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Abstract 

Traditional methods for sampling weight adjustment involve weighting class adjustment 
for nonresponse bias reduction, followed by post-stratification (raking-ratio or regression) 
adjustment for coverage bias reduction, and then trimming (or winsorization) of extreme 
weights for variance reduction followed by final post-stratification to meet desired 
control totals and for further variance reduction. Using calibration methods (or 
generalized raking), the nonresponse weight adjustment can be considerably simplified 
and improved by relying on external control totals for nonresponse predictors (or 
auxiliary variables) instead of frame level information for the full sample, resulting 
typically in a rich set of auxiliary variables. Moreover, this allows in general for a 
simplification of the process by eliminating the post-stratification step after the 
nonresponse bias adjustment as long as the set of auxiliary variables used is deemed 
adequate for post-stratification. However, in calibration methods, there is no built-in 
mechanism for ensuring variance reduction although generally it does lead to variance 
reduction. Besides, the nature of the commonly used method of weight trimming before 
final post-stratification is ad hoc and likely to introduce bias although it is expected to 
reduce variance. We propose modeling to smooth extreme weights instead of trimming, 
and introduce new (super) stratum-specific scale parameters in the calibration (or 
generalized raking) model to capture possibly varying design characteristics by strata or 
super-strata. The new calibration model with extra parameters maintains approximate 
unbiasedness of calibration estimators for which the new parameters are estimated 
outside the calibration equations by minimizing the generalized variance of key study 
variables or alternatively the unequal weighting effect for simplicity. Using a hypothetical 
calibration problem based on the 2011 National Immunization Survey (NIS) public use 
file data, an illustrative example of the proposed method is presented.   

Key Words: Weighting Class; Raking Ratio; Weight Trimming; Model-based Weight 
Smoothing; Stratum-Specific Scale Parameters. 

1. Introduction 

Many surveys use a weighting class approach when adjusting for bias due to sample 
attrition at different stages until the subset of complete respondents is reached. For 
example, in the case of random digit dial telephone surveys, sample attrition may be due 
to non-resolution of released telephone numbers, nonresponse to screener interview, 
ineligibility after screening, and nonresponse to the main interview; and for list frames, 
sample attrition may be due to incorrect location, noncontact, nonresponse and 
ineligibility to screener, and finally refusal. The weighting class method uses a cross-
classification of variables which often results in insignificant interaction terms being 
included in the model, which, in turn, tends to increase both the variability of the adjusted 
weights and variance for key survey estimates. Moreover, the weighting class method 
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requires frame level covariate information (i.e., for the variables used to create the non-
response adjustment cells) for both respondents and non-respondents—here the term 
nonresponse is used in a generic sense to refer to sample attrition due to various reasons. 
In practice, however, there is often a paucity of frame level information about useful 
nonresponse predictors or covariates for nonrespondents, which affects the validity of 
bias adjustment at each stage of sample attrition. 

An alternative to the weighting class method for nonresponse adjustment was proposed 
by Folsom and Singh (2000; see also the WTADJUST procedure of SUDAAN v10, RTI 
International, 2010) which generalizes the weight calibration approach for post-
stratification (Deville and Särndal, 1992) to handle the nonresponse bias problem such 
that the adjustment factor is greater than 1. The calibration controls for auxiliary variables 
needed for model fitting are allowed to be random because they can be obtained from a 
larger sample or fixed if they are obtained from census or administrative sources. The 
main advantage of using a calibration method for fitting nonresponse models is that one 
can work with only information about model covariates from  the sample of respondents 
as long as calibration control totals for the target population are available. Moreover, it 
allows for retaining only those covariates in the model that are significant (typically main 
effects and lower order interactions), and thus reduces the variability of the adjusted 
weights by fitting a parsimonious model. In addition, this method easily allows for 
continuous variables in addition to the usual categorical variables to be included in the 
model.  

In this paper, we propose to enhance the above calibration approach to nonresponse 
adjustment for handling all types of sample attrition before reaching a complete case 
through a single step of weight adjustment. The basic idea is that although models for the 
attrition bias adjustment may be different at different stages of attrition due to differences 
in the underlying phenomena, the rich set of covariates available from the final complete 
cases contains good predictors of sample attrition for all earlier stages. Therefore, fitting a 
single model to adjust for different types of sample attrition is expected to provide a 
reasonable bias adjustment without introducing too many parameters and thus avoiding 
possibly instability in calibrated weights due to estimation of many parameters. 
Moreover, since the controls used in the above calibration approach typically coincide 
with the ones used for coverage bias adjustment via post-stratification, the proposed one 
step sample attrition bias adjustment in fact also adjusts for the compound bias due to 
nonresponse and non-coverage (over or under).  

