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Abstract 
NHTSA’s redesigned National Automotive Sampling System (NASS) is expected to address a large 
number of research questions and analytic objectives, and therefore required a multi-purpose study and 
sample design. In addition, the new NASS consists of multiple modules, with future funding levels and 
precision requirements unknown and subject to change for any given module. A multivariate sample 
design optimization system was designed and built for NHTSA to address these fluid design 
requirements, parameters and constraints. The system offers two options: A) Minimize cost subject to 
variance constraints; B) Minimize a sum of relative variances subject to cost constraints. This paper 
presents the development, architecture and utility of the sample design optimization system, along with a 
description of its outputs, and the necessarily iterative process of reviewing those outputs, and modifying 
design parameters and constraints to arrive at a reasonable sample design. 
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1. Introduction 

The National Automotive Sampling System (NASS) was established in the 1970s by the National 
Highway Traffic Safety Administration (NHTSA) and it provides nationally representative estimates of 
motor vehicle crashes. There are two modules in the current NASS - the General Estimates System (GES) 
and the Crashworthiness Data System (CDS). Both modules use a national sample of crashes selected 
from police accident reports (PARs) but serve different purposes. GES gives estimates of number of 
various types of motor vehicle crashes and it requires a large sample of PARs. While GES aims to capture 
the overall trend of crashes, CDS has its focus on passenger vehicle crashes with at least one car being 
towed, and greater details about individual crashes are collected where investigators collect data from 
crash sites and also interview crash victims. CDS data requires a smaller sample and is used to assess the 
safety standards and understand the injury mechanisms that may change due to improvements made to 
vehicles. NASS has also previously included other special studies, “the National Motor Vehicle Crash 
Causation Survey (NMVCCS),” and “the Large Truck Crash Causation Study (LTCCS).” Although 
additional modules beyond the GES and FOPV were not designed for the redesigned NASS at this time, 
the sample design optimization system was built for and has the ability to add data and parameters for 
additional modules and obtain optimization results. 

Since its start, there have been many significant changes in the society such as those in road and vehicle 
design, in population growth and mobility, and in traffic volume and safety. Because of these changes and 
a concern about a limited sample, NHTSA decided to redesign NASS to meet new, more diverse needs. 
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NHTSA contracted with Westat to lead the survey modernization effort, and NHTSA and Westat have 
worked collaboratively to accomplish the redesign of NASS. During the process of redesigning NASS, 
GES continued to be referred to as GES, while CDS was referred to as the Follow-on Passenger Vehicle 
(FOPV). In the final redesigned NASS, GES and CDS/FOPV were renamed to Crash Report Sampling 
System (CRSS) and Crash Investigation Sampling System (CISS) respectively. 

Many authors have considered analytical and nonlinear programming solutions to the problem of optimal 
designs for stratified sampling with multiple responses (see, for example, Bethel (1989), Causey (1983), 
Díaz-García and Cortez (2008), Green (2000), Green (2001), Khan (2006) Rao (1993), and Valliant and 
Gentle (1997)).  In this paper, we develop a computation-based approach that allows consideration of 
different costs and variance structures within different strata, describing  the sample design optimization 
system for NHTSA, as well as the specific results obtained for the redesigned NASS GES and FOPV 
modules.  

 

2. The NASS Redesign Optimization Problem 

2.1 NASS Sample Design 
The current NASS contains two modules, GES and CDS, and its design is a stratified three stage sample 
in both modules. The primary sampling units (PSUs) consist of counties or groups of counties, the second 
sampling units are police jurisdictions (PJs) and the third sample units are police-reported crashes 
(PARs). This design is carried over to the redesign of NASS. The survey has higher sampling fractions 
for serious injury, rarer crashes, and there are multiple estimates of interest.  

Due to uncertainty in budget, flexibility to accommodate cost constraint changes in the future was 
desired. Therefore, several “scenarios” were developed under different budget assumptions for each 
module. 

