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Abstract 
The linear calibration approach is commonly used to adjust sample weights for 
multipurpose estimations. Although the linear calibration estimator has many good 
properties, it has two major limitations. One is the efficiency issue and the other is the 
convergence issue. Many modified methods have been suggested in the literature, but 
they do not address both issues at the same time. The modified methods intended for 
efficiency gain only apply to a single study variable, while modified methods intended 
for stable estimations for multiple study variables do not offer efficiency gains. In this 
paper, we first review some modified calibration methods and offer some thoughts about 
calibration applications to balance efficiency gain and multipurpose use. In particular, we 
propose a composite calibration weighting method and some modifications of the regular 
linear calibration method. The proposed methods aim at improving the efficiency for 
some ‘priority’ study variables, while still keeping the multipurpose property. Results of 
a limited simulation study are presented as well.      
 
Key Words: Auxiliary variable, Composite calibration estimation, Generalized linear 
regression, Multipurpose estimation, Sample weight, Weight calibration. 
  
  

1. Introduction 

The calibration method is commonly used to adjust sample weights when auxiliary 
variables are available. The calibration weights are adjusted weights such that weighted 
sample estimates of auxiliary variables conform to the population values. We follow the 
conventional notations. Let s be the probability sample from the finite population 

},,,,2,1{ NkU  and kd  and kw be the base weight and the calibration weight of 
unit k. The objective is to estimate the population total of the study variable: 

 


Uk kyY  or population totals of study variables:  


Uk jkj yY ( Jj ,,2,1  ) if 

there are J study variables. The calibration estimator of Y is  


sk kkCAL ywŶ , where 

calibration weights kw  are calculated through the use of auxiliary information to satisfy a 
set of benchmark constraints (BC) or calibration equations: 
 

 
U ks kkw xx ,                                                                             (1.1) 

 
where N and U kx 	are known control totals. Suppose there are p auxiliary variables, 

then kx is a column vector such as  pkkk xx ,,,1 1 x . The ‘1’ is included in kx  to 
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ensure that Nw
s k  holds. There is one calibration equation for each of p auxiliary 

variables. There are sets of calibration weights }{ kw that satisfy calibration equations 

(1.1). To choose among the sets, a distance function of kd  is specified so that a unique 
set of calibration weights is achieved by minimizing the distance function subject to 
calibration equations. There are a variety of alternative distance functions, as described in 
Deville and Särndal (1992). The most commonly used distance function is the chi-
squared distance function: 
 

 
s kkkkn dqdwwwD 2

1 )(),,(                                                   (1.2) 

 
where kq  is a scale factor. The choice of kq  has some but often limited impact on the 

accuracy of calibration estimators. The standard choice is kq =1, which we use in this 
paper. Alternative distance functions generate asymptotically equivalent calibration 
estimators. The chi-squared distance function with kq =1 creates the typical linear 

calibration estimator CALŶ
 
and calibration weights kw :   

 

  ,ˆ
ks kCAL ywY                                                                                   (1.3) 

 

where kkk gdw   and     ks kkks kkU kk ddg xxxxx
1

1
 


 . This calibration 

estimator under the chi-squared distance function happens to be identical to the linear 
GREG estimator that is generated by a linear assisting model, but is derived using 
different reasoning (Särndal, 2007): 

 

  ,ˆˆ Bxx


  s kkU kks kGREG dydY                                         (1.4) 

 

where    kks kkks k ydd xxxB  


1ˆ . 

  
Although there is no explicit model, the linear calibration estimator is not ‘model-free.’  
In fact, a linear assisting model, called a calibration model, is implied in the calculation. 
If there are J study variables, then for each study variable ),,2,1( Jjy j  , a 

corresponding linear calibration model is implied: 
 

),,2,1;,,2,1(, NkJjy jkjkjk   Bx .     

                       

   (1.5) 

 
Note that vector kx  is common to each study variable jy ; but vector jB is different for 

each jy . The common set kx  allows the creation of a common set of calibration weights 

for all study variables (Kott, 2009).   
 
Calibration estimators have several advantages. First, calibration estimates of auxiliary 
variables are consistent with known population totals, that is,  

),,2,1( pixxw
Uk iksk ikk  

. Second, calibration weights can be applied to all 

y-variables. This multipurpose use is an important property in survey practice. In 
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addition, the calculation of calibration weights does not require the population 
information on auxiliary variables at the unit level, as long as control totals are available.