The second enhancement to the calibration approach we consider is to introduce new 
parameters in the model to capture the impact of possibly different sampling designs in 
different strata (or super-strata—these are simply groups of strata with similar designs). 
The ultimate goal of any estimation exercise is, of course, to reduce bias and variance to 
the extent possible. However, commonly used calibration methods of weight adjustment 
(see Kott, 2006, and Särndal, 2007 for reviews) attempt to take care primarily of the 
bias problem but do not have any built-in mechanism to reduce variance although, in 
practice, bias reduction is generally accompanied by some variance reduction also. It is 
desirable to introduce new parameters in the bias adjustment model so that their values 
can be chosen to minimize the variance without affecting unbiasedness. In other words, 
the goal is to minimize the variance of an estimator in the class of unbiased estimators 
obtained by varying the values of the new parameters which, in turn, also impact 
estimates of the original model parameters. A useful way to interpret the role of new 
parameters is that they allow weights of strata with higher relative effective sample size 
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be adjusted less than weights for strata with lower effective sample size, and thus build in 
some variance optimality in the calibration method.  This feature is accomplished by 
introducing strata-specific scale parameters (or super-strata-specific to reduce the number 
of new parameters) along the lines of Singh and Wu (2003) in dealing with differential 
designs in the context of dual frame calibration estimation.  

The third enhancement we propose deals with improving the customary but somewhat ad 
hoc method of weight trimming or winsorization of extreme weights whenever they occur 
after the sample attrition bias adjustment.  Although the calibration estimator after bias 
adjustment is approximately unbiased jointly under the design and the bias model, it is 
known that weight trimming is expected to introduce bias but is implemented with the 
hope that it might be more than offset by the resulting variance reduction. There does not 
seem to exist a reasonable solution to the bias problem due to weight trimming although 
it is commonly performed in all surveys. Along the lines of Beaumont (2008), we propose 
a model for weights conditional on the sample such that extreme weights in the estimator 
can be replaced by model-based smoothed weights, and the resulting estimator remains 
approximately unbiased under design and the two models—one for sample attrition and 
the other for extreme weights. It is observed that a calibration method can also be used to 
fit the weight smoothing model where the calibration controls are now obtained internally 
from the weighted estimates of covariates from the sample itself. However, after weight 
smoothing, the respondent sample will no longer be balanced as in the case of weight 
trimming and so another step of calibration is performed for the purpose of post-
stratification to the desired control totals. It is remarked that the goal of variance 
reduction in the calibration step for post-stratification can be maintained since after the 
model-based extreme weight smoothing, the estimator still remains approximately 
unbiased. Incidentally, a Hajek-ratio adjustment to match the population count before 
post-stratification is also desirable for improved variance reduction. Furthermore, to 
minimize variance further, the new scale parameters mentioned earlier as part of the 
second enhancement are suitably chosen using a grid search so that a common set of 
values for these parameters for all steps of calibration minimizes the variance of the final 
estimator for a given study variable. We remark that in practice for simplicity the unequal 
weighting effect can be used as a surrogate for the generic variance quantity for the 
minimization purpose.  

The new weight calibration method proposed in this paper is termed generalized raking 
with optimal unbiased modification (or GROUM) signifying its optimality in the class of 
approximately unbiased calibration estimators. Although the main features of GROUM 
described above are in the context of a single frame, they also carry over to multiple 
frame surveys where frames can be deemed as super-strata albeit overlapping. Moreover, 
frame-specific modeling for weight smoothing will generally be needed for multiple 
frames, and a multiple frame version of the unequal weighting effect for variance 
minimization.  

Theoretical considerations of the proposed GROUM calibration method are provided in 
Section 2 followed by a stepwise description of GROUM in Section 3. An illustrative 
hypothetical example based on the 2011 NIS PUF is presented in Section 4 followed by 
concluding remarks in Section 5. 
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2. Theoretical Considerations underlying the Proposed Method 

As mentioned in the introduction, in any survey, there are successive stages of sample 
attrition. For example, sample attrition in list frame surveys involves incorrect location, 
noncontact, nonresponse to screener, ineligibility, and refusal while for RDD telephone 
surveys involves non-resolution, screener noncontact, screener refusal, ineligibility, 
interview noncontact, and refusal. Often weighting class adjustment methods are used for 
attrition bias. It is simple and appealing as it tries to model each stage but may entail 
serious compromises in weighting class formation due to lack of predictors required to be 
known for the attritted part of the sample.  