2.2 Key Estimates 
The key estimates are all of PAR strata and subgroups of interest for each module. PAR strata are 
mutually exclusive groups of crashes with a desired sampling fraction assigned to each group, whereas 
subgroups of interest are outcomes that can cut across multiple PAR strata for each module. For GES, the 
PAR strata are defined by kinds of damage caused by the crash, age of vehicle involved, and types of 
vehicle. Combining PAR strata and subgroups of interest for GES, there are total of 25 key estimates. For 
FOPV, the PAR strata are defined by a finer breakdown of model year of a vehicle and severity of injury. 
Combined, there are 20 key estimates in FOPV. The sample design optimization system aims to achieve 
improved precision for these estimates compared to the current NASS. In the optimization section, key 
estimates are referred to as variables of interest. 

2.3 Optimization Problems 
In sample surveys, one can allocate available resources such that either the cost is minimized while 
achieving a desired precision, or the variance is minimized while keeping the cost within a budget range.  

The optimization of resource allocation becomes complex when there are multiple key estimates and 
budget can change in the future as is the case for NASS redesign. The target precision was based on the 
past GES and CDS, and the budgets and cost coefficients at each stage of sampling for the new GES and 
FOPV were provided by NHTSA. The optimization system for NASS runs either option depending on 
user-specified option to allow more flexibility. 
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3. Sample Design Optimization System Development and Implementation 

3.1 Optimization  
In order to develop the multivariate optimization system, SAS/OR®  9.3 software, which  is an Operations 
Research Software from SAS Institute Inc, was employed (SAS Institute Inc., 2011). Because NASS is a 
multi-purpose study with several constraints, a powerful software such as SAS/OR® software was needed 
to compute the solution in a reasonable run time. In our optimization system, PROC OPTMODEL, 
Multistart NLP option was selected. Optimization models in PROC OPTMODEL include linear, mixed-
integer linear, quadratic and general nonlinear models. This is similar to PROC NLP (Non Linear 
Programming) in version 9.2 with improvements (Huang and Hughes (2010)). The NLP option allows 
both nonlinear equality and inequality constraints, and with Multistart option, the program starts at 
several different initial points and chooses the best solution out of a set of locally optimal solutions. This 
is suitable for problems with many local minima such as the optimization in redesign of NASS. Some of 
the advantages of using SAS/OR® software in building our system are its power, robustness, and 
flexibility. SAS/OR® software is capable of solving complex optimization problems such as those seen in 
NASS redesign in a short period of time, and in order to run the optimization, a user only needs to specify 
some parameters and change the input files called by the program. It is flexible but also less likely to 
accidentally modify the optimization program itself unlike some other options considered during the 
development. 

There are some requirements and limitations to our system, however. First, the user must construct an 
appropriate objective function and enumerate the constraints, which can be challenging to program. For 
instance, FOPV has a PAR workload requirement of two PARs per researcher per week, where the 
number of researchers was assumed to vary from one to four researchers per PSU. Therefore, this 
constraint varied for different PSUs. 

Additional programming produced post-solutions reports on cost, variance, performance relative to the 
current GES and CDS/FOPV, as well as variance components and cost terms at each sampling stage 
based on the solution. 

Finally, SAS/OR® software takes the problem literally, meaning that the program will only take into 
account what are presented by the objective function and constraints, and does not consider any other 
potential issues. Because the system can only give the optimal solution based on the input, results must be 
interpreted in light of assumptions, constraints, options and features of each scenario to determine what is 
reasonable. 

3.2 Architecture of the Optimization System in Redesign of NASS 
There are five input files required when using this system for the redesign of NASS; variables of interest 
(𝑥𝑖), population counts (𝑁ℎ, 𝑀ℎ, 𝐾ℎ), variance components (S1x2, S2x2, S3x2), cost components (C0, C1, 
C2, C3), and cost of living adjustment factors (𝐶𝑂𝐿𝐴ℎ). This setup is customized for NASS redesign, but 
in a general use, some of these parameters can be dropped or set to 0 or 1 as seen in the next section. 

For NASS redesign, just one macro is needed for any module (GES or FOPV)-optimization option 
combinations. 

The system outputs the status of a particular run, either optimal or failed, objective function values such 
as cost and sum of relative variances over variables of interest, first, second and third stage sample sizes, 
total sample sizes at the second stage (PJs) and at the third stage (PARs), and performance report relative 
to target precision, which, for this project were based on previous GES and CDS data. From the flowchart 
in figure 1, one may observe that this is an iterative process where a user can try different parameters to 
see which design and assumptions are most appropriate. 
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Figure 1. Flowchart of the Optimization System Architecture   
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3.3 Cost and Variance Models, Objective Functions and Variables 
The cost model used for optimization was the following. 

