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Abstract 
The new National Automotive Sampling System (NASS) sample design uses a 
multivariate optimization method to solve for the sample sizes at the first, second, and 
third stages of sampling, with a view to minimizing the anticipated variance of the 
variables of interest for a fixed cost or, alternatively, minimizing the cost for target 
variances. The anticipated variances were calculated by constructing frames with 
estimates for key variables, and predicting frame estimates using multiple linear 
regression models with information from the current NASS General Estimates System 
and Crashworthiness Data System. After the sample of primary sampling units (PSUs) 
was selected, additional information was obtained about the secondary sampling units in 
the sampled PSUs, and that information was used to improve estimates of variability at 
the second and third stages of sampling.  
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1. Design Goals 
 
The National Automotive Sampling System, NASS, was originally designed in the 1970s. 
The current NASS, based on the 1970’s design, is composed of two modules - the 
General Estimates System (GES) and the Crashworthiness Data System (CDS). These are 
based on cases selected from a sample of police accident reports (PARs). The selection of 
sample crashes in both modules is accomplished in three stages:  
 

1) Selection of Primary Sampling Units (PSU's),  
2) Selection of police jurisdictions1 (PJs) within PSUs, and  
3) Selection of PARs.  

 
CDS data focus on passenger vehicle crashes, and are used to investigate injury 
mechanisms to identify potential improvements in vehicle design. GES data focus on the 
bigger, overall motor vehicle crash picture, and are used for problem size assessments 
and tracking trends. 
 

1  Police jurisdictions for this study include police agencies that respond to motor vehicle crashes 
and write PARs.  
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NASS has proven to be a reliable resource for NHTSA and the broader motor vehicle 
safety research community since its inception. In the time since the last redesign of the 
survey, however, the distribution of crash types has changed. For example, the number of 
motor vehicle crashes involving fatalities has dropped from a high of more than 39,000 in 
2005 to fewer than 31,000 in each of 2009 to 2012 (NHTSA, 2014). In addition, there 
have been many changes in road and automobile design, in traffic volume and traffic 
safety, in population growth and mobility, and in methods for collecting information 
about crashes. All these changes signaled the need for a re-examination of the NASS 
survey and study design. A redesign of NASS was undertaken which attempts to meet 
these new and diverse requirements through expanding its scope and making it more 
responsive to changing needs. 
 
The new NASS design will have two modules: the Crash Report Sampling System 
(CRSS), which will replace the GES, and the Crash Investigation Sampling System 
(CISS), which will replace the CDS. Each of these modules will have a three-stage 
sampling design using the same units for each stage as in the GES and CDS (see Cecere 
et al., 2014). Stratification will be performed at each stage of sampling. At the third stage, 
the PARs will be stratified by crash severity and vehicle model years. 
 
Westat designed a three-stage sample allocation optimization system motivated by three 
major features desired for the redesign:  
 

1) Due to uncertainty of the future NASS budget, flexibility is needed for sample 
sizes (see Rozsi et al., 2014);  

2) The design is to oversample crashes of specified types – in particular, crashes in 
which an occupant is seriously injured and crashes involving newer vehicles; and  

3) The redesign planning should allow obtaining the anticipated precision for a 
variety of key estimates.  

 
The optimization system, described in detail in Sugawara et al. (2014), is designed so that 
the survey design can be adapted to future changing conditions by inputting different 
precision and/or cost constraints. The optimization program calculates designs from two 
perspectives: allocating resources so that cost is minimized while achieving precision 
targets, and allocating resources to minimize a preference-weighted sum of variances of 
estimates with fixed cost constraints.  
 