We propose a calibration approach to sample attrition bias and wish to adjust initial 
weights of the respondent subsample directly for all stages of attrition in one step. For 
this purpose, we need adjustment factors greater than 1 and external control totals (fixed 
or random) for all covariates in the model. To this end, we can model the joint probability 
of attrition occurrence or case retention at successive stages via a logit or a restricted logit 
model as in Folsom and Singh (2000). This will only be an approximation because 
attrition phenomena at different stages could be driven by different factors. However, 
since the respondent subsample (𝑠𝑟) will be used for the calibration method for attrition 
bias adjustment and covariate information about nonrespondents in the calibration 
approach is not needed, a rich set of covariates or predictors can be available for the bias 
adjustment model which are expected to be good predictors for all stages of sample 
attrition.  Therefore a single adjustment step for all stages of sample attrition may be 
quite reasonable.   

2.1 Model-based Initial Weight Smoothing before Nonresponse Bias Adjustment  

It is observed that since the nonresponse bias adjustment factor should be greater than 1, 
we need the total estimate (𝑡𝑥) from the respondent subsample to be less than the control 
total (𝑇𝑥) for all covariates x under the calibration approach to model fitting. This 
condition may not be satisfied due to the likely presence of some large initial weights. So 
smoothing of large initial weights before any nonresponse adjustment might be needed. 
However, for this purpose, the usual method of weight trimming or winsorization may 
not be desirable because it may introduce further bias which we are trying to reduce. We 
propose an alternative to smoothing weights by modeling. In particular, within each 
super-stratum h, we model initial weights 𝑤𝑘ℎ conditional on the sample (somewhat 
analogous to the method in Beaumont, 2008) as   

𝐸(𝑤𝑘ℎ|𝑠𝑟ℎ) = 𝑤𝑘ℎ∗ 𝑎𝑘ℎ(𝜆ℎ) if 𝑖𝑖 𝑘 ∈ 𝑠𝑟ℎ  (1) 

where 𝑎𝑘ℎ(𝝀ℎ) = exp (𝑥𝑘ℎ′ 𝝀ℎ) , and 𝑤𝑘ℎ∗  denote known constants representing an initial 
smoothing of weights before their adjustment by the factor 𝑎𝑘ℎ(𝝀ℎ). The constants 𝑤𝑘ℎ∗  
could be specified by the customary weight winsorization where all weights beyond 
𝑚𝑚𝑚 ± 3 𝐼𝐼𝐼 are shrunk to the nearest boundary (left or right) and where IQR denotes 
Interquartile Range, or by using a new type of winsorization (termed non-extreme and 
extreme weight winsorization) in the sense that all the initial weights are first partitioned 
into weight intervals with boundaries defined by 𝑚𝑚𝑚 ± 𝑎 ×  𝐼𝐼𝐼 where the factor a 
can take values in increments of .5; i.e., 0.5, 1, 1.5, 2, and 2.5. Now each weight is 
truncated to either the left or the right boundary of the interval it belongs such that it is 
shrunk toward the median. A third option is to let 𝑤𝑘ℎ∗  be common for all cases in the 
stratum and equal to the average weight. 
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We fit the above weight smoothing model (1) using a calibration approach for which 
random controls 𝑡𝑥ℎ are obtained internally from the sample 𝑠𝑟 of respondents itself; in 
other words, the sample totals are maintained which is reasonable since the model is 
defined conditional on the sample 𝑠𝑟ℎ of respondents in the super-stratum h.  It may be of 
interest to note that the calibration equations for fitting the log linear model (1) is 
equivalent to maximum likelihood equations assuming a Poisson distribution for initial 
weights treated as count data. After weight smoothing, large initial weights are replaced 
by smoothed weights but other weights are not smoothed. After weight smoothing, it is 
expected that the condition 𝑡𝑥 < 𝑇𝑥 will be satisfied for all x’s used in the nonresponse 
bias adjustment as required. Incidentally, the set of x’s chosen for calibration for 
nonresponse bias or coverage bias adjustments can be identical to the set of covariates 
selected for the weight smoothing model.   

2.2 One Step Sample Attrition Bias Adjustment  

We next consider the proposed one step sample attrition bias adjustment via calibration 
by generalized raking in the form of inverse logit:     

𝑎𝑘ℎ(𝝀) = 1 + exp(−𝑥𝑘ℎ′ 𝝀 )  𝑖𝑖 𝑘 ∈ 𝑈ℎ  ,                       (2) 

where 𝑈ℎ denotes the stratum h universe, and some of the model parameters 𝝀 could be 
stratum-specific if calibration controls were available at the stratum level; although 
typically calibration controls are not available at the stratum level but they may be 
available at the super-stratum level. It follows from (2) that by construction, the 
adjustment factors will be greater than 1 as desired.  

