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Abstract 
Survey research often covers a range of topics in one large survey and related questions 
are usually grouped to form sections in the questionnaire. With a computer-assisted 
survey interview instrument, the time spent to complete each section of the questionnaire 
may be measured. Our interest is to understand the completion-rate variability due to 
interviewers. 
 
With some language from biostatistics, we conceptualize multiple response times, 
“treatments” (e.g., interviewers, interview times), and hierarchical covariates. The 
multivariate survival data framework is used to model the relationship between multiple 
“failure” rates and survey treatments and covariates. And, we adopt the hierarchical 
Bayesian approach in analyzing the multivariate, multilevel data and making inference on 
interviewer effects on the multiple completion rates. 
 
As an illustration, the 2009 Residential Energy Consumption Survey (RECS) data along 
with the paradata on survey questioning are examined. 
 
Key Words: hierarchical Bayesian data analysis, multivariate survival analysis, 
paradata, survey questionnaire response time, Residential Energy Consumption Survey 
(RECS) 
 

1. Overview 
 
This paper illustrates one way to detect an unusual level of effect an interviewer might 
exert on time that a respondent spends to answer survey questions. We will begin by 
stating our motivation of why this research may be valuable. And, we will describe the 
general nature and structure of paradata and will provide some examples, with which we 
will transition to a statement of some research questions paradata can help answer. Then, 
we will propose a statistical model to answer the questions and a Bayesian approach to 
estimate the key model parameters. Finally, we will show results and will discuss their 
possible usage. 
 

2. Motivations 
 
A survey produces not only substantive data but also data about the substantive data 
(metadata) and data about how the substantive data were collected (paradata). Although 
metadata may be used for computing weights and response rates, paradata are usually 
treated as a retrospective evidence of data collection work. However, if paradata is 
analyzed during a data collection period, it can help control the data collection 
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operation—that is to measure and evaluate some performance and to utilize the 
measurement to improve the future performance. 
 
Paradata tend to be large whenever survey processes are long and complicated. But, they 
are not “Big Data”. Paradata have a well-organized structure, though not necessarily 
simple. We believe various types and levels of statisticians can find good opportunities 
for challenge and contribution. 
 

3. Nature and structure of paradata 
 
3.1 Human interactions during the field data collection period generate 
paradata 
Paradata that we consider here are generated by or observed in human interaction 
processes during survey data collection. The word paradata was coined by M. Couper in 
his 1998 paper “Measuring survey quality in a CASIC environment,” (Kreuter et al., 
2010). The notion must have been existent since the beginning of surveys. We loosely 
define paradata to be data about survey data collection process (where a process consists 
of input, function or black box, and output).  
 
3.2 A response is an outcome of interviewer’s specified attempt on a person 
Outcome is a reaction or non-reaction to the action. The non-reaction can be intentional 
or non-intentional (e.g., ring but no answer in phone interview). Attempts must be pre-
specified as protocols and must follow some rules. A person may or may not be pre-
selected—in a persons survey, a person is usually pre-selected before interviewing, while 
in a households survey, a buildings survey, or an establishments survey, a person is not 
usually pre-selected and only the eligibility to respond in the survey may be pre-
specified. Note that a household, housing unit, building, or establishment cannot be a 
respondent as it could not produce a response. It is always a person who provides 
responses in our surveys. 
 
3.3 A response is nominal or ordinal 
A response as an outcome of each survey attempt is normally coded into a nominal or 
ordinal category, often called a disposition code—e.g., successful contact, hard refusal, 
soft refusal, and so on. Disposition codes can be as fine or detailed as they need be, but 
standard codes are suggested for some scenarios by AAPOR (2011). 
 
3.4 There may be a sequence of action-reaction’s between an interviewer(s) 
and a person(s) over time 
When a person provides a response that is not an acceptable resolution at interviewer’s 
first attempt, an additional attempt of the same or different kind may be taken; thus, a 
sequence of action-reaction’s could be produced for each person until some resolution, 
defining a person-level survey contact history over a finite time period. Persons or 
interviewers may not be unique in each contact history. 
 