The flowchart in Figure 1 shows the structure of the optimization system. Five input files 
are required for this system. The first input file specifies the variables of interest (𝑥𝑖). The 
second file provides information on the stratification and the population counts at each 
stage of sampling: 𝑁ℎ is the number of PSUs in PSU stratum ℎ, from ℎ = 1 to 𝐻; 𝑀ℎ𝑖𝑎 is 
the number of PJs in PJ stratum 𝑎 within PSU 𝑖  of PSU stratum ℎ; and 𝐾ℎ𝑖𝑎𝑗𝑙  is the 
number of PAR records in PAR stratum 𝑙  of PJ (𝑎, 𝑗)  of PSU (ℎ, 𝑖) . Much of this 
information is unknown at preliminary design stages---for example, the number of PJs in 
different PSUs is unknown until the PSUs are selected---so the optimization system 
allows putting in estimates or a constant value for these quantities. The third input file 
provides the population variances for each stage of sampling and for each variable listed 
in the first input file. In the flowchart, S1x2, S2x2, and S3x2 represent the population 
variances at the PSU, PJ, and PAR levels, and different values of these can be input for 
different strata at each stage of sampling. The final two input files give cost components 
(the fixed costs, and the per-unit costs to include an additional PSU, PJ, or PAR in the 
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sample; these can vary across PSU strata), and Cost of Living Adjustment factors for 
each PSU stratum. The system outputs the status of a particular run (either optimization 
achieved or failed); objective function values such as the cost and sum of relative 
variances over variables of interest; the first, second and third stage sample sizes in each 
stratum; total sample sizes of PJs and PARs; and a report giving the performance of the 
design with respect to the target precisions based on the current GES and CDS. From the 
flowchart in Figure 1, one may observe that this is an iterative process where a user can 
try different parameters to explore the effects of different assumptions. 
 
The optimization system calls for estimating population counts for each of the variables 
of interest in every PSU and every PJ, so that the quantities in input files 2 and 3 can be 
calculated and be fed into the system. These quantities need to be estimated using 
currently available information. This paper focuses on estimating population parameters 
needed for the second and third input files. The NASS redesign was optimized in two 
phases: first, the number of PSUs was determined. Then, after the PSU sample was 
drawn, additional information was collected about the population of PJs in the sampled 
PSUs. The optimization system allows the information to be updated as better 
information becomes available, so the second and third stage designs could be refined 
after the PJ information was collected for the sampled PSUs. 
 
An important note is that this estimation is only used for design purposes, and at each 
stage of the design, the estimates are the best projections available at that stage. The 
estimates produced for use with the optimization system are not meant to be used for 
analysis, since it is the purpose of the new NASS to obtain data to provide reliable 
estimates of the quantities of interest.  
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Figure 1: Flowchart of the optimization system architecture 
 

2. Preliminary Estimates for Determining Number of PSUs 
 
In the optimization system, the determination of number of PSUs was driven by the cost 
model given in Sugawara et al. (2014) and the population variances for each of the 
estimates of interest. Each NASS module has its own set of key estimates. In order to 
calculate the variances of those key estimates, we estimated the total crashes for each of 
the key estimates in every county and aggregated them to the new PSUs of the redesign, 
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which are described in Cecere et al. (2014). Sections 2.1 and 2.2 describe the procedures 
of estimating population parameters at the PSU level for the CRSS and CISS modules. 
 
The total crashes of different types were needed for every PJ and PAR stratum as well in 
order to calculate the variances for key variables. In the initial stages of the design, little 
information was known at the PJ level. In fact, the number of study-eligible PJs in a PSU 
was known only for areas in the current GES or CDS, and for many key variables, the 
GES and CDS samples were the only source of information. 
 
Westat found rough counts of the number of PJs in different counties from the 
USACOPS® website at www.usacops.com, which lists PJs in each county. The website 
does not provide information on whether the PJs write PARs and send them to the state, 
however, and also has no information on motor vehicle crashes in the PJs. In the absence 
of population information for the PJs in the early phases of the redesign, we used 
information from other data sets to obtain estimated numbers of crashes and estimated 
variability at the second and third stages from the 2011 GES and CDS. The remainder of 
this section describes the modeling that was used to obtain estimates of crash counts and 
variances for the CRSS and CISS.  
 
2.1 CRSS (formerly GES) 
The CRSS module has 9 analytic domains of interest, referred to as CRSS PAR strata. 
They are shown in Table 1. These strata were defined by severity of injury, type of 
vehicle, model year of the vehicles involved in the crash, and by the involvement of non-
motorists, motorcyclists, or busses or trucks.  
 