𝐶 = 𝐶0 + 𝐶1𝑛 +  𝐶2𝑛𝑚 +  𝐶3𝑛𝑚𝑘 

where 𝐶 is the overall cost, 𝐶0 is the fixed cost, 𝐶1 is the cost coefficient at the first stage, 𝐶2 is the cost 
coefficient at the second stage, and 𝐶3 is the cost coefficient at the third stage. The decision variables are 
𝑛, the number of first stage units (PSUs) to sample, m, the number of second stage units (SSUs) to sample 
in a PSU,  and 𝑘, the number of third stage units (TSU) to sample in a sampled SSU in a selected PSU. 
This cost model is written in a general way and it can be varied to fit the survey design of interest. For 
example, if it is known that there is no fixed cost, then 𝐶0 can be dropped or simply be set to 0. As 
another example, stratification at the first and second stages can be incorporated in the cost model above. 
This is shown in section 3.6, which presents the application in NASS redesign. 

Variance model used for this optimization can be summarized as 

𝑉(𝑥𝑖) =  𝑉𝑥𝑖(𝑃𝑆𝑈) + 𝑉𝑥𝑖(𝑆𝑆𝑈) +  𝑉𝑥𝑖(𝑇𝑆𝑈)  

where 𝑥𝑖 is a variable of interest (key estimate).  

3.4 Optimization Objectives, Options, Outputs and Results 
As discussed in section 2.3, two optimization options for NASS redesign were developed. The option A is 
to minimize cost subject to variance constraints for multiple key estimates, where variance for each 
variable of interest is smaller than or equal to a preset target variance. 

The option B is to minimize the sum of relative variances of all variables of interest subject to cost 
constraints while keeping the overall cost less than or equal to a preset target budget. Of course, both 
options require that the sample size at each stage of sampling be between 2 and the appropriate population 
size. 

If desired, additional constraints/features can be added, such as restricting the first stage sample size to 2 
per stratum, minimizing total number of second stage units, setting a minimum number of PARs per 
researcher per week per PSU in FOPV, forcing the overall sample size of cases (PARs) to be larger than 
or equal to some preset minimum, creating a customized output file with decision variables values (useful 
for drawing a sample assuming a resulting design is selected), and exempting particular variables of 
interest from a run to reach a feasible solution. 

3.5 General Use of the System 
Though the system was originally developed specifically for the redesign of NASS, the system can be 
used for any three stage designs with multiple estimates of interest, for both options A and B as described 
in the previous section. The models, constraints and inputs can be changed to accommodate more/less 
complicated cost and variance models. 

3.6 Application in Redesign of NASS 
This cost function is a variation of the general cost model in section 3.3. This model reflects the 
stratification at the first and second stages of sampling as well as an adjustment for the cost of living in 
each PSU based on its location. 
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where 𝐶 is the overall cost, 𝐶0 is the fixed cost, 𝐶1 is the cost at the first stage of sampling (PSU), 𝐶2 is 
the cost at the second stage of sampling (PJ), and 𝐶3 is the cost at the third stage of sampling (PAR). 
𝐶𝑂𝐿𝐴ℎ stands for cost of living adjustment in PSU stratum h. The decision variables are 𝑛ℎ, the number 
of first stage units (PSUs) to sample in PSU stratum h, 𝑚ℎ𝑖𝑎, the number of second stage units (PJs) to 
sample in PSU stratum h, PJ stratum a in a given PSU i, and 𝑘ℎ𝑖𝑎, the number of third stage units (PARs) 
to sample in PSU stratum h, PJ stratum a in a given PSU i. 𝐴ℎ𝑖 stands for the number of PJs in a given 
PSU i in PSU stratum h, provided by NHTSA. 

Variance model used for this optimization can be summarized as 

𝑉(𝑥𝑖) =  𝑉𝑥𝑖(𝑃𝑆𝑈) + 𝑉𝑥𝑖(𝑃𝐽) +  𝑉𝑥𝑖(𝐶𝑎𝑠𝑒)  

where 𝑥𝑖 is a variable of interest (key estimate). The variance at each stage for each variable of interest 
was calculated based on the population counts and estimates for NASS redesign. The details of population 
estimates are illustrated in “Estimating Population and Design Parameters for NHTSA’s New National 
Automotive Sampling System (NASS)” by Jiao et al. 