3.5 A time from an action to a response can be measured 
Dates and times of contact attempts and outcomes, lengths of interviews, and other 
surveying time information are usually measured quantitatively through survey 
instruments. These time-to-event data may be considered as metadata of the paradata. 
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4. Paradata Examples 
 
4.1 Paradata example 1: Survey contacts history 
Survey contact attempts and their outcomes are perhaps the most typical paradata and an 
example is shown in table 1. The meaning of sample case ID depends on the sampling 
unit, which may not correspond to the person with which a human contact was attempted. 
The attempt is usually completely pre-specified with respect to what, how, and when, 
similarly to protocols in applying a treatment in biomedical experiment. In a mixed-mode 
survey, interviewing modes could be used further to distinguish contact attempts. Each 
attempt is administered by an interviewer in an in-person interviewing survey. In some 
surveys, pairs of interviewers may be utilized.  
 
In the example, an interviewer is not assigned when the mode is a self-administered 
questionnaire (SAQ) like a mail survey, but the person who filled in the SAQ could be 
considered as an interviewer of himself or herself. The times and dates of attempts are not 
randomly or conveniently determined but rather pre-specified by contact rules that define 
waiting times between attempts with specific outcomes. For example, after a soft refusal, 
the next attempt may have to wait for at least one day but at most two days.  
 
In a phone interview, sample cases may be randomly assigned to interviewers, although 
in an in-person interview, interviewers are often recruited locally. In order to complete 
difficult cases (e.g., those that complain about the survey), special interviewers (e.g., 
senior or supervisory interviewers) could be assigned to them after some failed attempts. 
 

Table 1: Paradata Example—Survey Contacts History 
Case ID Attempt Outcome Time and Date Mode Interviewer ID 

1 1 Ring, no answer 09:00   
01-Aug-2014 

Phone 1 

1 2 Soft refusal 15:00   
01-Aug-2014 

Phone 1 

1 3 Hard refusal 10:00   
03-Aug-2014 

Phone 1 

2 1 Complete 09:30   
01-Aug-2014 

Phone 1 

3 1 Disconnected 11:00   
01-Aug-2014 

Phone 1 

3 2 Complete 20:00   
07-Aug-2014 

Mail/SAQ NA 

… … … … … … 
 
4.2 Paradata example 2: Survey questionnaire administration outcomes 
Another common example of paradata is found when a respondent is answering questions 
in a survey. (Earlier we characterized such answering times as metadata of paradata, but 
the characterization is not important.) An answering time can be measured for an entire 
questionnaire or for each section (i.e., each set of questions) as well as each question. The 
example in Table 2 shows the elapsed time in each section of a questionnaire. A survey 
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instrument often does not allow skipping questions or sections unless it is legitimate to do 
so, but a respondent can break off from a survey, making all remaining questions or 
sections incomplete. In the survival analysis language term, those cases are right-
censored. Mode and interviewer are also identified in the example. (Again, for a SAQ 
mode, the respondent can be thought as self-interviewer.)    
 

Table 2: Paradata Example 2—Survey Questionnaire Administration Outcomes 
Case 
ID 

Section Outcome Time duration 
(seconds) 

Mode Interviewer 
ID 

1 A Complete 300 Face-to-face 1 

1 B Complete 600 Face-to-face 1 

1 C Complete 420 Face-to-face 1 

2 A Complete 100 Web/SAQ NA 

2 B Complete 200 Web/SAQ NA 

2 C Incomplete 0 Web/SAQ NA 

… … … … … … 
 
An example to illustrate our application is a special case of Example 2. Specifically, we 
have a uni-mode face-to-face survey and look at only cases that completed all sections in 
questionnaire. (This later constraint may not be applicable if we are analyzing select 
sections in real time. We choose only the first two sections of a questionnaire in our 
illustration, but the constraint is kept for simplicity.) Further, we select those interviewers 
who completed a significant number of cases, at least 100 cases.  
 
Our paradata come from the 2009 Residential Energy Consumption Survey (RECS), 
which is a multi-phase national multi-stage area sampling survey by computer-assisted 
personal interviewing (CAPI) for residential housing unit’s energy consumption and 
characteristics. The questionnaire has fourteen sections or components: A. Housing unit 
characteristics; B. Kitchen appliances; C. Home appliances and electronics; D. Space 
heating; E. Water heating; F. Air conditioning; G. Miscellaneous; H. Fuels used; I. 
Housing unit measurements; J. Fuel bills; K. Residential transportation; L. Household 
characteristics; M. Energy assistance; and N. Scanning of fuel bills. We select Sections A 
and B for our illustrative analysis. 
 