Table 1: Descriptions of the nine CRSS PAR strata 
 

PAR stratum 
number 

PAR stratum description 

Stratum 1 Crashes involving a killed or injured non-motorist  
Stratum 2 Crashes not in stratum 1 involving a killed or injured motorcyclist  

Stratum 3 Crashes not in stratum 1 or 2 in which at least one occupant of a late model year 
passenger vehicle is killed or incapacitated  

Stratum 4 Crashes not in strata 1-3 in which at least one occupant of an older passenger 
vehicle is killed or incapacitated 

Stratum 5 Crashes not in strata 1-4 in which at least one occupant of a late model year 
passenger vehicle is injured  

Stratum 6 Crashes not in strata 1-5 involving at least one medium or heavy truck or bus 

Stratum 7 Crashes not in strata 1-6 in which at least one occupant of an older passenger 
vehicle is injured 

Stratum 8 Crashes not in strata 1-7 involving at least one late model year passenger vehicle 
(and in which no one is killed or injured)  

Stratum 9 Crashes not in strata 1-8.  
 
Three sources provided information at the county level that could be used to estimate 
population counts of crashes for each county in each of the CRSS PAR strata:  
 

• The Fatality Analysis Reporting System (FARS; see NHTSA, 2014), which is a 
national census of motor vehicle crashes involving fatalities;  

• The State Data System (SDS) records; and  
• Information from the R. L. Polk Company.  
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Because FARS is a census, it provides the number of fatal crashes for every county. SDS 
contains crashes by year and maximum injury severity for every county in 33 states. The 
information was imputed for counties in the remaining states. The information from the 
R. L Polk Company included vehicle counts and vehicle miles travelled by model year 
and vehicle type for every county.  
 
The FARS and SDS data together give estimates of numbers of crashes in each county 
that involve either a fatality or an incapacitating injury. The FARS data provide 
information on model years of the vehicles, but the SDS data do not. Thus, the FARS and 
SDS data provide information on the total crashes for strata 3 and 4 together, strata 5 and 
7 together, and strata 8 and 9 together, but do not provide separate estimates for the strata 
in each of these pairs. The Polk data were used to help allocate the crashes by vehicle 
types and the model year of the vehicle, so the counts could be split into individual strata. 
There was no easy way of estimating the crash counts for strata 2 and 6, so these were 
based on numbers of registered vehicles (motorcycles, trucks, and busses) from the Polk 
data, which were poststratified to 2011 GES estimates. Stratum 1 was estimated by using 
a five year average of fatal crash counts involving nonmotorists taken from the 2007 
through 2011 FARS data. The estimates from the FARS data for stratum 1 were then 
poststratified to 2011 GES estimates.  
 
Besides the nine analytic domains described by the PAR strata in Table 1, an additional 
15 subgroups are of interest for CRSS, shown in Table 2. The only relevant data available 
were the PAR strata counts estimated for every county, and estimates from the previous 
GES, limited to the sampled PSUs.   
 

Table 2: Additional crash counts of interest for CRSS 
 

1 Any vehicle involved  
2 Injury type - fatal injury 
3 Injury type - serious injury 
4 Vehicle type - passenger cars 
5 Vehicle type - light truck vehicle, i.e. truck, van, or SUV 
6 Vehicle type - bus 
7 Vehicle type - medium/heavy truck 
8 Vehicle type - motorcycle 
9 Crash type - rollover 

10 Crash type - front 
11 Crash type - side  
12 Crash type - rear  
13 Impact type - multiple vehicles  
14 Impact type - pedestrian  
15 Impact type - bicycle  

  
The quantities in Table 2 were estimated for each frame PSU using multiple linear 
regression models developed on the PSUs in the 2011 GES, using the estimated CRSS 
PAR stratum counts from Table 1 as predictors. Because of the skewness of the 
outcomes, the models were fit using log transformed response variables (both log and 
square root transformations were considered, and log transformations resulted in better 
fits as well as predicted counts that were forced to be positive). To reduce 
multicollinearity and the variance of the predicted values, a reduced set of predictors was 
used for each response. One possible concern, since the GES has only 60 PSUs available 
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for developing the model, is that a model selection method could result in a downwardly 
biased mean squared error (MSE). It was verified that the MSE from each reduced model 
was at least as large as that from the model with all covariates. If desired, the MSE from a 
model could be adjusted using methods discussed in Copas and Long (1991).  
 
Two randomly generated normal variables were added to the predicted values in the log-
transformed scale for each regression model: one to account for the variability in the 
estimated regression equation, and a second to account for the residual variability in the 
model (with variance equal to the MSE). The added noise terms allowed the predictions 
of counts to reflect the variability in the data. The predicted value with added noise terms 
was then exponentiated to obtain the predicted crash count for each county in the frame.  
 
