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Abstract 
This paper focuses on measuring disclosure risk when missing data exists among key 
identifying variables. It is well known that combining identifying variables together can 
lead to the identification of an individual. Records that are unique in the sample based on 
a set of identifiers may not be ‘true’ uniques if there exists at least one other record that is 
a match on a non-missing subset of variables, because it is unknown if the true values 
match among the missing subset of variables. Therefore, there is some protection from 
missing values due to the uncertainty about their true values, and it is unclear how much 
protection is provided by the missing data items. In addition, available software handles 
missing data differently when measuring disclosure risk. In this paper we describe an 
approach to help gauge the impact of missing data on disclosure risk measures. We 
conduct an illustration of risk measures using public use data, and conduct a simulation to 
evaluate the missing value impact. 
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1. Introduction 
 
We present a data dissemination scenario that leads to a public use file (PUF) and where 
the disclosure risk is to be measured. The need to limit data disclosure risk prior to 
releasing a PUF is driven partly by laws, including the Privacy Act (1974), which 
protects records maintained on individuals. Further motivation is fear -- fear that 
releasing data will run the risk of breaches, where trust and response rates to surveys may 
plummet, or harm could result to individuals. Several risk scenarios that provide 
examples of data intruders are in El Emam, et al. (2009). For example, the authors 
discuss a prosecutor scenario, where the data intruder is looking for a specific person, and 
a journalist scenario, where the intruder is not looking for a specific person, but is 
motivated to break a story about a breach. In general, disclosure risk may arise if a data 
intruder intends to identify individuals and disclose their identities or attributes through 
the matching of known attributes. We will begin by discussing some risk measures and 
show results from a multi-country survey. Then with assumptions made in a simulation, 
we show how the presence of missing data can cause a significant overestimate of the 
disclosure risk, and provide a solution to improve the estimate. 
 

2. Risk Measures 
 
For all disclosure risk approaches, combinations of variables need to be reviewed since 
only a few variables are needed to define a unique record in the sample, which is referred 
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to as a sample unique. Identifying sample uniques, or sparse combinations of variables, 
and gauging their uniqueness in the population is a goal of the disclosure risk measures 
discussed in this paper. Successful identification of high risk values in the data leads to 
more efficient disclosure control by targeting the data values associated with high risk. 
The following are summaries of measures considered in this paper, which are described 
further in Li and Krenzke (2013).  
 
The Exhaustive Tabulations Assessment (ETA) identifies sample uniques or sparse 
combinations of variables through exhaustive tabulations. ETA was created and is used at 
Westat and some government agencies for identifying high risk values. The key variables 
used for forming the tables are usually indirect identifiers. The ETA algorithm scans 
exhaustively through all possible multi-dimensional tables defined from the list of key 
variables, and identifies the records that fall into the sparse cells. Sparse cells refer to the 
table cells with a cell count (weighted or unweighted) being less than a given threshold 
rule. If the threshold rule is 2 (unweighted), then the ETA algorithm identifies the sample 
uniques. The ETA attempts to relate risk in the sample tabulations to the population 
through setting thresholds based on the sampling weight. A risk score is computed for 
each data record as the number of times that a record contributes to the sparse cells 
(number of violations) after scanning and identification are completed. 
 
The Special Unique Detector Algorithm (SUDA) conducts a more intelligent search than 
the ETA. Elliot, et al. (1998) observed that special uniques have higher chances of being 
population uniques than sample uniques that are not special (i.e., random uniques). 
Special uniques are sample uniques on coarser, less detailed attributes, and therefore are 
more risky than the sample uniques on finer, more detailed attributes, based on the 
premise that less information to identify a sample unique is more risky. The unique 
attribute set of a special unique is called minimal sample unique (MSU). The MSU is a 
set of attributes that can uniquely identify a data record, but none of its subsets are 
unique. On the other hand, every superset of a unique attribute set, MSU or otherwise, 
must also be unique. This is referred to as Superset Relationship by Elliot, et al. (2002). 
The risk of a given record being population unique increases as the size of the MSUs 
decreases and the number of the MSUs increases. There are different versions of SUDA 
scores, and we describe and use the following version: 
 

SUDA=∑ �𝑅𝑠 ∏ (𝐴𝑇𝑇 − 𝑗)𝑀
𝑗=𝑠 �𝑀

𝑠=1  
 
where, 𝑀 is the user-specified maximum size of attribute set, ATT is the total number of 
attributes in the dataset, 𝑅𝑠 is the number of MSUs of size 𝑠. The number of MSUs of 
size 𝑠 is weighted by the number of distinct paths from the current attribute set to the 
superset of the user-specified maximum size 𝑀.   
 