5. Research questions 
 
5.1 Do interviewers differentially affect survey answering times? 
An interviewer performance can be defined and measured in various ways. One simple 
measure may be an interview completion rate by each interviewer. Given completed (or 
partially completed) interviews, we go further to examine a more complex aspect of 
interviewing that can still be easily measured. Our research addresses the question of 
whether interviewers differentially affect the lengths of time respondents use to answer 
survey questions.  
 
We analyze in our illustration some of the paradata collected for the 2009 RECS, which 
achieved the household sample size of 12,083. Our analysis focuses on nine interviewers 
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who completed at least one hundred interviews, and we try to detect any sign of unusual 
(either too good or too bad) interviewer performance with respect to the survey 
answering times. The first two sections of the 2009 RECS questionnaire are selected for 
our analysis. It is not our goal to generalize or infer to some population of interviewers. 
Rather, we demonstrate how we might help a data collection operator statistically control 
one possible sign of interviewer performance in a simple, timely, and yet effective 
manner. 
 
An interviewer effect either exists or does not exist and an existing effect can be positive 
or negative. Small effects are not substantively or practically important. Also, in our 
problem, interviewers always exist as “treatments”. That is, we cannot conduct our 
survey without interviewers. So, an interviewer effect is not due to existence vs. absence 
of an interviewer but due to a relative difference among interviewers. We care about an 
interviewer’s effect that is uniquely and significantly different from the other 
interviewers’ effects. 
 
Once we detect a unique and unusual interviewer effect, i.e., a sign of possible 
performance problem by an interviewer, we can advise a data collection operator to 
search for a potential cause for or association with the detected effect. Then, the data 
collection operator might investigate the interviewer and/or the data that interviewer has 
collected. If any problems are found, they should be corrected. 
 
In our example, we look for a potential sign of interviewer effect in the questionnaire 
responding time, more specifically in the rate of questionnaire section completion 
conditional on elapsed time. Two rates are calculated because we have selected the first 
two sections of the 2009 RECS questionnaire: A. Housing unit characteristics and B. 
Kitchen appliances. The selection was made in order to control the effect of responses on 
the responding times and the other effects that may not be attributable to interviewers. In 
each section, some respondents might legitimately skip some of the questions, which 
certainly could add variation in the time duration to complete the section. But, we assume 
this variation is sufficiently controlled by the covariates we introduce to the model and 
that the remaining variation is more or less a random noise. 
 

6. A statistical model 
 

A model is a set of assumptions. 
 
How do we statistically approach to detect any interviewer effects in survey answering 
times? 
 
6.1 Why the Cox proportional hazards model? 
Why not just compute simple means? Means are computed for descriptive purposes along 
with the other distributional statistics. But, for inference on differences of time duration, 
we must control for covariates, i.e., we need some models for comparisons. One could 
use a linear regression model possibly without the intercept. If the time duration is log-
transformed, the intercept may be put back in. However, the reasonableness of the normal 
error assumption could remain dubious. Try a nonlinear model? Further, to analyze 
multiple response times, one would need multivariate models. And, a big problem comes 
up when some time response data are censored data.  
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Meanwhile, the Cox model that we suggest here is very natural for the current data and 
problem (Cox, 1972). It has been well established like a regression model and is simple 
(as simple as a regression model). This model choice has nothing to do with being 
Bayesian or frequentist, although there seems some advantage for Bayesians using the 
Cox model (Kalbfleisch, 1978; Sinha et al., 2003). 
 
6.2 Completion rate depends on elapsed time: 𝒉(𝒕) 
A completion occurs as an outcome if and when a respondent completes a given section 
of a survey questionnaire. A time is measured in terms of elapsed time, not calendar time 
in our example. Completion rate at a given time t is a rate of completing a section at t by 
those respondents who had not completed the section yet. More specifically, a completion 
rate at t is the ratio of the number of respondents who completed at t over the number of 
respondents who have not completed before t. In survival analysis literature, it is called a 
hazard function or a conditional failure rate. 
 
It is worth mentioning that in our data there is no censoring, because we are using only 
those cases that completed the survey, i.e., survey respondents. However, break-offs 
within a section could be modeled as censored, as long as they happen independently of 
the responding time to complete the section. (An open problem is handling of dependent 
censoring.) If some questions in a section are skipped in non-legitimate ways, we can no 
longer analyze the data by section and we would need first to tackle the missing data 
problem. 
 