The regression models were then used to calculate the subgroup estimates in Table 2 at 
the county level and the predicted values were poststratified to agree with the 
corresponding estimated total crashes based on the 2011 GES.  
 
The regression models gave estimates of counts for the CRSS PAR strata and for other 
key variables at the PSU level. At the early stages of the NASS redesign, little 
information on crashes was available at the PJ level. Keeping the same approach to create 
input files 2 and 3 in Figure 1 that was done for PSU would require detailed knowledge 
of a PJ frame. Instead of generating a PJ frame with the population counts of interest and 
then calculating the population variance, we estimated the between-PJ variance from the 
current GES for each key estimate, and applied that value to all PJs. Similarly, the 
variance at the third stage (PAR level) was estimated from the current GES for each PAR 
stratum, and that variance was used across the PSUs in the frame.   
 
Thus, in the early stages of the design, the crash counts used in the frame at the PSU level 
were based on information from FARS and the SDS, but the variance estimates at the PJ 
and PAR levels were input using estimates from the current GES.  
 
2.2 CISS (formerly CDS) 
Similarly to the CRSS, the CISS module has 10 analytic domains referred to as CISS 
PAR strata. Table 3 describes those domains, defined by the cross classification of 
severity of injury in a crash and the model year(s) of passenger vehicle(s) involved in the 
crash. An additional 10 key estimates of crash types were of interest for the CISS 
redesign, and these are listed in Table 4.  
 
  

JSM 2014 - Survey Research Methods Section

1034



Table 3: CISS PAR strata 
 

PAR stratum 
number 

PAR stratum description 

Stratum 1 Crashes involving a killed passenger vehicle occupant.  

Stratum 2 Crashes not in Stratum 1 involving a recent model year passenger vehicle in 
which an occupant is incapacitated  

Stratum 3 Crashes not in Stratum 1 or 2 involving a recent model year passenger vehicle in 
which an occupant is possibly injured by severity is unknown  

Stratum 4 Crashes not in Stratum 1-3 involving a recent model year passenger vehicle in 
which all occupants are not injured  

Stratum 5 Crashes not in Stratum 1-4 involving a mid-model year passenger vehicle in 
which an occupant is incapacitated 

Stratum 6 Crashes not in Stratum 1-5 involving a mid-model year passenger vehicle in 
which an occupant is possibly injured  

Stratum 7 Crashes not in Stratum 1-6 involving a mid-model year passenger vehicle in 
which all occupants are not injured  

Stratum 8 Crashes not in Stratum 1-7 involving an old model year passenger vehicle in 
which an occupant is incapacitated  

Stratum 9 Crashes not in Stratum 1-8 involving an old model year passenger vehicle in 
which an occupant is possibly injured  

Stratum 10 Crashes not in Stratum 1-9 involving an old model year passenger vehicle in 
which no occupants are injured  

 
Table 4: Other CISS estimates needed for the design optimization 

 
1 Total crashes in which a vehicle was towed away  
2 Total occupants  
3 Total vehicles  
4 Total occupants by injury type - fatal  
5 Total occupants by injury type - severe injury  
6 Total occupants by injury type - other injury  
7 Total crashes by crash type - rollover  
8 Total crashes by crash type - rear-end  
9 Total crashes by crash type - head-on  

10 Total crashes by crash type - angle  
 
The purpose of the CISS module is to provide annual, national estimates of the number, 
types and detailed characteristics of crashes in which a passenger vehicle is towed from 
the scene. This information is collected by trained crash investigators, who visit the crash 
scene, interview witnesses, and examine medical records. The PSUs formed for the CISS 
were not the same as the PSUs formed for the CRSS because of the different data 
requirements (Cecere et al., 2014). Therefore, CISS PSU level population parameters also 
needed to be estimated.  
 
The CRSS target population is all crashes for which PARs are written, but the target 
population for the CISS is crashes in which a passenger vehicle is towed. Consequently, 
with the exception of PAR stratum 1, the CISS PAR stratum counts could not be 
calculated directly by using the FARS, SDS, and Polk data as was done for the CRSS. 
Instead, associations between the CISS PAR strata counts and the CRSS PAR strata 
counts were exploited through regression models fit using the current CDS, which 
contains information allowing classification of crashes by CRSS PAR strata and by CISS 
PAR strata. These models were then applied to obtain predicted crash counts for CISS 
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PAR strata 2-10 for the PSUs in the CISS frame. The FARS data provide county-level 
data on the number of crashes involving a fatality when a passenger vehicle was towed 
from the scene, so the PAR stratum 1 count was obtained directly from the FARS.  
 