The above nonresponse bias adjustment also adjusts for under-or over-coverage bias 
because the covariates used in coverage bias models are also deemed good predictors of 
nonresponse and vice-versa, and can be common with the covariates for the nonresponse 
bias model under the calibration approach.  Thus, if there are no extreme weights after the 
attrition bias adjustment, the calibration process can stop.  

2.3 Extreme Weight Smoothing after Bias Adjustment and Hajek-Ratio Adjustment   

If there are extreme weights after the bias adjustment as is usually the case in practice,  
then we need to perform a separate weight smoothing step like the previous one such that 
we maintain approximate unbiasedness under the design and models employed for 
nonresponse bias and extreme weights before nonresponse bias adjustment. This weight 
smoothing step is expected to reduce variance without introducing bias. Further variance 
reduction can be achieved by calibration for post-stratification because after weight 
smoothing, desired calibration controls will no longer be satisfied as extreme weights 
identified after nonresponse adjustment are replaced by smoothed weights. However, 
before any post-stratification adjustment, it is desirable to perform the Hajek ratio 
adjustment so that estimated population count matches with the known population count. 
This adjustment can be super-stratum specific and tends to improve the variance 
reduction feature of post-stratification because in the case of regression calibration, it 
induces desirable centering in the working variance-covariance structure which leads to 
optimal regression in the special case of simple random sampling; see Singh  (1996).  
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2.4 Post-stratification for Variance Reduction 

For the post-stratification step, usual raking-ratio (equivalent to log linear modeling) is 
performed where the adjustment factor can be less than 1. That is   

   𝑎𝑘ℎ(𝝀) = exp(𝑥𝑘ℎ′ 𝝀)  𝑖𝑖 𝑘 ∈ 𝑈ℎ,  (3) 

where some 𝝀s can be stratum-specific if corresponding controls are included in 
calibration. After calibration for post-stratification, if there are not too many extreme 
weights and their impact is not deemed to be too great as measured by the unequal 
weighting effect (UWE), then the calibration process can be stopped. If not, then it is 
customary to iterate the steps of weight smoothing, Hajek-ratio adjustment, and post-
stratification a few times.  

2.5 Design-based Variance Optimality in the Class of Unbiased Calibration 
Estimates 

So far we introduced enhancements to the customary calibration method by model-based 
weight smoothing and one step sample attrition bias adjustment. However, there is no 
design-based variance optimality feature in usual calibration methods which can capture 
possibly different designs in different super-strata. For example, if a stratum has much 
larger effective sample size than the other, then it is desirable for the calibration method 
not to adjust much the initial weights of that stratum. However, any such down-weighting 
of the adjustment factors for specific strata should maintain approximate unbiasedness of 
the overall estimator. Following the Singh-Wu technique for dual frame calibration, we 
propose to introduce pre-specified scaling factors 𝜂ℎ (representing relative effective 
sample size, 0 < 𝜂ℎ < 1) in the weight adjustment model so that the resulting estimates 
remain approximately unbiased. These new parameters are specified via a grid search 
external to calibration equations by minimizing the generalized variance over a key set of 
study variables (i.e, the sum of their variances) or the final UWE for simplicity. 
Specifically, the model (2) is revised for each super-stratum h as follows: 

  𝑎𝑘ℎ(𝜆) = 1 + exp�𝜂ℎ−1𝑥𝑘ℎ′ 𝜆 � 𝑖𝑖 𝑘 ∈ 𝑈ℎ  (4) 

where 0 < 𝜂ℎ < 1, ∑ 𝜂ℎ𝐻
ℎ=1 = 1. For each set of pre-specified values of 𝜂ℎ, the 

𝜆 −parameters are estimated by calibration equations and their estimates as expected 
depend on 𝜂ℎ. Resulting estimates remain approximately unbiased because the scaling 
factors 𝜂ℎ only affect the 𝜆 −estimates which remain consistent for large samples. It 
follows that a class of unbiased estimates can be obtained after the sample attrition bias 
adjustment for different choices of 𝜂ℎ. For each given set of 𝜂ℎ, we perform weight 
smoothing, Hajek-ratio adjustment and post-stratification to obtain a final set of weights. 
That is, the same set of 𝜂ℎ −values used for model (2) are also used for model (3) to 
obtain the final weights, and then a grid search on 𝜂ℎ −constants over possible values of 
.1, .2,…, .9 such that ∑ 𝜂ℎ𝐻