  
Calibration estimators have two limitations: efficiency issue and convergence issue. 
Regarding efficiency, calibration estimators should be considered efficient when the 
calibration model in the equation (1.5) can explain all study variables well. But, it may 
not be reasonable to expect a good linear model with the same set of auxiliary variables 
for each study variable. Therefore, the multipurpose property of calibration weights 
comes at a price of increased variance. For the convergence issue, iterative process of 
calculating calibration weights may not always converge, especially when there are many 
auxiliary variables in the calibration model. Around those issues, methods have been 
proposed in the literature. Some methods are intended to improve the efficiency of 
calibration estimators through calibration model fitting and auxiliary variable selection. 
But they only apply to a single study variable. Others are intended to ensure calibration 
convergence and stable estimations for multipurpose use, but do not aim at improving 
efficiency. Is there a way to have both efficiency gain and multipurpose property? In this 
paper, we first review some modified calibration methods in the literature and offer some 
thoughts about balancing efficiency gain and  multipurpose use. In particular, we propose 
a composite calibration weighting method and some modifications of the linear 
calibration method. They are intended to improve efficiency for a ‘priority’ study 
variable and keep the multipurpose property.  
 
We divide this paper into six sections. Section 1, this section, serves as the introduction 
section serves as Section 1. In Section 2, we review a number of methods that have been 
suggested in the literature to improve the efficiency of calibration estimators for a single 
study variable. In Section 3, we look at modified calibration methods in literature 
intended for multipurpose use. In Section 4, we propose a composite calibration 
estimation method and some modifications of linear calibration estimator to improve the 
efficiency of the estimate for most important variable, while keeping the multipurpose 
property. In Section 5, we present results from a limited simulation study. In Section 6, 
we wrap up with the summary. 
 

2. Modified Calibration Methods for a Single Study Variable 

There are two basic components that determine calibration estimators: the distance 
function and the calibration model. The choice of the distance function is less important 
as different distance functions give asymptotically equivalent calibration estimators 
(Deville and Särndal, 1992). However, a good calibration model may greatly improve the 
efficiency of the calibration estimator. As indicated in Särndal (2007), the linear 
calibration estimator (or the linear GREG estimator) is bias-robust in the sense that they 
are nearly unbiased even if the assisting model falls short of ‘correct’. However, they are 
not variance-robust in the sense that model-dependent alternatives may have considerably 
smaller variance. The limitation is that an explicit model can be specified only for a 
single study variable. In this section, we review some methods in the literature that aim to 
improve the efficiency of calibration estimators for a single study variable. These 
methods use the refined calibration model fitting of either a nonlinear or linear model 
with a selected set of auxiliary variables.  
 
2.1 Model-Calibration Approach   
As proposed by Wu and Sitter (2001), the idea of the model-calibration approach is to 
make more effective use of the known auxiliary information in fitting the assisting model. 
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The calibration model is a non-linear model ),()( kkk uyE xx   that captures the 

relationship between ky  and kx . The fitted value )ˆ,(ˆ kk uu x , Nk ,,2,1   is known 
for each unit in the population. Weights are calibrated to the population total of fitted 
values, not totals of values on auxiliary variables. Benchmark constraints (BC) or 
calibration equations are therefore  
 








U ks kk

s k

uuw

Nw

ˆˆ
.                                                                             (2.1) 

 
Note that there is only one equation in (2.1) involving the auxiliary variables through

)ˆ,( ku x , while there are p equations for p auxiliary variables in the linear calibration 
equations (1.1). The model-calibration estimator is calculated by minimizing the chi-
squared distance function subject to calibration equations (2.1): 
 

   ,ˆˆˆˆ
Ms kkU kks kks kMCAL BuduydywY                                    (2.2) 

 

Where ,)ˆ()ˆ)(ˆ(ˆ 2uudyyuudB ks kkks kM    s kks k dudu ˆ  and

.ˆ  s kks k dydy   

 
Compared to the linear calibration estimator, the model-calibration estimator has a 
considerable variance advantage because of the refined model. However, model-

calibration weights are calibrated toU kû  and are not independent of the y-variable, 

resulting in the loss of the practical advantages of consistency with known population 

totals U kx and the multipurpose use of calibration weights to all y-variables.  

 
2.2 Variable Selection Approach   
In the variable selection approach, the calibration model is still a linear model. However, 
the set of auxiliary variables is selected carefully based on the mean squared error of the 
calibration estimator for a particular study variable, calculated from the sample data. The 
idea is that using too many auxiliary variables generally reduces the bias of the 
calibration estimate, but may increase the variance a lot, and therefore, actually increases 
the mean squared error. Properly chosen calibration variables give a more efficient 
calibration estimate than calibrating on all available variables.  

