i.  In some 
situations, we use a Dirichlet prior 
 
  P() =  j ( Cj )

-1    k  (  i,k | Cj )
 -1                                                               (5) 

 
where the first product is over the classes  Cj and the second product is over the fields.  We use Du to 
denote unlabeled pairs and Dl to denote labeled pairs.  Given the set D of all labeled and unlabeled pairs, 
the log likelihood is given by 
 
  lc( | D; z) =  log ( P())  + 
      (1- )  iDu   j zij log (P(i | Cj ; )  P(Cj ; )) + 
      iDl  j zij log (P(i | Cj ; )  P(Cj ; )).                                                       (6) 
 
where 0    1.  The first sum is over the unlabeled pairs and the second sum is over the labeled pairs. 
   In the third terms equation (6), we sum over the observed zij.  In the second term, we put in expected 
values for the zij based on the initial estimates P(i | Cj; ) and P(Cj; ). After re-estimating the 
parameters P(i | Cj; ) and P(Cj; )) during the M-step (that is in closed form under condition (CI)), we 
put in new expected values and repeat the M-step.  The computer algorithms are easily monitored by 
checking that the likelihood increases after each combination of E- and M-steps and by checking that the 
sum of the probabilities add to 1.0.  We observe that if  is 1, then we only use training data and our 
methods correspond to naïve Bayes methods in which training data are available.  If  is 0, then we are in 
the unsupervised learning situations of Winkler (1988).  
   Belin and Rubin (1995) were the first to provide an (reasonably accurate) unsupervised method of 
estimating false match rates.  Larsen and Rubin (2001) later used semi-supervised learning and MCMC 
methods to provide false match rate estimates.  Winkler (2002) used EM methods to provide estimates of 
false match rates  that were very slightly less accurate than those of Larsen and Rubin (2001) but for 
which computation was 100 times as fast (10 minutes per estimate).  The additional speed was needed 
because the methods needed to be applied in ~500 regions into which Decennial Census matching had to 
be performed in 3-6 weeks.  Winkler (2006) provided unsupervised methods that improved over Belin 
and Rubin (1995) because he was able to create data structures that accounted for more of the 
relationships between records than had been available for Belin and Rubin.  The Winkler (2006) 
unsupervised methods were somewhat worse than the semi-supervised methods of Larsen and Rubin 
(2001) and Winkler (2002).  Winkler (2004) provided methods of false nonmatch error rate estimation. 
 
2.4.  Current Models for Adjusting Statistical Analyses for Linkage Error 
The first model for adjusting a regression analysis for linkage error is due to Scheuren and Winkler 
(1993).  By making use of the Belin-Rubin predicted false-match rates, Scheuren and Winkler were able 
to give (somewhat crude) estimates of regressions that had been adjusted for linkage error to correspond 
more closely with underlying ‘true’ regressions that did not need to account for matching error.  All 
papers subsequent to Scheuren and Winkler have assumed that accurate values of false match rates 
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(equivalently true match probabilities) are available for all pairs in A × B.  The difficulty in moving the 
methods into practical applications is that nobody has developed suitably accurate methods for estimating 
all false match rates for all pairs in A × B when no training data is available.   
   Lahiri and Larsen (2005) later extended the model of Scheuren and Winkler with a complete theoretical 
development. In situations where the true (not estimates) matching probabilities were available for all 
pairs, the Lahiri-Larsen methods outperformed Scheuren-Winkler methods and were extended to more 
multivariate situations than the methods of Scheuren and Winkler (1993).  Variants of the models for 
continuous data are due to Chambers (2009) and Kim and Chambers (2012a,b). using estimating 
equations.  The estimating equation approach is highly dependent on the simplifications that Chambers et 
al. made for the matching process. 
   Chipperfield et al. (2011) provided  methods of extending analyses on discrete data.  The Chipperfield 
et al. methods are closely related to Winkler (2002) which contains a full likelihood development.  
Trancredi and Liseo (2011) applied Bayesian MCMC methods to discrete data. The Trancredi-Liseo 
methods are exceptionally impressive because of the number of simultaneous restraints with which they 
can deal.  The Trancredi-Liseo methods are extraordinarily compute intense (possibly requiring as much 
as 3 hours computation on each block (approximately 50-100 households).  There are millions of blocks 
in the U.S. 
  Goldstein et al. (2012) provide MCMC methods for adjusting analyses based on very general methods 
and software that they developed originally for imputation (Goldstein et al. 2008).  They provide methods 
of estimating the probabilities of pairs based on characteristics of pairs from files that have previously 
been matched.  They are able to leverage relationships between vector x A to y  B based on a subset of 
pairs on which matching error is exceptionally small and then extend the relationships/matching-
adjustments to the entire set of pairs in A × B.  Although we have not encountered situations similar to 
Goldstein et al. (2012) where estimates of matching probabilities are very highly accurate and where we 
can obtain highly accurate estimates of relationships for (x, y) pairs on A × B (particularly from previous 
matching situations), the Goldstein et al. methods are highly promising, possibly in combination with 
another method. 
   The methods for adjusting regression analyses for linkage error have been more successful than the 
methods for adjusting statistical analyses of discrete data because of various inherent simplifications due 
to the form of regression models.   
   Because the model of Chipperfield et al. (2011) is straightforward and deals with discrete data, we 
describe it prior to going to the examples that illustrate the extreme difficulties of having linkage-error-
adjustment models that effectively deal with data that might be appropriately described as real-world. 
 