ℎ=1 = 1, can be used to find optimal 𝜂ℎ’s. This completes the 
description of the proposed method of GROUM calibration where the generalized raking 
model is modified with 𝜂ℎ −parameters to obtain a class of approximately unbiased 
estimators from which the optimal estimator is selected. This is somewhat reminiscent of 
optimal regression in survey sampling in that it minimizes variance in the class of linear 
unbiased estimators. In fact, the idea of scaling factors as a surrogate for effective sample 
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sizes for optimality occurred by considering the calibration form of optimal regression in 
simple random samples; see Singh and Wu (2003). 

3. GROUM—the Proposed Method of Weight Calibration 

A stepwise description of GROUM is summarized below. 

Step I (Model-based Smoothing of Initial Weights): Start with the base weights of the 
final respondent subsample. Before the proposed sample attrition bias adjustment or 
nonresponse adjustment in general, check if the sample estimate for all the potential 
calibration variables are less than the calibration control totals. If not, then use a log 
linear model-based weight smoothing by which high extreme weights are replaced by the 
smoothed weights. If for any x-variable, the required condition of 𝑡𝑥 < 𝑇𝑥 is still not 
satisfied, then that x-variable can either be dropped from the nonresponse adjustment 
model or the weights can be further smoothed by lowering the threshold for identifying 
extreme weights. 

Step II (Compound Bias Adjustment for Nonresponse and Coverage): Use a logit linear 
model with super-stratum specific scale adjustment factors to adjust weights after 
smoothing under Step I. The adjustment factor will be greater than 1 by construction. It 
might be preferable to use bounds (L and U) as in the generalized exponential model of 
Folsom and Singh (2000) which generalizes Deville-Sarndal’s restricted logit model to 
nonresponse adjustment. Here L is set at 1, but we need to set U and another constant C 
such that 𝐿 < 𝐶 < 𝑈. To get reasonable values for C and U, the unrestricted logit linear 
can be fit first using the calibration approach and then C can be set at the median 
adjustment factor and a suitable conservative (i.e., somewhat tight) choice of U based on 
observed third quartile of adjustment factors. 

Step III (Model-based Smoothing of Bias-adjusted Weights): After Step II, some weights 
are expected to be extreme. Use a log linear model of expected values of adjusted weights 
(similar to Step I) as a function of covariates used in calibration for bias adjustment. May 
need separate models for different super-strata. Replace extreme weights by smoothed 
weights. 

Step IV (Hajek Ratio Adjustment): The smoothed weights after Step III will not satisfy 
calibration controls. Before calibration for post-stratification, perform Hajek-Ratio 
adjustment to smoothed weights so that estimated count from the sample matches with 
the population count. This can be done foreach super-stratum separately if corresponding 
population counts are known. 

Step V (Post-stratification for Variance reduction): For the pre-specified set of values of 
scaling factors, perform post-stratification using log linear modeling. The adjustment 
factor is greater than 0 but could be less or greater than 1. It might be preferable to use 
bounds (L, U) for a restricted logit model as in Deville-Sarndal. Here the center C is set 
at 1 and initial choices of L and U can be obtained by using first and third quartiles of the 
adjustment factor under the (unrestricted) log linear model which is fit initially.  

Step VI (Grid Search for optimal Scaling factors): For each pre-specified set of scaling 
factors, compute the generalized variance of calibrated estimates over a set of key study 
variables to find the optimal choice of scaling factors that minimizes it. In practice, for 
simplicity, UWE can be used as an alternative to the generalized variance. For stratified 
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designs, the stratified version of UWE will be preferable using super-strata and is given 
by            

                              𝑆𝑇𝑈𝑆𝐸 = ∑ (𝑁ℎ 𝑁⁄ )2𝑈𝑆𝐸ℎ 𝑛ℎ⁄𝐻
ℎ=1
∑ (𝑁ℎ 𝑁⁄ )2 𝑛ℎ⁄𝐻
ℎ=1

  ,                         (5) 

where H denotes the number of super-strata. Now use the optimal choice of scaling 
factors to obtain the final calibrated weights.  

The proposed GROUM method is easily applicable to multiple frames in a manner 
similar to the method proposed earlier by Singh and Wu (2003) for dual frames. In this 
case, different frames can be regarded as super-strata so that frame–specific models for 
weight smoothing can be fit. However, since frames can be overlapping (for example, 
cell and landline phones), new calibration variables for the overlap domains become part 
of calibration for which the control total is zero.  