6.3 The rate also depends on the person: 𝒉𝒊(𝒕) = 𝒉𝟎(𝒕) 𝐞𝐱𝐩(𝒇𝒊) 
The person means everything about and around the person, including the interviewer. 
Denote by 𝑓𝑖 a function of person i and express ℎ𝑖 as a multiplicative function with a base 
term that only depends on time t and with a (positive) multiplicative term exp(𝑓𝑖) that 
depends only on person i. The exponential function simply keeps the multiplicative term 
positive. The 0 in ℎ0(𝑡) indicates that the term is a base rate term or a baseline hazard 
function. If 𝑓𝑖 is a linear function of some variables like a multiple linear regression but 
without the intercept, then the model is Cox’s (1972) proportional hazards model.  
 
The proportional hazards (PH) mean that the hazard ratio (or ratio of two hazards) is 
constant over time or does not depend on time. It is an assumption but can be checked 
with data. For us, it is a good enough model (the semi-parametric approach with the 
partial likelihood) because we do not care about the baseline hazard function (which 
could be modeled with, e.g., exponential, Weibull, or gamma distribution for t ≥ 0) and 
also because we are interested only in the relative comparisons of interviewer parameters. 
The simplicity also helps reduce the number of parameters for prior specification in the 
later Bayesian analysis.  
 
6.4 There are multiple completion rates per person: 
𝒉𝒔(𝒊)(𝒕) = 𝒉𝟎𝒔(𝒕) 𝐞𝐱𝐩�𝒇𝒔(𝒊)� 
We have two survey questionnaire sections and thus two response times per respondent. 
Our model is multivariate. But, again, we have made a simplifying assumption, ignoring 
the order of sections and the possible dependency between sections, and we formulate our 
model as the stratified Cox model, which stratifies the data/cases so that the PH 
assumption is reasonable within each stratum (Kleinbaum and Klein, 2005). Stacking the 
two section-level data sets to have one time response variable, we specify the section 
variable as the stratification variable:  

JSM 2014 - Survey Research Methods Section

1269



 

�
ℎ𝐴(𝑖)(𝑡) = ℎ0𝐴(𝑡) exp�𝑓𝐴(𝑖)�
ℎ𝐵(𝑖)(𝑡) = ℎ0𝐵(𝑡) exp�𝑓𝐵(𝑖)�

 , 

 
where A and B signify the two sections in the questionnaire we analyze. 

 
6.5 𝒇𝒔(𝒊) is a linear function without the constant term   
Let 𝑓𝑠(𝑖) be a linear function of multiple variables defined for person i in section s. When 
all the variables in 𝑓𝑠(𝑖)  are zero, exp(0) = 1. The exponential of a non-zero value, 
positive or negative, is an increasing or decreasing multiplicative factor, respectively. The 
intercept, if included, would be cancelled out in a hazard ratio. For our model, we could 
consider respondent-specific log-frailties (say, 𝜃𝑖), which do not depend on s. But, we do 
not do this in order to avoid over-parameterization. We believe the regression model is 
sufficient for our purpose. Further, we assume that 𝑓𝐴(𝑖) =  𝑓𝐵(𝑖) = 𝑓𝑖 , i.e., the linear 
regression specification does not depend on section s. It is reasonable for us, because we 
are interested in the overall effect of an interviewer over all sections, here two sections. 
Thus, as mentioned before, we have the stratified Cox proportional hazards model, where 
the questionnaire section ID is the stratifying variable and does not interact with 
covariates in 𝑓𝑖: 

 

�
ℎ𝐴(𝑖)(𝑡) = ℎ0𝐴(𝑡) exp(𝑓𝑖)
ℎ𝐵(𝑖)(𝑡) = ℎ0𝐵(𝑡) exp(𝑓𝑖)

 . 

 
With the 2009 RECS data and paradata, 𝑓𝑖 contains the variables in Table 3 as covariates. 
In the table, covariates are grouped by their substantive information purpose. 
 