We also studied two approaches to estimate re-identification risk. Re-identification 
disclosure occurs when an intruder correctly matches a target individual in a sample and a 
unit in the population by an available list of key variables, and identifies the individual. 
There are several approaches to measuring re-identification risk, including probability-
based linkage that involves matching the sample file to a population file. An algorithm is 
discussed in Jaro (1989), and summaries are found in Winkler (1993) and Domingo-
Ferrer and Torra (2001). However, the data disseminators may not have access to the 
population file, and therefore risk measures were developed that explicitly acknowledge 
the sample was selected from a population, and makes use of the sampling weight and 
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models to estimate the re-identification risk. In a multiple dimensional table defined by a 
set of key variables, let 𝐹𝑘 and 𝑓𝑘  be the population count and the sample count in cell 𝑘, 
𝑘 =  1 ,…, 𝐾 , respectively. Under the above assumptions, the probability of re-
identification of individual 𝑖 being in cell 𝑘 takes the form 1/𝐹𝑘 when 𝐹𝑘 is known to the 
intruder (Duncan and Lambert, 1989). The risk is maximum if 𝐹𝑘  =  𝑓𝑘  =  1. Benedetti 
and Franconi (1998) proposed that the uncertainty on 𝐹𝑘 is accounted for by introducing 
the distribution of the population counts given the sample counts. In this paper, we 
consider re-identification risk as the probability that a sample unique is a population 
unique.  
 
Re-identification risk is computed in the Mu-Argus software (available at 
http://neon.vb.cbs.nl/casc/Software/MuManual4.2.pdf, accessed April 14, 2014), which 
was developed in Europe in a collaborative effort involving Statistics Netherlands. The 
risk formulas originally come from the negative binomial distribution from Benedetti and 
Franconi (1998), then Polletini (2003) derived formulas based on approximations of the 
hypergeometric function. The approximate risk for a cell count equal to 1, or f𝑘 = 1, is 
𝑟𝑖 = −𝑙𝑜𝑔(π�𝑘) π�𝑘

1−π�𝑘
. The approximations are extended to cell counts greater than 1. 

 
Skinner and Shlomo (2008) developed and investigated approaches to specifying log-
linear models that can be used in practice for risk assessment. Focusing on sample unique 
cases, a risk measure can be expressed as 𝑟1𝑖 = 𝑃(𝐹𝑘 = 1|𝑓𝑘 = 1), where, the 𝑖th record 
in the data falls into the 𝑘 th cell of the table created by the set of key variables. 
Considering similar model assumptions as previous work (Bethlehem, et al. 1990), 
suppose 𝐹𝑘 follows independently Poisson model of parameter λ𝑘, 𝐹𝑘~P(λ𝑘). The sample 
is drawn by Bernoulli sampling with known inclusion probability π𝑘 , 
𝑓𝑘|𝐹𝑘~Binom[𝐹𝑘, π𝑘]. Then the sample counts 𝑓𝑘 also independently follow the Poisson 
distribution, 𝑓𝑘~P�π𝑘λ𝑘�. According to the Bayes Theorem, 𝐹𝑘|𝑓𝑘~P[λ𝑘(1 − π𝑘)] + 𝑓𝑘. 
The risk measure then becomes 𝑟1𝑖 = 𝑒𝑥𝑝�−λ𝑘(1 − π𝑘)�. Further assume λ𝑘 are related 
via the log-linear model, which allows “borrowing strength” between table cells: 
log λ𝑘 = 𝒙𝑘′ 𝜷, where, 𝑥𝑘 is a vector depending upon the values of key variables in cell 𝑘, 
and 𝜷  is the parameter vector. Typically 𝑥𝑘  include main effects and low-order 
interaction terms of the key variables. The risk measures above can be estimated by 
replacing λ𝑘 by λ�𝑘 = 𝑒𝑥𝑝�𝒙𝑘′ 𝜷��. 
 