4. An Illustrative Example 

We construct a hypothetical calibration problem using the 2011 NIS PUF data for the 
North-East Census Division of children aged 18-35 months in the landline sample. The 
PUF contains socio-demographic, vaccination information and final calibrated weights 
for the respondent sample of children in NIS. The calibration in NIS is based on 
weighting class adjustment for various stages of sample attrition and raking ratio for post-
stratification. Table 1 shows the six states along with the number of complete responses 
for children, and the number of estimated households with landline available from CDC 
(http://www.cdc.gov/nchs/data/nhsr/nhsr061.pdf). Since PUF did not have information 
about the base weights, approximate base weights for each state were obtained by setting 
them proportional to the ratio of the number of households with landline and the number 
of sample completes. The NE census division was treated as the target population of 
interest. Although states essentially serve as strata in the RDD sampling design of NIS, 
we divided the NE division into two super-strata for our purpose of illustrating the 
GROUM calibration: two large states Connecticut and Massachusetts were grouped in 
one super-stratum with relatively low sampling rates while the remaining four small 
states were grouped in the second super-stratum with much higher relative sampling 
rates. 

Table 2 shows the target population size of eligible children as 232404.77—it is not an 
integer because it was obtained as the calibrated population count from the PUF. The 
corresponding total sample size of completes is 1680. There are six categorical 
calibration variables corresponding to Mother’s education, Mother’s age, Child Age, 
Child gender, Child Race/ethnicity and Child First Born status each with a number of 
categories resulting in a total of 13 linearly independent control totals.  

The results after GROUM calibration are shown in Tables 3 and 4. There was no need of 
Step I of initial weight smoothing. The step II of compound bias adjustment for 
nonresponse and coverage was performed using logit linear model with two scaling 
factors corresponding to the two super-strata. In step III, only one weight smoothing 
model was fit for simplicity rather than separate models for each super-stratum. After 
Hajek-ratio adjustment in Step IV and post-stratification in Step V, a grid search was used 
to find out the optimal set of 𝜂ℎ’s which turns out to be (.6, .4) under all the three types of 
weight smoothing methods; see Table 3. It is interesting to note that, as expected, the 
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range of calibrated weights decreases as the set of 𝜂ℎ’s approach the optimal choice. 
Among the three smoothing methods, in terms of calibrated weight distribution, Method 
2 of model-based smoothing with initial common weights seems to perform best followed 
by the conventional method of weight trimming. However, point estimates for the six 
vaccination variables look quite comparable under the three methods of weight 
smoothing. The purpose of this example was only to illustrate how various methods of 
weight smoothing with (super-) stratum specific scaling factors behave empirically. 
Without a suitable simulation experiment, it is difficult to draw definitive conclusions 
about the relative performance of methods.  

5. Concluding Remarks 

In this paper, we proposed a single or one step attrition bias adjustment via calibration as 
an approximation to the product of separate adjustments for successive stages of attrition. 
Model-based smoothing of high initial weights before attrition bias adjustment helps to 
satisfy the required condition for total estimates of calibration variables to be less than 
external control totals in order to ensure that the adjustment factor is greater than 1. 
Super-Stratum level scaling parameters in the adjustment factor were introduced to build-
in optimality of variance reduction by capturing possibly different designs in super-strata. 
These new parameters are analogous to relative effective sample sizes and can be 
estimated outside calibration via a grid search. The proposed enhancements to the 
conventional calibration method lead to a new method termed generalized raking with 
optimal unbiased modification or GROUM. A simple numerical example based on the 
2011 NIS PUF was presented to illustrate the GROUM methodology for a hypothetical 
calibration problem. Applications of GROUM to the multiple frame calibration problem 
was also briefly discussed. It is believed that the proposed method of GROUM 
calibration may have wide applications in the practice of survey sampling. 
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Table 1: NE Census Division as the Target Population, #HH with Landline, and 
#Sample Completes 

State #HH with Landline #Sample Completes 
Connecticut 869113.5 352 
Massachusetts 1483176.5 264 
Maine 302277.3 258 
New Hampshire 308921.4 217 
Rhode Island 253263.1 340 
Vermont 151972.9 249 

 

 

Table 2: Calibration Control Totals based on 2011 NIS PUF for NE Census Division 

(Total Count of Children N=232404.77, Number of Sample Completes= 1680) 