Table 3: Classification of Covariates by Substantive Information Purpose 
 

Purpose Covariates 

Treatment Interviewer_ID 
DayEvening 

Householder OccupyAge 
Race_White 
TotalBtu 

Housing unit YearBuilt 
SquareFootage 
HUType 

Geography Census_Division 

Sample W4_PostStrat 
 
The interviewer identification variable (Interviewer_ID) is recoded in this analysis in 
order to prevent any linking to or identification of the interviewers. The DayEvening 
variable indicates whether the interview ended before or after 5 p.m.: 1 = Day (interview 
ended before 5 p.m.) and 2 = Evening (interview ended after 5 p.m.). This can be 
considered as another treatment. The OccupyAge variable measured the number of years 
the household had occupied the housing unit, for which the respondents who did not 
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know the answer or refused to answer are excluded from the current analysis. (There 
were no refusals in the data.) The Race_White variable indicates the race of the 
householder: 1 = white and 0 = non-white. The TotalBtu variable measured the total 
annual energy consumption in Btu (the British thermal unit) by the householder at the 
housing unit—the values include some imputed values. The YearBuilt variable records 
the year in which the housing unit was built—respondents with Don’t Know or Refusal 
answers are excluded from the analysis. (There were no refusals in the data.) The 
SquareFootage variable measured the area in square footage of the housing unit—some 
of the values are imputed values. The HUType variable classifies the housing units by: 1 
= Mobile Home; 2 = Single-Family Detached; 3 = Single-Family Attached; 4 = 
Apartment in Building with 2 - 4 Units; 5 = Apartment in Building with 5+ Units. The 
Census_Division variable identifies the geographical location by: 1 = New England 
Census Division (CT, MA, ME, NH, RI, VT); 2 = Middle Atlantic Census Division (NJ, 
NY, PA); 3 = East North Central Census Division (IL, IN, MI, OH, WI); 4 = West North 
Central Census Division (IA, KS, MN, MO, ND, NE, SD); 5 = South Atlantic  Census 
Division (DC, DE, FL, GA, MD, NC, SC, VA, WV); 6 = East South Central Census 
Division (AL, KY, MS, TN); 7 = West South Central Census Division (AR, LA, OK, 
TX); 8 = Mountain North Sub-Division (CO, ID, MT, UT, WY) and Mountain South 
Sub-Division (AZ, NM, NV); and 9 = Pacific Census Division (AK, CA, HI, OR, WA). 
And, finally, W4_PostStrat is the final sampling weights variable, which was adjusted by 
unit nonresponse rates and post-stratified to the U.S. Census Bureau’s 2009 American 
Community Survey totals. 
 
Our current statistical objectives do not include hypothesis testing or model selection. 
Instead, we are interested in understanding the given model for its reasonableness and 
usefulness for the current detection purpose. There is no optimization in terms of 
goodness of model fit. After all, a model is a set of assumptions and is wrong. 
Particularly in a large and complex survey like RECS, there does not pre-exist a 
substantive data model nor could we acquire perfect data—perfect in the sense of 
measurable, accurate, and precise.  
 
With that said, model selection/building/fitting and model assessment/checking could be 
conducted with the frequentist methods or general statistical methods such as least 
squares and AIC/BIC, if finding a more correct model is important. In our analysis, only 
the PH assumption and the interaction effects were checked with the frequentist methods 
(significance tests and graphical diagnostics) available in SAS PROC PHREG without 
the BAYES specification. 
 
All the variables except Interviewer_ID are there to control. Specifically, we are 
controlling the variation in completion rate possibly due to the variation in interviewing 
time of the day, householder, housing unit, geography, and sample characteristics. This is 
necessary because interviewers were not randomly assigned to the respondent-to-be’s (or 
the times of the day). Some of the covariates may be more strongly associated with one 
questionnaire section than the other, e.g., the housing unit type variable may be more 
closely related to the housing unit characteristic section than the kitchen appliances 
section. But, in our current analysis we focus on the overall relationship between each 
covariate and the two select sections together. 
 
Compared to a model with respondent-specific log-frailties, e.g., that of Gustafson 
(1997), our model has the much less number of parameters, because we assume that a 
certain homogeneity among the respondents exists and because we replace respondent-
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specific parameters with higher-than-respondent-level or respondent-classifying 
parameters such as householder characteristics (i.e., TotalBtu, OccupyAge, and 
Race_White) and housing unit characteristics (i.e., YearBuilt, SquareFootage, and 
HUType). Above the interviewer level, we include parameters to control for the sampling 
design variation in W4_PostStrat and for the geographic variation in Census_Division.  
 