 
Silva and Skinner (1997) explored the selection of auxiliary variables based on a model-
assisted framework and a simple random sample setting. Their approach was to identify a 
subset of auxiliary variables under which the linear calibration estimator (or GREG 
estimator) of a specific study variable has the smallest mean squared error (MSE) 
estimate. With 1kd  under the simple random sample setting, the linear calibration 
estimator (or GREG estimator) from equations (1.3) or (1.4) is: 

  ,ˆˆˆ Bxx


  s kU ks kGREGCAL yYY  where     


s kks kk yxxxB
1ˆ . Silva 

and Skinner considered different variable selection procedures. Their ‘all subset’ 
approach involved computing the estimated MSE for all p2 possible subsets of p 
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auxiliary variables and choosing the subset corresponding to the smallest MSE estimate. 
Their forward selection approach started with a sample mean as an initial estimator and 
then adds one variable at a time until the MSE estimate started to increase. 

 
Clark and Chambers (2008) extended the variable selection approach to the model-based 
framework. They called the method ‘adaptive calibration’ because the set of variables is 

chosen adaptively from sample data. Under the model assumption βx ˆ)( kkyE   and
2)var( kk vy  , they considered the best linear unbiased predictor (BLUP): 

,ˆˆ βx 
r ks kBLUP yY  where sUr   is the set of non-sample units and

    
s kkks kkk yvv xxxβ 111ˆ .  Similar to equation (1.3), BLUPŶ  is rewritten as 

 

 s kkBLUP ywY *ˆ ,                                                                               (2.3) 

 

 where     kks kkkr kk vvw xxxx 111* 1  


 . It is straightforward to show that 

.*  
u ks kkw xx  Therefore, BLUPŶ  is a predictor or calibration estimator of Y. The 

decision whether to choose a variable at each step was based on minimizing 

 BLUPŶMSEP , the mean squared error of prediction for BLUPŶ . Clark and Chamber’s 

approach was to choose between AŶ , the predictor based on all auxiliary variables and 

BŶ  , the predictor  based on a subset of auxiliary variables. They developed estimates of 

)ˆ(MSEP)ˆ(MSEP BA TT   for single stage sampling and multi-stage sampling. If 

0ˆ  , then AŶ  is preferred. If 0ˆ  , then BŶ  is selected. Note that BLUPŶ  in equation 

(2.3) is a model-based calibration estimator, while CALŶ  in equation (1.3) is a model-
assisted calibration estimator.  
  
The work by Silva and Skinner applies to the linear GREG estimator (or the linear 
calibration estimator) that is based on the model-assisted framework, while the work by 
Clark and Chambers applies to the BLUP estimator that is based on the model-based 
framework. The GREG estimator is approximately bias robust, but less efficient even 
when the model is correct. The BLUP is sensitive to the model assumption, but efficient 
when the model is correct. Both are variable-specific and sample-specific.  

  
3. Modified Calibration Methods for Multiple Study Variables 

 
 The methods in Section 2 aim to improve the efficiency of the calibration estimator for a 
variable of interest.  The resulting calibration weights are efficient for a single study 
variable, but generally not efficient for other study variables. Now, we look at two 
methods that have been proposed to improve the calibration estimation for multiple study 
variables. One is the auxiliary variable reduction approach and other is the ridge 
regression approach. Both approaches do not require a study variable and aim to provide 
a single set of calibration weights for all survey variables. They do not guarantee a gain 
in efficiency. 
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3.1 Auxiliary Variable Reduction Approach 
This approach provides some numerical analysis on auxiliary variables for linear 
calibration. The idea is that linearly dependent and nearly linearly dependent constraints 
from the matrix,  kks kd xx  ,

 
should be discarded to ensure calibration convergence and 

a stable estimation since the inverse of  kks kd xx   involves in linear calibration 

calculation (see equations 1.3 and 1.4). The linearly dependent columns or singularity is 
checked by looking at the Hermite canonical form of  kks kd xx  , as introduced in Silva 

and Skinner (1997), except they had a the simple random sampling setting and dk=1 (for 
all k). Any zero in the diagonal of the Hermite canonical form indicates the 
corresponding auxiliary variables should be dropped.  
 
To identify nearly linearly dependent constraints, Bankier et al (1997) used the 
Conditional Number (CN) method. ,CN minmax λλ  where maxλ and minλ  are the largest 

and smallest eigenvalues of  kks kd xx  . If CN is larger than some specified number, the 

corresponding auxiliary variable is removed. Since eigenvalues depend on the units of 
auxiliary variables, the conditional number method may be limited to a setting where all 
auxiliary variables have the same scale such as counts. Silva and Skinner (1997) 
suggested standardizing auxiliary variables before calculating CN.     
 