Aux Variable Total Count Aux Variable Total Count 
Mother’s Education 
 

1: 30250.18 
2: 57731.18 
3: 37682.18 
4: 106741.22 

Child Gender 1: 119131.43 
2: 113273.34 

Mother’s Age 
 

1: 3455.46 
2: 66412.46 
3: 162536.84 

Child Race/Ethnic 1: 41541.29 
2: 156048.65 
3: 14846.56 
4: 19968.27 

Child Age 
 

1: 68607.93 
2: 80732.37 
3: 83064.46 

First Born Status 1: 145851.58 
2: 86553.19 

Footnote:  Mother’s Ed (< 12 Years, 12 Years, > 12 Years, Non-College Grad, College Grad); 
Mother’s Age (<= 19 Years, 20 - 29 Years, >= 30 Years); Child Age (19 - 23 Months, 24 - 29 
Months, 30 - 35 Months); Child Gender (Male, Female); Child Race/Ethnicity (Hispanic, Non-
Hispanic White Only, Non-Hispanic Black Only, Non-Hispanic Other + Multiple Race); First 
Born Status (No, Yes).  
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Table 3: Final Calibrated Weights under Different Extreme Weight Smoothing 

 

Cal Wt 
Summary 

Eta=.4 
R=1           3            1000 

Eta=.5 
R=1          3          1000 

Eta=.6 
R=1          3            1000 

Weight Smoothing (Method 1: Extreme Weight Winsorization or Trimming) 
Min 
 
Q1 
 
Med 
 
Q3 
 
Max 
 
#EW 
 
UWE 

6.23 
 
18.83 
 
36.36 
 
180.05 
 
994.61 
 
112 
 
2.79 

6.67 
 
20.60 
 
45.68 
 
181.34 
 
706.78 
 
113 
 
2.48 

6.90 
 
21.55 
 
52.25 
 
203.23 
 
506.45 
 
0 
 
2.20 

14.56 
 
45.57 
 
86.63 
 
195.05 
 
585.38 
 
6 
 
1.81 

14.34 
 
45.27 
 
86.39 
 
200.86 
 
492.00 
 
0 
 
1.79 

14.34 
 
45.24 
 
86.37 
 
201.35 
 
476.66 
 
0 
 
1.79 

28.90 
 
71.42 
 
118.61 
 
163.84 
 
476.58 
 
30 
 
1.41 

28.66 
 
71.50 
 
117.61 
 
165.55 
 
406.43 
 
4 
 
1.40 

24.65 
 
72.55 
 
109.27 
 
177.78 
 
385.40 
 
0 
 
1.40 

Weight Smoothing (Method 2: Model with Initial Common Weights) 
Min 
 
Q1 
 
Med 
 
Q3 
 
Max 
 
#EW 
 
UWE 

6.44 
 
22.36 
 
48.17 
 
176.66 
 
1020.64 
 
108 
 
2.64 

7.20 
 
26.47 
 
71.94 
 
208.98 
 
665.31 
 
2 
 
2.10 

7.48 
 
27.61 
 
76.93 
 
235.29 
 
561.06 
 
0 
 
1.97 

14.45 
 
46.17 
 
90.70 
 
209.04 
 
588.99 
 
2 
 
1.76 

13.96 
 
46.32 
 
92.08 
 
218.41 
 
526.54 
 
0 
 
1.72 

14.12 
 
46.23 
 
93.63 
 
222.88 
 
531.23 
 
0 
 
1.72 

28.72 
 
71.93 
 
118.64 
 
165.21 
 
489.51 
 
28 
 
1.40 

28.09 
 
70.88 
 
117.06 
 
168.04 
 
427.91 
 
6 
 
1.38 

27.82 
 
70.87 
 
117.51 
 
168.06 
 
383.97 
 
0 
 
1.38 

Weight Smoothing (Method 3: Model with Nonextreme and Extreme Weight Winsorization) 
Min 
 
Q1 
 
Med 
 
Q3 
 
Max 
 
#EW 
 
UWE 

5.96 
 
17.26 
 
31.30 
 
172.34 
 
1108.90 
 
117 
 
2.99 

6.08 
 
17.77 
 
32.04 
 
177.38 
 
1053.07 
 
114 
 
2.95 

6.29 
 
19.33 
 
36.78 
 
182.76 
 
988.53 
 
112 
 
2.81 

14.71 
 
44.44 
 
82.60 
 
176.00 
 
726.05 
 
71 
 
1.92 

14.71 
 
44.38 
 
84.68 
 
182.09 
 
627.28 
 
67 
 
1.87 

14.54 
 
44.90 
 
85.74 
 
187.62 
 
527.95 
 
70 
 
1.85 

29.30 
 
71.88 
 
116.47 
 
163.61 
 
492.60 
 
66 
 
1.44 

29.14 
 
71.66 
 
117.08 
 
163.45 
 
466.70 
 
66 
 
1.43 

28.91 
 
71.19 
 
117.06 
 
163.36 
 
396.01 
 
52 
 
1.42 
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Table 4: Estimated Vaccination Rates under Different Calibration Methods for the 
Hypothetical Estimation Problem for the Population of Children in the NE Division 