2.5.  Errors in Statistical Analyses due to Linkage Error of Discrete Data 
The natural way of analyzing discrete data is with loglinear models on the pairs of records in A × B.  For 
consistency with Chipperfield et al. (2011) we follow their notation as consistently as possible.  Rather 
than break out A and B as (a1, …, an) and (b1, …, bm), we merely enumerate A with x in A and B with y in 
B.  All observed pairs have probabilities pxy where pxy represents all pairs of records in A × B with x in A 
and y in B.  If we knew the truth, we would know all the pxy.  We wish to estimate the pxy in a semi-
supervised fashion as with the likelihood equation given in (6).  Chipperfield et al. (2011) take a sample 
of pairs sc for which they can determine pxy exactly (no estimation error) for all pairs x and y associated 
with sc. 
   As preliminary notation, we describe contingency tables without the missing data. We assume that x 
takes G values and y takes C values.  Then, the joint distribution of x and y is 
 
 p(x, y) = p1(y | x, ) p2 (x) 
 
where  = (’1, …, ’_)’, (’g = ((’1|g, …,  ’C|g )’, ’c|g is the probability the given x = g that y = c.  
The total number of probabilities p(x, y) is CG.  Each p(x,y) is obtained by summing over all pairs pi(x,y) 
where x in A (first component) and y in B (second component).  The standard estimate of  
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෤c|x = nc|x/nx), where   nx = c i  wic|x, where wic|x = 1 if yi = c and xi = x and  
wic|x = 0 otherwise. 
 
 
When there is linkage error, we are concerned with methods that adjust for linkage error.  If we can 
observe true matching status, then the underlying truth representation is. 
 
 w*ic|x = 1 if y*i = c, and xi = x; else w*ic|x = 0. 
 
Ordinarily, we may need to take a (possibly very large) sample to get at the truth and use the following 
semi-supervised learning procedure. 
 
   Take a (likely very large) sample sc to get (possibly only somewhat) good estimates of  w*ic|x .  Use EM 
model to get estimates for all ̂݌xy.  The sample sc gives  
 
 xy* = (sc w*ic|x  i )/ (sc w*ic|x).                                         (7)̂݌       
 
 
      ෤c|x = ෤݊c|x/(c ෤݊c|x)

-1,                                                              (8) 
 
where  
 
       ෤݊c|x =  i ݓ෥ ic|x,                                                                      (9) 
 
෥ݓ        ic|x = w*ic|x  ̂݌xy* + (1- ̂݌xy*) ෤c|x if i  sc, 
 
                 =  w*ic|x  if  i sc                                                        (10) 
 
                 =  ෤c|x if  i sc    and i = 0  (i  is indicator that true match), 
 
  
The (semi-supervised) EM procedure is  
 
1.  Calculate ̂݌xy* from (7), 

2.  Initialize ߨ෤௖|௫
ሺ଴ሻ and then calculate ݓ෥௖|௫

ሺ଴ሻ from (10) and then ෤݊௖|௫
ሺ଴ሻfrom (9),  

3.  Calculate ߨ෤௖|௫
ሺ௧ሻ  from (8) using ෤݊௖|௫

ሺ௧ିଵሻ,  

4.  Calculate ݓ෥௖|௫
ሺ௧ሻ from (10) using ߨ෤௖|௫

ሺ௧ሻ  and then calculate ෤݊௖|௫
ሺ௧ሻ from (9)  

     using ݓ෥௖|௫
ሺ௧ሻ, 

5.  Iterate between 3 and 4 until convergence. 
 
 
   A similar semi-supervised procedure (with full likelihood development) was used in Winkler (2002) 
and extended to an unsupervised procedure (Winkler 2006) with a substantial decrease in accuracy for 
estimating false match rates.  With very slight notational changes, the procedure given in steps 1-5 above 
is the same as the approach using the likelihood given by equation (6). 
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   The procedure of Chipperfield et al. (2011) appears to work well in their simple empirical examples that 
have substantial similarity to Winkler (2002) but the methods of Chipperfield et al. are more directly 
generalizable. 
 