It is worth noting that SAS performs collinearity analysis on the auxiliary variable matrix 
X . With the COLLIN option, PROC REG calculates the condition number of the scaled 
X matrix. First, XX  is scaled to have 1s on the diagonal. Then the eigenvalues and 
condition indices are calculated. The condition indices are the square roots of the ratio of 
the largest eigenvalue to each individual eigenvalue. The largest condition index is the 
condition number of the scaled matrix. For each x-variable, the PROC REG calculates the 
proportion of the variance of the estimate accounted for by each principal component. A 
collinearity problem occurs when a component associated with a high condition index 
contributes strongly (variance proportion greater than about 0.5) to the variance of two or 
more variables. In addition, the PROC REG provides the variance inflation factors (VIF) 
using the VIF option. These factors measure the inflation in the variances of the 
parameter estimates due to collinearities that exist among the x-variables. There is no 
formal cutoff of VIF value for determining the presence of collinearity. But a large VIF 
value (greater than 10) indicates a possible collinearity problem. More details and 
examples can be found in the SAS/STAT 9.2 User's Guide: The REG Procedure.   
 
3.2 Ridge-Shrinkage Calibration Approach 
A disadvantage of linear calibration is that weights can be less than one or extremely 
large. It is common to put Range Restrictions (RR) on final calibration weights, that is, 
pre-specified lower and upper bounds on calibration weights. As indicated in Rao and 
Singh (1997), benchmark constraints (BC) are need for the efficiency due to correlated 
auxiliary information, and make estimates consistent with auxiliary population totals, 
while RR are needed to avoid extreme weights. However, simultaneously satisfying both 
BC and RR may cause convergence problems in linear calibration. On the other hand, 
hitting benchmarks is not the goal in practice, while relaxing BC can introduce much 
flexibility in calibration. Therefore, several modifications to the linear calibration have 
been proposed in the literature to balance RR and BC, one of which is the ridge-shrinkage 
method (Rao and Singh 1997). The strategy of this iterative method is to let BC relax 
minimally so as to satisfy RR, while minimizing the linear distance function at the same 

JSM 2013 - Survey Research Methods Section

3508



time. For a given RR, the set of benchmark constraints 0 U ks kkw xx  in 

equation (1.1) is replaced by a different set of benchmark constraints: 
 

δxx  U ks kkw .                                                                      (3.1) 

 
The tolerance levels of BC, δ , start as 0 and are revised adaptively (in small increments 
if convergence is not achieved) only when necessary in the interest of efficiency and 
consistency. The R function ‘CALFUN’ can easily calculate the ridge-shrinkage weights. 

 
The ridge-shrinkage calibration is a very useful method of multipurpose estimations in 
practice. After all, it is not necessary to satisfy auxiliary benchmark constraints perfectly, 
while a small discrepancy between auxiliary population benchmarks and their estimates 
can trade the calibration convergence. Prior to the calibration, it is helpful to perform 
some analysis to identify and remove linearly dependent and nearly linearly dependent 
constraints as described in Section 3.1. 

 
4. Some Thoughts on the Calibration Application for Multipurpose Estimations 

 
The linear calibration estimator is bias-robust or nearly unbiased even when the assisting 
model is not correct, but not variance-robust (Beaumont and Alavi 2004, Sarndal 2007).   
In literature, modified methods suggested for efficiency gain only apply to a single 
specific study variable, while the modified methods intended for multipurpose use do not 
offer efficiency gain. Is there a way to have both efficiency gain and multipurpose 
property?  For this question, we propose two modified methods, one is the composite 
calibration estimation and the other is the modified nonlinear GREG.   
 
4.1 Composite Calibration Estimation 
In some surveys, multiple study variables have different levels of importance. For 
example, in the IRS Statistics of Income’s Sales and Capital Assets study, there are 16 
variables of interest, but some are more important than others if they need to be put in 
order. To balance between the efficiency of some ‘priority’ estimates and the 
multipurpose use of weights, we consider composite calibration weights that combine 
variable-specific weights and the multipurpose weights.  
 