 

Estimate Eta=.4 
R=1           3            1000 

Eta=.5 
R=1          3          1000 

Eta=.6 
R=1          3            1000 

Weight Smoothing (Method 1: Extreme Weight Winsorization or Trimming) 
 
4+DT 
 
3+Polio 
 
1+Measles 
 
3+Hib 
 
3+HepB 
 
1+Varicella 
 

 
0.8813 
 
0.9573 
 
0.9422 
 
0.9587 
 
0.9183 
 
0.9139 

 
0.8842 
 
0.9592 
 
0.9449 
 
0.9604 
 
0.9219 
 
0.9146 

 
0.8882 
 
0.9608 
 
0.9472 
 
0.9619 
 
0.9247 
 
0.9153 

 
0.8844 
 
0.9576 
 
0.9426 
 
0.9583 
 
0.9198 
 
0.9075 

 
0.8864 
 
0.9587 
 
0.9438 
 
0.9595 
 
0.9213 
 
0.9086 
 

 
0.8865 
 
0.9588 
 
0.9439 
 
0.9596 
 
0.9214 
 
0.9087 

 
0.8846 
 
0.9572 
 
0.9404 
 
0.9560 
 
0.9200 
 
0.8950 

 
0.8842 
 
0.9566 
 
0.9398 
 
0.9558 
 
0.9193 
 
0.8942 

 
0.8845 
 
0.9566 
 
0.9406 
 
0.9562 
 
0.9191 
 
0.8972 

Weight Smoothing (Method 2: Model with Initial Common Weights) 
 
4+DT 
 
3+Polio 
 
1+Measles 
 
3+Hib 
 
3+HepB 
 
1+Varicella 
 

 
0.8755 
 
0.9556 
 
0.9420 
 
0.9572 
 
0.9169 
 
0.9109 

 
0.8818 
 
0.9604 
 
0.9449 
 
0.9616 
 
0.9244 
 
0.9104 

 
0.8868 
 
0.9604 
 
0.9459 
 
0.9615 
 
0.9234 
 
0.9102 

 
0.8853 
 
0.9588 
 
0.9444 
 
0.9597 
 
0.9223 
 
0.9080 

 
0.8888 
 
0.9605 
 
0.9461 
 
0.9609 
 
0.9250 
 
0.9091 

 
0.8899 
 
0.9602 
 
0.9470 
 
0.9605 
 
0.9246 
 
0.9099 

 
0.8842 
 
0.9570 
 
0.9407 
 
0.9558 
 
0.9194 
 
0.8952 

 
0.8830 
 
0.9566 
 
0.9401 
 
0.9562 
 
0.9195 
 
0.8943 

 
0.8828 
 
0.9559 
 
0.9392 
 
0.9556 
 
0.9191 
 
0.8935 

Weight Smoothing (Method 3: Model with Nonextreme and Extreme Weight Winsorization) 
 
4+DT 
 
3+Polio 
 
1+Measles 
 
3+Hib 
 
3+HepB 
 
1+Varicella 
 

 
0.8805 
 
0.9569 
 
0.9405 
 
0.9584 
 
0.9161 
 
0.9142 

 
0.8809 
 
0.9576 
 
0.9411 
 
0.9591 
 
0.9172 
 
0.9142 

 
0.8823 
 
0.9581 
 
0.9431 
 
0.9597 
 
0.9197 
 
0.9143 

 
0.8810 
 
0.9556 
 
0.9400 
 
0.9562 
 
0.9159 
 
0.9059 

 
0.8827 
 
0.9568 
 
0.9412 
 
0.9575 
 
0.9180 
 
0.9068 

 
0.8844 
 
0.9577 
 
0.9423 
 
0.9584 
 
0.9192 
 
0.9078 

 
0.8848 
 
0.9576 
 
0.9406 
 
0.9561 
 
0.9209 
 
0.8956 

 
0.8847 
 
0.9575 
 
0.9404 
 
0.9561 
 
0.9204 
 
0.8951 

 
0.8846 
 
0.9569 
 
0.9398 
 
0.9558 
 
0.9198 
 
0.8946 
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