3. Risk Measure Illustration Using PUF Data 
 
To illustrate the impact on risk levels of including or not including certain variables in the 
PUF among the countries, we measured the disclosure risk using the Programme for the 
International Assessment of Adult Competencies (PIAAC) international PUFs for Round 
1. PIAAC is an international study that estimates proficiency in literacy, numeracy, and 
problem solving. The PIAAC survey was conducted for adults 16-65 in the non-
institutionalized population, resulting in about 5,000 in-person assessments in each of the 
24 countries in Round 1. The PIAAC data dissemination process included a review by the 
countries for the purpose of data coarsening (e.g., recoding) and variable suppression. It 
was assumed that each country would follow their nationally-established guidelines and 
the process was done fairly independently among countries. Some countries have very 
strict rules that caused some variables to be suppressed, while others with no strict rules 
allowed all data to be released according to Organisation for Economic Co-operative 
Development (OECD) plans for the international PUF. After the country review was 
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completed, the international public use file (PUF) for each country was created. The ten 
PUF variables used in the risk measure illustration using PIAAC data were (indication of 
the number of levels in parenthesis): Region (Territorial Level 2 (TL2)1 classification), 
Age (single year, and 5-year intervals), Education attainment (6 categories), Number of 
people in the household (top-coded at 6), Living with spouse or partner (2), Children 
present (2), Sex (2), Born in country (2), Computer experience (2), Native speaker (2). 
The variables Region, Age (single years), and Native speaker were not released by every 
country. Native speaker was available for all but one of the countries. It should be 
mentioned that the U.S. TL2 classification is state, which was too small geography for 
the sample design. Therefore, Census Region (4) was available in the U.S. national PUF, 
and was used as the Region variable in the risk measure computations. Lastly, one 
country was excluded from the analysis since their data was not included in the 
international PUF due to the national confidentiality rules. The following five scenarios, 
or combinations, of key variables were evaluated. 
 

• Without Region and Age group 
• Including Age group but not Region 
• Including both Age group and Region 
• Including Age (single years) but not Region 
• Including both Age (single years) and Region 

 
In this illustration, from the ETA approach we show the percentage of records that are 
sample unique. The percentage of records that are sample unique was computed from up 
to 5-way tabulations among the 10 variables. The ETA risk score based on the number of 
violations of the threshold rule was also generated. For the SUDA approach, the average 
score was computed, which is the sum of SUDA scores across all cases divided by the 
total number of cases. For the Mu-Argus measure, the average score was computed, 
which is the sum of the probabilities of re-identification divided by the total number of 
cases. The log-linear measure was not included in this illustration due to excessive 
computation processing time. 
 
Figure 1 shows the results from the ETA approach in terms of the percentage of records 
that are sample unique on the y-axis for the countries on the x-axis. The chart shows the 
impact of including Age and Region in the PUF. Starting from the bottom, the orange 
marks are the risk levels when Age groups and Region are not included on the PUF. The 
percent sample unique ranges from 0 to 6%. The blue marks show the risk results when 
Age groups are included. The percent sample unique range jumps up to 5 to 20%. Next 
we discuss other combinations of Age and Region. The broken lines are due to the 
variables not being on the PUF for some countries. The green marks are when Age 
(single years) but not Region is included. The percent sample unique increases quite a bit 
when going from Age groups in blue, to Age (single years), in green.  Next, at about the 
same level the red marks are when both Age groups and Region are included. And the 
highest risk, according to this measure, ranging from about 50% to 85%, is when Age 
(single years) and Region are included. By using an unweighted threshold rule, the ETA 
approach ignored the population size, and only considered the sample when computing 
the risk. Figure 2 shows the average SUDA score by country. The results show similar 
patterns to the ETA percentage sample unique results, albeit different in relative 
magnitude between the inclusion/exclusion of sets of variables. We mention that SUDA 