Note that there are no interviewer-classifying or -level variables in our analysis. No 
covariates besides identification variables for interviewers are considered, as we think 
they are unnecessary for our analysis. Meanwhile, characteristics traits of interviewers 
could be useful if one is to conduct analysis to help screen or select interviewers for a 
new survey. Similarly, there are no section-level variables besides the identifier, with 
which the nature of sections or questions could be examined in developing or testing a 
new survey questionnaire. But, these questions are out of our current scope.  
 

7. Bayesian estimation 
 
7.1 Hierarchical and bivariate model structure 
Our data are structured by respondents per interviewer and by sections per respondent.  
 

 
 
Figure 1: Hierarchical data structure 
 
In our data, there are nine interviewers who completed at least 100 interviews each—the 
total number of completed interviews or respondents is 1,189. Note, however, that the 
number of respondents analyzed was reduced to 868, because some of the respondents 
had missing values at least in OccupyAge or YearBuilt, which are two of the covariates 
in our model. Since we look at two sections, A and B, of the 2009 RECS questionnaire, 
the number of time responses is: 868 × 2 = 1,736. 
 
Sampling design variables (e.g., stratification variables) and geographies reside over 
interviewers and they further group interviewers. Note geographies themselves could be 
hierarchical (e.g., state, division, and region). We use the final weight variable 

Interviewer 1 

Respondent 1 
Section A 

Section B 

Respondent 2 
Section A 

Section B 

Interviewer 2 

Respondent 3 
Section A 

Section B 

Respondent 4 
Section A 

Section B 
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(W4_PostStrat) to extract and summarize all the sampling design information. For the 
geographical control, we use the Census_Division variable, as described before. 
 
The 2009 RECS is a households survey, and at the respondent level, we have the 
following householder-level and housing-unit-level covariates, respectively, classified in 
Table 3: OccupyAge; Race_White; TotalBtu and YearBuilt; SquareFootage; HUType. 
They control or classify the 2009 RECS respondents. 
 
As discussed earlier, our illustration specifies the following stratified Cox proportional 
hazards model with the questionnaire sections as strata: 
  

�
ℎ𝐴(𝑖)(𝑡) = ℎ0𝐴(𝑡) exp(𝑓𝑖)
ℎ𝐵(𝑖)(𝑡) = ℎ0𝐵(𝑡) exp(𝑓𝑖)

 . 

 
To estimate the regression parameters, we require only a partial likelihood function, 
actually a product of two partial likelihood functions given by the two strata or 
questionnaire sections. Recall that we compute the exact likelihood, not Breslow 
likelihood or Efron likelihood, because of many ties in the elapsed time measurements we 
have.  
 
Let 𝜷 be the vector of regression parameters and 𝒙𝑗(𝑡𝑖) be the vector of covariates for the 
jth respondent at time 𝑡𝑖 , where 𝑡1 < ⋯  <  𝑡𝑖 < ⋯ < 𝑡𝑘  denote the k distinct, ordered 
completion times (in our special case 𝒙 does not depend on time). For the questionnaire 
section s, if we let Ω𝑠,𝑖  denote the set of respondents who are yet to complete before 
the ith ordered completion time 𝑡𝑖  and let Ω𝑠,𝑖

∗  denote the set of respondents whose 
completion or censored times exceed 𝑡𝑖 or whose censored times equal 𝑡𝑖, then we can 
write the exact likelihood function for the questionnaire section s as: 
 

ℒ𝑠(𝜷) = �

⎩
⎪
⎨

⎪
⎧

� �

⎣
⎢
⎢
⎢
⎡

1 − 𝑒

−  𝑒
𝜷′𝒙𝑗�𝑡𝑖�

∑ 𝑒
𝜷′𝒙𝑙�𝑡𝑖�𝑙∈Ω𝑠,𝑖
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  𝑡

⎦
⎥
⎥
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⎤

𝑒−𝑡
𝑗∈Ω𝑠,𝑖

∞

0

𝑑𝑡

⎭
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⎬

⎪
⎫𝑘

𝑖=1

. 

 
Our likelihood is: ℒ(𝜷) = ℒ𝐴(𝜷) × ℒ𝐵(𝜷). 