 

4. Results 

In this section, the GES and FOPV results are presented. In order to obtain these results, a limited number 
of scenarios were considered, where each scenario was associated with a given overall budget, which in 
turn suggested an approximate PSU sample size. The bigger the budget, the more PSUs are selected in a 
scenario. 

4.1 GES 
In option A, where the goal is to minimize overall cost subject to the precision constraints, one key 
estimate always seems to be “binding,” driving the resource allocation. For each scenario, table 1 shows 
the number of PSUs, PJs and PARs to be sampled, the resulting relative cost, and the number of feasible 
estimates out of 25 key estimates referred to in section 2.1. Because the target precision was based on the 
2011 GES with 60 PSUs, the target precision for some estimates cannot be met if the number of PSUs in 
a new design is too small. For the GES, PJ population information for scenario 1 was not available since 
scenario 1 was not expected to be implemented in the near future. Therefore, the table only presents 
results for scenarios 2 through 5. Scenario 4 shows the most expensive design because one of the 
variables of interest for which the precision was difficult to meet drove the allocation and resulted in 
taking much bigger second stage and third stage samples compared to the other scenarios. If one were to 
remove the particular variable, the results would have changed. 
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Table 1: GES Option A Result 

GES Scenario PSUs          PJs            PARs               Cost  
Number of Feasible 
Estimates 

GES, scenario 2 75 358 7,104 2.19 20 / 25 
GES, scenario 3 51 276 8,049 1.84 18 / 25 
GES, scenario 4 24 655 141,364 5.14 13 / 25 
GES, scenario 5 16 84 1,951 1 6 / 25 

 

Option B minimizes the sum of relative variances of all variables of interest subject to cost constraints. 
Option B is a more natural option since precision is not fixed but the budget is assumed to be known, 
which often is the case in reality. Because the PSU sample sizes were different in each scenario, the target 
budget ranges were varied (roughly in proportion to PSU sample sizes expected) as well. Table 2 below 
shows the results for option B. Because the program solves to minimize the sum of relative variances 
subject to a cost constraint in option B, the number of feasible estimates are not displayed as all designs 
would satisfy requirements for all variables overall. 

Table 2: GES Option B Result 

GES Scenario PSUs      PJs         PARs        Cost 
Objective Function 
Value 

GES, scenario 2 75 618 28,772 2.63 0.204073438 
GES, scenario 3 51 425 18,170 1.95 0.233077041 
GES, scenario 4 24 207 8,936 1.21 0.536037246 
GES, scenario 5 16 146 6,294 1 0.748608433 

 

Table 3 gives an example of a sample design optimization system performance report for GES. The actual 
table displays the variance, target variance and difference in variance as well as the ratio, but only the 
ratio is presented here. This particular table shows the decision variable results, and the ratio of resulting 
variance and target variance for a subset of variables of interest in scenario 3 option B. A value smaller 
than 1 represents improvement in precision for the specific variable of interest, relative to the current 
GES. From the table, this design achieves better precision for many key estimates, which are given 
dummy names VAR1, VAR2 and so on. The cost is shown on a relative scale compared to the other 
option B scenarios. 

Table 3: GES Performance Report Example 

Study Type GES 
Scenario 3 
Optimization Option B 
PSUs (n = ) 51 
SSUs / PJs (nm =) 425 
PARs (nmk = ) 18,170 
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Cost 1.95 

  Variable of Interest Ratio of Result vs Target Variance 
VAR 1 0.91798 
VAR 2 5.77203 
VAR 3 1.55596 
VAR 4 0.56028 
VAR 5 0.62536 
VAR 6 0.79676 
VAR 7 0.38302 
VAR 8 0.44488 
…… …… 
VAR 23 0.72144 
VAR 24 0.56233 
VAR 25 1.46286 

 

4.2 FOPV 
The FOPV results showed the same theme as the GES results. In option A, one variable of interest seems 
to govern the allocation, and because precision requirements were based on the 2011 CDS with 24 PSUs, 
some precision requirements cannot be met if the number of PSUs in a new design is too small. One may 
wish to use the table below as a guide. For example, it can be viewed as a way to narrow down sample 
designs given their budget and advantages and disadvantages of each design. 