1 See OECD (2013). 
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was not processed successfully for a small number of countries since they each have one 
or more very small domains, which causes an error in SUDA. The error occurred when 
all the cases were identified as unique even before reaching the specified max dimension. 
There are two possible solutions: 1) drop the small domains, or 2) combine the small 
domains with others. Although not shown, the ETA risk score based on the number of 
violations of the threshold rule has similar patterns and relative magnitudes to the average 
SUDA score between sets of variables released. Li and Krenzke (2013) also confirm with 
very similar results. A limitation of the percentage of sample unique measure is that the 
risk rises as the sample size is smaller, even though the sampling rate may be a smaller. 
Re-identification risk measures attempt to address this issue.  
 

 
Figure 1. Percentage of records that are sample unique from ETA, by country 
 

 
Figure 2. Average SUDA score, by country 
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The Mu-Argus measure identifies sample uniques among the full cross-classification of 
the 10 key variables, and then considers whether or not the sample unique is re-
identifiable in the population. The expected percentage re-identifiable from the Mu-
Argus approach is shown in Figure 3. The results from the Mu-Argus re-identification 
approach do not follow the same pattern as the ETA and SUDA approaches. In both 
Figures 2 and 3, the countries are in the same order, sorted by the size of the Mu-Argus 
measure. The results and conclusion differ depending on the approach. In general, the 
countries on the right hand side have smaller population sizes than countries on the left 
hand side. One could use the results to establish a risk threshold to provide guidance to 
countries as to what to include in the PUF. For example, it might be reasonable to have a 
threshold of 1%. For the three data points that exceed the threshold, a recommendation 
based on the threshold rule would be to suppress Age (single years) for two of the 
countries, and suppress both Age (single years) and Region for the other country.  
 

 
Figure 3. Expected percentage of re-identifable units from Mu-Argus, by country 
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Figure 4 helps to present a simple illustration of the impact of missing values on risk 
measures. Suppose there are two observations. As shown in the top part of Figure 4, the 
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missing value as a separate category, or exclude the data record from the risk 
computation. The estimated risk for observation 1 depends on the missing value in 
observation 2.  For example, if C = 0 or 2, then observation 1 is unique.  If C = 1, then 
observation 1 is not unique.  Therefore, we hypothesize that the existence of missing data 
inappropriately elevates the estimated risk measure values for the nonmissing cases like 
observation 1. 
 
Obs A B C 
1 1 1 1 
2 1 1 . 
 
Obs A B C 
1 1 1 1 
2 1 1 0,1,2 
 
Figure 4. Illustration of the impact of missing values on risk measures 
 
A simulation was conducted in order to look for an approach to improve the estimate of 
the risk. The base file for the simulation is a fully complete data matrix, consisting of 
4,892 records from the U.S. PIAAC PUF with nonmissing data among the 10 key items. 
The simulation population represents the full sample with all data non-missing. Next, 
missing values were created for about 20% of the population for the number of persons in 
the household. Different missing data mechanisms were applied, including missing 
completely at random (MCAR), missing at random (MAR), and not missing at random 
(NMAR). In this manner, three sets of 1,000 simulated files of 4,892 records were 
generated, each differing by the missing data mechanism, and the cases with missing 
values for the number of persons in the household. For the MCAR mechanism, a simple 
random sample was selected to generate the missing values. For the MAR mechanism, 
probabilities were assigned to each records as follows: 𝑝 = 1 (1 + 𝑒(0.35𝑥1)⁄ , where x1 = 
education attainment. Then for each record, if a uniform random number between the 
values of 0 an 1 was less than p, then a missing value was created. For the NMAR 
mechanism, 𝑝 = 1 (1 + 𝑒(0.55𝑦)⁄ , where y = number of persons in the household. 
 
After the missing values were created, the number of persons in households was 
temporarily imputed for the sole purpose of measuring the risk. Five imputations were 
generated using SAS Proc MI for each of the 1000 samples to provide intruder guesses at 
the true values, while also capturing the uncertainty due to imputation. An ordinal logistic 
regression imputation model was chosen, and the predictor variables were among the 
variables used in the PIAAC risk measure computation, namely, Age groups, Education 
attainment, Sex, Region, and Born in Country. 
 