Empirical example (Chipperfield et al. 2011): 
Three values (employed, unemployed, not in labor force) are compared against same values in another 
file for a later time period.  The total sample size 1000 which represents ~100 for each combination of 
cells across time periods.  With Chipperfield et al., there is very little variation between the 3 labor-force 
values in one time period to another.  There are only 3 × 3 possible patterns.  With more realistic data, we 
might have thousands or millions of patterns.  Each false match (x, y) might associate a completely 
unrelated y  B that is chosen approximately randomly from thousands of B records .  
 
3.  Empirical Data 
The empirical data consists of 55926 records from on State (1% sample) from a public-use file.  In the 
following diagram, we have collapsed a number of the value-states of fields into a smaller number of 
value-states to make the analysis easier.  There are approximately 1.5 million possible data patterns.  
Even if this relatively straightforward situation, it will be apparent that it is very difficult to extend the 
existing statistical-adjustment procedures to achieve high or moderate accuracy with complicated real 
data. 
 
 
Table 5.  Data (2000 PUMS data for one State) 
               (Number of values for each field) 
 
-------- A data -------------     --------  B data ------ 
Sex  age  race  marit  educ  occup  house  income 
  2      16    2       5        16       3         5        40 
 
  2560 data patterns                    600 data patterns            
 
 
   Matching error (Table 6) was induced at the following rate in parts of the file at rates that might 
correspond to a ‘good’ matching situation with certain types of real data.  We only consider the simplest 
situation where each x A will either be matched with the correct y  B or not.  With this simplification, 
each matching error represents a type of permutation of the records with y  B.  Different authors 
(Scheuren and Winkler 1993, Lahiri and Larsen 2005) have suggested methods for extending methods to 
the situations where some x A do not have a corresponding  y  B and vice versa.  Chambers (2009) 
and Kim and Chambers (2012a,b) have given specific extensions along with empirical simulations with 
continuous but we will not consider any extensions in this paper. 
   The last column in Table 7 represents the counts after distortion due to matching error.  The next-to-last 
column are the counts prior to matching error (i.e., truth).  The first eight columns are associated with the 
values (0, …, nj-1) associated with the nj values associated with the jth field.  Higher truth counts are 
usually reduced in the observed data due to matching error.  When an initial value (9th column is blank) 
followed by 1 it is because a new matching pattern is created as a result of matching error.  
Approximately 16,000 (20% of the counts) have 1 in the 10th column of which 1/7 are false matches.  
There is no way to distinguish these false matches (presently) except via follow-up of a sample.  The 
counts in the 10th column are such that the loglinear models associated with the initial (true) counts are 
quite different than the models associated with the final counts (that have no correction for matching 
error). 
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Table 6.  Sampling Rates by Strata 
 
Split records – induce matching error 
(overall matching error 8-10%) 
1.   8000   0.01 error 
2.   8000   0.02 error 
3.   8000   0.05 error 
4    8000   0.08 error 
5.   8000   0.12 error 
6.   8000   0.15 error 
7.   7926   0.20 error 
 
 
Table 7.  Sample Data Records  
(Counts for true patterns followed by observed patterns) 
                                                              True      Observed 
1 020 1  5 07 00 00 000      53      50 
1 020 1  5 07 00 00 001       3       5 
1 020 1  5 07 00 00 004       .       1 
1 020 1  5 07 00 00 006       .       1 
1 020 1  5 07 00 01 001       1       . 
1 020 1  5 07 00 02 000       1       1 
1 020 1  5 07 00 02 001       2       2 
1 020 1  5 07 00 04 001       .       1 
1 020 1  5 07 00 04 004       .       1 
1 020 1  5 07 00 04 005       1       1 
1 020 1  5 07 00 05 001       1       1 
1 020 1  5 07 00 05 005       .       1 
1 020 1  5 07 00 05 006       .       1 
1 020 1  5 07 00 05 007       .       1 
1 020 1  5 07 05 00 000      16      12 
1 020 1  5 07 05 00 001       1       1 
1 020 1  5 07 05 00 004       .       1 
1 020 1  5 07 05 01 000      18      17 
1 020 1  5 07 05 01 001       3       3 
1 020 1  5 07 05 02 000      32      29 
 