Table 4: FOPV Option A Result 

FOPV Scenario PSUs PJs PARs Cost 
Number of Feasible 
Estimates 

FOPV, scenario 0.5 73 342 6,484 2.74 20 / 20 
FOPV, scenario 1 49 286 5,359 2.26 18 / 20 
FOPV, scenario 2 40 282 5,545 2.27 18 / 20 
FOPV, scenario 3 32 179 3,275 1.56 18 / 20 
FOPV, scenario 4 24 137 2,475 1.3 17 / 20 
FOPV, scenario 5 16 97 1,675 1 12 / 20 

 

Option B minimizes a sum of relative variances subject to cost constraints and is a more natural fit for 
FOPV as well because the budget is usually known and precision is not fixed. The budget ranges were 
varied per scenario due to varying PSU sample sizes. Again, the program solves to minimize the sum of 
relative variances subject to a cost constraint in option B. Therefore, the number of feasible estimates are 
not displayed as all designs would satisfy requirements for all variables overall. 
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Table 5: FOPV Option B Result 

FOPV Scenario PSUs PJs PARs Cost 
Objective Function 
Value 

FOPV, scenario 0.5 73 668 13,418 3.61 0.120866357 
FOPV, scenario 1 49 477 8,938 2.51 0.11340313 
FOPV, scenario 2 40 389 7,221 2.1 0.120114667 
FOPV, scenario 3 32 319 5,719 1.73 0.122451192 
FOPV, scenario 4 24 239 4,171 1.32 0.176273714 
FOPV, scenario 5 16 157 2,771 1 0.323821495 

 

Table 6 gives an example of a sample design optimization system performance report for FOPV scenario 
5 option B. The setup is the same as GES, and the ratio smaller than 1 represents improvements in 
precision. This particular design improved the precision for many variables, but because the variance 
targets were set using past CDS data with 24 PSUs, precision requirements for some of the individual key 
estimates could not be met. Overall, however, our optimization results gave better precision with a lower 
cost. 

Table 6: FOPV Performance Report Example 

Study Type FOPV 
Scenario 5 
Optimization Option B 
PSUs (n = ) 16 
SSUs / PJs (nm =) 157 
PARs (nmk = ) 2,771 
Cost 1 

  Variable of Interest Ratio of Result vs Target Variance 
VAR 1 0.4341 
VAR 2 2.42929 
VAR 3 0.55632 
VAR 4 1.97986 
VAR 5 1.07493 
VAR 6 0.10359 
VAR 7 0.1917 
VAR 8 0.33281 
...... ...... 
VAR 18 4.15731 
VAR 19 4.69582 
VAR 20 0.42228 
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4.3 Additional Results and Decisions 
NHTSA selected one scenario for each of the GES and FOPV for initial release and recruitment. Using 
the solutions from our optimization system as a guide, further modifications were made to the second 
stage sample size while still employing the 2nd stage stratification as well as the results for the 1st and 3rd 
stages. 

 

5. Discussion 

There are some practical considerations to be mindful of. As mentioned in previous sections, the results 
need interpretation in light of the assumptions, constraints and features of each run. The optimization 
system only considers the estimates and constraints provided by the user, and ignores all other potential 
estimates and constraints. Hence, not only is it crucial that the user include all variables of interest and 
constraints appropriate for their needs, but also, one must keep in mind that the estimate for any 
unspecified subgroups may only be protected by having a larger total sample size than suggested by the 
optimization results. 

 

6. Conclusion 

In modernizing NASS, a flexible optimization system which solves a three stage multivariate sample 
design optimization problem in a reasonable run time was needed. A single macro using SAS/OR® 
software was developed for this purpose which accommodates all combinations of GES/FOPV, 
optimization options and flexibility scenarios. Of the two optimization options, option B which minimizes 
a sum of relative variances while respecting budget constraints is more realistic. If desired, more 
constraints can be added in the future, and the user may adjust inputs and parameters according to their 
needs. 

This multivariate optimization system can be used for other three stage multivariate sample design 
optimization problems and it returns sample sizes at three stages of sampling, and cost and variance 
resulting from those sample sizes. The result then in turn can provide guidance for the overall sample 
design. 
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