The schematic in Figure 5 helps to explain the simulation. The risk was computed among 
all cases and then summarized for the completed (nonmissing) cases (shown in green), 
which is what is provided in a PUF. On the left is the truth, that is, the full sample with 
all non-missing data. The left hand side has two pieces shown, 1) the cases that will 
remain complete, and 2) the cases that will be made missing in the simulation. The 
middle part of Figure 5 displays the sample with simulated missing values, representing 
the released PUF. The part on the right in Figure 5 displays the sample with simulated 
imputed values, which can be thought of as the intruder’s guess. We simulated the 
intruder’s guess five times in order to gauge the uncertainty in the guesses.   
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Figure 5. Schematic for simulation design 
 
The comparison among the completes, that is, the nonmissing records (or the green parts 
in Figure 5). Table 1 shows results for the ETA’s percentage of the sample that are 
sample unique for each of the three missing data mechanisms. For MCAR, the percentage 
sample unique for the full sample is 21.6%. After missing values were created, the 
percentage sample unique averaged across the 1000 samples was 25.7%, which is 
significantly higher (18.7% in relative terms) than the true risk. Among the imputed files 
the percentage sample unique (21.5%) was only 0.5% (in relative terms) lower than the 
true risk. Very similar results are shown for the other missing types of MAR and NMAR. 
 

Table 1. Percentage sample unique, by missing data mechanism 
 

Missing 
Type 

Percentage Sample Unique  
Full sample Missing Imputed 

MCAR 21.6% 25.7%* 21.5%  
MAR 21.8% 25.6%* 21.7%  
NMAR 21.5% 25.8%* 21.3%  
*significantly different 
 
The results shown in Table 2 for the Mu-Argus measure on the number of expected re-
identified cases is very similar to the ETA results. For MCAR, the expected number re-
identifiable for the full sample is 1.9. After missing values are created, the average 
expected number re-identified was significantly higher (2.3) than the true risk. Among 
the imputed files the expected re-identified is 1.9, the same as the true risk. As seen in the 
ETA results, very similar results are shown for the other missing types of MAR and 
NMAR. 
 
 

JSM 2014 - Survey Research Methods Section

555



 
Table 2. Expected number re-identified, by missing data mechanism 

 
Missing 
Type 

Expected Number Re-Identified  
Full sample Missing Imputed 

MCAR 1.9 2.3 * 1.9 
MAR 1.9 2.2 * 1.9 
NMAR 1.8  2.2 * 1.8 
*significantly different 
 
This simulation provides indications that the  risk measures are likely to overestimate the 
true risk when missing values are present. The simulation shows a successful correction 
by temporarily imputing for the variables used in the risk assessment prior to computing 
the disclosure risk measure. It is also interesting to see that the missing value mechanism 
had only a slight impact under this simulation set up. 
 

5. Conclusions 
 
In conclusion, we evaluated the disclosure risk impact of certain variables being included 
or excluded for 23 countries using PIAAC PUF using disclosure risk measures. Different 
risk measure approaches yield different results and conclusions. As a guide, if it is 
unknown who is in the sample, then one of the re-identification risk measures (Mu-Argus 
or the loglinear model approach) is recommended, otherwise, either the ETA or SUDA 
approach can be useful to identify sparse combinations of variables within the sample. It 
was determined that a risk threshold could be used to give guidance about what variables 
should or should not be included, as illustrated with the Mu-Argus measure. In a similar 
manner, agencies could use risk measures to re-assess their current confidentiality rules 
or set risk thresholds for their studies. 
 
The impact of missing data on disclosure risk provided indications through simulation 
that the risk measures overstate the true disclosure risk (under the simulation 
assumptions). The simulation showed that imputing the variables prior to computing the 
disclosure risk corrected the overstatement. This emulates a scenario where missing 
values were not imputed already. If already imputed for the purpose of dissemination 
then the imputed values can be used in the risk computation. Consideration for dropping 
the imputation flags from the PUF would reduce the risk further, since imputation 
without knowing which values were imputed may then be considered as having similar 
risk-reducing effects as random perturbation.  
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