 

 
7.2 Bayesian model assumptions, i.e., prior specifications 
In our Bayesian analysis, we specify a flat prior for the K regression parameters in 𝑓𝐴(𝑖): 
𝑝(𝛽𝐴1, …, 𝛽𝐴𝐾) ∝ 1, where −∞ < 𝛽𝐴𝑘 < ∞ for each k = 1, …, K. Similarly for 𝑓𝐵(𝑖). 
But, in our example, we just have 𝑓𝑖:  𝑝(𝛽1, …, 𝛽𝐾) ∝ 1, where −∞ < 𝛽𝑘 < ∞ for each k 
= 1, …, K. 
 
The flat prior is improper but the posterior would be proper. Alternatively we can use the 
diffuse prior of normal distribution with the zero mean vector of the length K and the 
identity covariance matrix of the dimension K or the diagonal covariance matrix with 
diagonal elements being equal to the maximum likelihood estimates of the corresponding 
variances. We have tried each, and the results were similar; thus, we take the flat prior. 
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As we assume the Cox proportional hazards model, the baseline hazard functions ℎ0𝐴(𝑡) 
and ℎ0𝐵(𝑡) are left unspecified (and infinite-dimensional), requiring no prior distributions 
to be assigned.  
 
7.3 Calculation of the posterior distributions 
To calculate the posterior distributions of the regression parameters, we use the Markov 
chain Monte Carlo (MCMC) simulation, specifically, the Gibbs sampling with the 
maximum likelihood estimates (MLE’s) as the initial values. The MLE’s are shown in 
Table 4. 
 

Table 4: Maximum Likelihood Estimates of the Interviewer Parameters 
 

 Parameter DF Estimate Standard 95% Confidence Limits 
 Error 

interviewer_id362702  0   
interviewer_id204537 1 0.074 0.2477 -0.4114 0.5594 
interviewer_id269307 1 0.1443 0.2285 -0.3036 0.5923 
interviewer_id212865 1 0.3355 0.2736 -0.2007 0.8718 
interviewer_id244205 1 0.6576 0.2511 0.1654 1.1498 
interviewer_id204297 1 0.7085 0.1157 0.4816 0.9353 
interviewer_id245813 1 0.753 0.2487 0.2654 1.2405 
interviewer_id259937 1 0.9365 0.2222 0.501 1.3721 
interviewer_id245832 1 1.6738 0.2376 1.2081 2.1396 

 
Specifying flat priors on the regression parameters and using their MLE’s as the initial 
values, we depend more on data than on priors and our Bayesian analysis starts from 
where a frequentist analysis has ended. (Computing the MLE’s, by the way, took only 
eight seconds of SAS time.) 
 
After 3,000 or so samples, the posterior distribution seemed to converge to a stable 
distribution with small auto correlation, and we then drew 8,000 samples to form our 
posterior distribution for our inference. We did not “thin” the draws, that is, we did not 
throw any samples away systematically, e.g., every other sample, in order to tame sample 
auto correlations.  
 
To determine if MCMC has converged or been stabilized to give us reasonable posterior 
distributions, we have utilized the following convergence diagnostics, available in SAS 
PROC PHREG: (a) autocorrelation, (b) the standard error of the posterior mean estimate, 
(c) the stationarity (the Heidelberger and Welch tests), (d) the convergence (the Gelman 
and Rubin statistic and the Geweke statistic), and (e) the accuracy of the estimated 
quantile of a chain (the Raftery and Lewis statistic). 
 
To describe the diagnostics briefly: (a) autocorrelation literally computes autocorrelations 
of various lags for each parameter; (b) the effective sample size of Kass et al. (1998) 
measures the efficiency of the chain for each parameter and the Monte Carlo standard 
error measures the simulation accuracy and is the standard error of the posterior mean 
estimate, calculated as the posterior standard deviation divided by the square root of the 
effective sample size; (c) the Heidelberger and Welch (1981, 1983) tests are a stationary 
test and a halfwidth test for each parameter; (d) the Gelman and Rubin (1992) statistic 
compares convergence of two or more parallel chains and the Geweke (1992) statistic 
compares the first portion of the chain and the last portion of the chain; and (e) the 
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Raftery and Lewis (1992, 1996) statistic measures the accuracy of the estimated quantile 
of a chain. 
 