Multiple regression models were used to obtain the key variable estimates for CISS 
similarly to the procedure that was used for CRSS. The between-PJ variance and within-
PJ variance for CISS were estimated by the same procedure that was used for CRSS.  
 
Once the necessary input files were constructed, the optimization system was run for each 
of CRSS and CISS. The preliminary runs of the optimization system, together with 
consideration of budgetary constraints, determined the number of PSUs for the redesign. 
During the early design stages, the optimization program consistently allocated large 
numbers of PSUs for some PSU strata. This suggested that a finer stratification could be 
done, and led to a refined PSU stratification, with smaller variances, for the final design.  
 

3. Estimating Population Counts at the PJ Level 
 
After the PSU sample for each redesigned module was chosen, NHTSA researchers 
developed a PJ frame in the sampled PSUs and collected information on six crash types, 
described in Table 5, for every PJ in the sampled PSUs. With this information it was 
possible to determine the number of PJs writing PARs in each sampled PSU and to refine 
the estimated population counts for the key variables at the PJ level. In some sampled 
PSUs, all PJs would be sampled; in others, the PJs were stratified using information 
collected for the PJ frame.  
 

Table 5: Categories of PAR counts obtained for each PJ in the sampled PSUs 
 

Category PARs involving 
1 Pedestrian 
2 Motorcyclist 
3 Commercial vehicle 
4 Fatal injury 
5 Serious or other injury 
6 None of the categories above; PARs with property damage only 

 
Categories 1, 2, and 3 can be mapped directly to CRSS PAR strata 1, 2, and 6, 
respectively. The remaining CRSS PAR strata counts at the PJ level were estimated by 
apportioning the PJ counts in the different categories to appropriate PAR strata. This was 
done by using the current GES to estimate the proportion of crashes in that category 
belonging to each CRSS PAR stratum, and using a multinomial distribution to allocate 
crash counts using that proportion.  
  
After implementing this procedure, CRSS PAR strata counts were available for each PJ 
in the population within each sampled PSU. In order to obtain counts for the other CRSS 
and CISS key estimates, models similar to those described for modeling the PSU-level 
counts were applied at the PJ level. 
 
With the fine-tuned procedure at the PJ level, the optimization system was able to 
allocate the number of sampled PJs per PJ stratum, and the number of sampled crashes 
per PJ, with consideration of the budget and precision level of the key estimates.  
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4. Discussion 
 
The sample design optimization system for the redesigned NASS described in Sugawara 
et al. (2014) requires files containing estimates of population counts of sampling units 
and estimates of variance terms for each key variable at all the three stages of sampling. 
In this paper, we described how these estimates were calculated at different points in the 
sample design process, using the information available at that time. In earlier stages of 
the design, the frame of population counts at the PSU level were based on the information 
available from FARS, SDS, and the association between some key variables and the 
auxiliary variables from the current GES / CDS, and variance terms were calculated 
based on the frame data. At the PJ and PAR levels, the population counts and variance 
terms were not computed from the frame since little information was known about the 
PJs. Instead, population counts and variance terms were estimates from the current GES / 
CDS. In later stages of the design, after the PSU samples were drawn for both CRSS and 
CISS, the PJ and PAR population was enumerated and estimated within the sampled 
PSUs, and the variance terms were estimated with this data. 
 
The sample design optimization system used to redesign NASS is highly parameterized 
and flexible, allowing the user to identify key variables, provide population counts and 
variance terms obtained through alternative approaches, and specify the per-unit cost 
coefficients for each study type as well as cost of living adjustments. These parameters 
and flexibility allow for a relatively large number of designs to be developed and 
considered in terms of their cost and precision, subject to a number of other constraints 
and assumptions. The effects of changes in inputs, constraints and assumptions can be 
discovered through successive iterations. The sample design optimization system could 
be used for essentially any three stage design, possibly with some modifications, and the 
system could be modified beyond three stages with moderate changes in its architecture. 
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