 
 
4.  Discussion 
Observations: 
1.  The empirical counts from the observed data Obs with the specified distortions vary significantly from 
the original data Orig.  The loglinear models on Obs and Orig are very different.   
2.  The empirical example might have 2560 data patterns in one file and 600 data patterns in another file.  
This would correspond to a relatively small administrative-list example.  If the sample size is 0.01 of A × 
B, then most small cells with counts 3 or less will be given ̂݌xy*= 0.  It seems unlikely that this will yield 
suitable estimates of cell counts to improve loglinear modeling.  Without correction for matching error, 
this data does not yield loglinear models that correspond to the loglinear models from the original ‘truth’ 
data.  This means that, due to matching error (8-10%), we cannot reproduce analyses on the original data 
(even approximately) on the observed data. 
3.  If the sample size is 0.25-0.50 of the total number of pairs, then too many pairs will need to be 
reviewed for this procedure to work in practice.  Even with a sample size with a proportion on the order to 
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0.25 pairs it is unlikely that there will be sufficient information to move the estimates of ߨ෤௖|௫
ሺ௧ሻ   effectively 

away from the initial default values of 1/600.  If there are informative priors for ߨ෤௖|௫
ሺ଴ሻ , it is unlikely there 

is sufficient information to move away from the starting informative priors.   
4.  To drastically reduce the sample size, it is likely that the matching process must be modeled in detail 
as in Lahiri and Larsen (2005) or Scheuren and Winkler (1993).  It seems that such modeling will need 
two additional layers of likelihood equations and estimation algorithms. 
5.  Without additional marginal information (from additional files), it is unlikely that is straightforward to 
pull apart (x, y) pairs that have been brought together erroneously.  Subject matter specialists may be able 
to supply some edit rules that also allow us to pull apart erroneous (x, y) pairs. 
6.  Being able to use appropriate third-party data (an unusual situation) could reduce matching error 
(somewhat).  In the reduced-matching-error situation, the statistical adjustments for matching error would 
work (somewhat) better. 
7.  Software for to implement steps 1-5 of the supervised EM procedure is a straightforward modification 
of Winkler (2002, 2006) and also allows interactions and convex constraints.  The basic procedures due to 
the application of the Chipperfield et al. (2011) are approximately equivalent to reducing the errors from 
8% with the Obs data to 6% with the first set of processed data Pr1.  This is not a sufficient reduction in 
error for valid analysis on Pr1 because it would not approximate an analysis on Orig. 
8.  If we bring in edit/imputation restraints, this should improve error.  We obtain additional restraints 
from subject matter specialists or certain external restraints (such as used in Winkler 2008, 2010 from 
administrative data).  If we further bring in a few crude distributional restraints, then we hope to reduce 
the error in the resultant processed file Pr2 to as low as 4% (which we also do not believe is suitably low 
for analytic purposes).  The software, a somewhat straightforward modification/hybrid of the software 
from Winkler (2002) and Winkler (2010), has not yet been written. 
9.  Other procedures beyond the combination of Chipperfield et al. (2011) and edit/imputation are almost 
certainly needed.  The most likely initial candidate for expanding methods is the type of statistical 
matching methods due to D’Orazio et al. (2006) and Winkler (2009). 
 
5.  Concluding Remarks 
The procedures of Chipperfield et al. (2011) appear to be effective with very simple types of discrete data.  
The methods of previous authors were never intended for discrete data.  In particular the methods of 
Goldstein et al. (2008, 2011) do not easily extend.  Extending the methods for adjusting statistical 
analyses for linkage error is likely to necessitate much more detailed modeling of the matching process 
(to drastically reduce sample sizes in the ‘truth’ follow-up), additional modeling of distributions in 
contingency tables and the effects of linkage error, edit/imputation methods using additional knowledge 
from third-party files or subject-matter experts, and possibly ideas from statistical matching (D’Orazio et 
al. 2006). 
 
1/   This report is released to inform interested parties of (ongoing) research and to encourage discussion (of work in 
progress).  Any views expressed on (statistical, methodological, technical, or operational) issues are those of the 
author(s) and not necessarily those of the U.S. Census Bureau.   
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