We can say that in our chain: (a) dependency among Markov chain samples is low; (b) 
the effective sample size and the Monte Carlo standard error suggest good mixing; (c) the 
Heidelberger Welch tests suggest the chain has become stationary with enough samples 
to estimate the mean accurately; (d) the Gelman Rubin statistic suggest different starting 
values converge to the same value and the Geweke statistic indicates mean estimates are 
stabilized; (e) the Raftery and Lewis statistic shows we have sufficient samples to 
estimate 0.025 percentile within +/− 0.005 accuracy (Ibrahim et al., 2005). 
 

8. Results 
 
8.1 Assessment and validation of the Bayesian model 
The deviance information criterion (DIC) and the effective number of parameters (ENP), 
available in SAS PROC PHREG, are not utilized in assessing our Bayesian model’s 
goodness of fit. However, we report that the DIC was 17220.60 and ENP was 26.949. 
 
The posterior predictive check (PPS) and the cross validation (CV) are popular model 
validation techniques Bayesians use. However, PPS is not particularly useful for our 
current analysis, as seeking predictive accuracy is not our main objective. Also, we did 
not conduct the model validation at this time. 
 
Guided by the analytical objectives compelled by a particular research question, we 
should always balance theoretical model accuracy and practical computation time. Our 
exact likelihood model with a reasonable convergence, including the convergence 
diagnostics, required about 18 hours of CPU as well as real times in SAS PROC PHREG. 
(Note in particular that the Gelman-Rubin diagnostic multiplies the number of chains to 
produce. Without the diagnostic, the times are reduced to about six hours.) This was 
rather prohibiting, but we could not use Breslow’s or Efron’s approximate likelihood 
because they lead to completely different posterior distributions for the same number of 
iterations even though only a few minutes are required in those computations. 
 
8.2 Inference on the interviewer parameters 
Some summaries of the posterior distributions for the interviewer effect parameters are 
given in Table 5. 
 

Table 5: Posterior Distributions Summary 
 
Parameter N Mean Standard 

Deviation 
Percentiles 95% HPD Credible Interval 
25% 50% 75% Lower Bound Upper Bound 

interviewer_id362702  0       interviewer_id204537 8000 0.06 0.242 -0.10 0.06 0.23 -0.40 0.54 
interviewer_id269307 8000 0.14 0.225 -0.02 0.13 0.29 -0.29 0.58 
interviewer_id212865 8000 0.33 0.271 0.15 0.32 0.51 -0.16 0.90 
interviewer_id244205 8000 0.66 0.246 0.48 0.66 0.83 0.17 1.12 
interviewer_id204297 8000 0.71 0.115 0.63 0.71 0.79 0.48 0.93 
interviewer_id245813 8000 0.75 0.245 0.58 0.75 0.92 0.29 1.25 
interviewer_id259937 8000 0.93 0.219 0.78 0.93 1.08 0.50 1.35 
interviewer_id245832 8000 1.67 0.232 1.51 1.68 1.83 1.25 2.13 
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First, we note that the posterior means, sorted in the ascending order here, happen to be 
all positive against the baseline interviewer’s zero mean value. This is by chance. All of 
the posterior distributions are almost bell-shaped. HPD stands for the highest posterior 
density, and their credible intervals are displayed in the table. The equal-tail intervals (not 
displayed) give similar results because the posterior distributions are highly symmetric. 
 
The first four interviewers, including the baseline interviewer, seem to have the similar 
level of interviewer effects on the completion times of Sections A and B. The next four 
interviewers seem similarly different from the baseline interviewer in terms of their 
effects. The ninth or last interview appears distinctively different from the baseline 
interviewer and all the other interviewers, as this interviewer’s completion rate is 
exp(1.67) = 5.3 times higher than that of the baseline interviewer (and the three others if 
their interwar effects are considered identical to the baseline interviewer’s). Based on the 
observation, the data collection operator might investigate the interviewer and the data 
collected by the interviewer and might take some corrective actions in order to maintain a 
required data quality. In Figure 2, the normal kernel density of the posterior probability is 
plotted for each interviewer parameter. They estimate the posterior marginal distributions 
for the interviewer parameters. 
 

 
 
Figure 2: Normal Kernel Density of Posterior Probability of Each Interviewer Parameter 
 
In principle, time and cost available and allocated for controlling data or operation quality 
as well as the level of quality required in data or operation should determine where to 
draw a line for flagging. Without those constraints and requirements, the determination of 
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the line could rely on a statistical or graphical examination of the data. Such an 
examination would be rather simple and straightforward, and it could be automated. 
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