4.1.1 Composite Calibration Weights and Composite Calibration Estimator 
Suppose that Jyyy ,,, 21   are J study variables in the order of the importance. Our goal 
is to find a set of weights for estimating totals of J study variables and provide good 
efficiency especially for estimating the total of 1y . One option is to use composite 
calibration weights: 
 

,10,)1( 01   kk
C
k www                                                   (4.1) 

 

where 1
kw  is the 1y -specific calibration weight and 0

kw  is the multipurpose linear 

calibration weight for unit k. We may call 1
kw  the ‘ 1y -priority’ weight since it aims at 

improving the efficiency of variable 1y . The 1y -specific weight 1
kw  can be either linear or 

non-linear calibration weight, but only focus on the efficiency of the estimate of 1y . The 
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multipurpose weight 0
kw  is the linear calibration weight based on all x-variables or a 

subset of x-variables.  The composite weight C
kw should still be multipurpose, but offers a 

higher efficiency for estimating the total of 1y  than 0
kw , at a price of the possibly lower 

efficiency for estimates of other variables Jyy ,,2  .  
 
The corresponding composite calibration estimator of Yj, the total for the study variable 

),,2,1( Jjy j  , is  

  

  10,ˆ)1(ˆˆ 01  
 jjjksk

C
k

C
j YYywY ,                             (4.2)  

 

where jksk kj ywY  
 11ˆ  and jksk kj ywY  

 00ˆ  are estimators of jY from weights 1
kw  and 

0
kw  separately. The composite calibration estimator C

jŶ  is approximately design-

unbiased, as the two components 1ˆ
jY  and 0ˆ

jY  are approximately design-unbiased. With 

this composite calibration estimator, we can focus on the priority variable 1y  more or 

less by choosing a value for  . When 0 , the composite estimator reduces to the 
linear calibration estimator. 

 
4.1.2 Mean Squared Error Reduction in the Composite Calibration Estimator 

To show the efficiency change of the composite calibration estimator C
jŶ compared to the 

linear calibration estimator 0ˆ
jY , we compare the mean squared errors (MSE) of two 

estimators. Assume the two components in equation (4.2) 1ˆ
jY  and 0ˆ

jY  are approximately 

independent. At least, this can be done by choosing the set of x-variables involving in 1ˆ
jY  

and the set of x-variables involving 0ˆ
jY  non-overlap.  The mean squared error of the 

composite calibration cstimator is: 
 

)ˆ()1()ˆ()ˆ( 0212
jj

C
j YMSEYMSEYMSE   .                                   (4.3) 

 
Equivalently, 
 

22
0

)1(
)ˆ(

)ˆ(
  j

j

C
j r

YMSE

YMSE
,                                                               (4.4)    

 

where 
)ˆ(

)ˆ(
0

1

j

j
j

YMSE

YMSE
r   for the notation simplification. Equation (4.4) gives the ratio of the 

MSE of the composite calibration estimator to the MSE of the multipurpose linear 
calibration estimator as a function of  . To give an idea of possible MSE reduction of 
the composite calibration estimator, we use the graph illustrations similar to those in the 
small area estimation (Schaible 1978). The following graphs in Figure 1 show the 
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relationship between 
)ˆ(

)ˆ(
0
j

C
j

YMSE

YMSE
 and  for a few scenarios. The first scenario is that for 

5.0jr , or that )ˆ( 1
jYMSE is half of )ˆ( 0

jYMSE , the composite calibration estimator has a 

smaller MSE than the linear multipurpose calibration estimator and is the lowest for   
around 0.65. The last scenario is when 4jr . It shows that the MSE of the composite 

calibration estimator can be much larger than that of the linear calibration estimator when 

)ˆ( 1
jYMSE is much larger than )ˆ( 0

jYMSE , which can be the case for ‘non-priority’ study 

variables. Note that 11 r  by default because the calibration estimator for the ‘priority’ 

study variable 1y  is designed to have a better efficiency than the linear multipurpose 

calibration estimator. For other ‘non-priority’ study variables )1( jy j , jr  can still be 

less than 1, but is more likely to be larger than 1. The point here is that the composite 
estimator can be more efficient than the linear calibration estimator for some study 
variables, but less efficient for other study variables within a tolerable range.            
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 1: Mean Square Error of the Composite Calibration Estimator Relative to Mean 
Square Error of the Linear Calibration Estimator as a function of   
 
4.1.3 Choosing an Value for   

It is important to choose a proper value for   to properly weight 1
kw  and 0

kw  to balance 
the MSE deduction for the estimate of the ‘priority’ study variable and the possible 
variance increase for the estimates of other study variables. We may consider two 
measures in choosing a proper value for : 
 

(1) The relative error of the estimate of each auxiliary variable ix ( pi ,,2,1  ) 
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1ˆ  i
C
ii XXRE ,   pi ,,2,1  ,                                                          (4.5) 

 

where  


sk ikkkiksk

C
k

C
i xwwxwX ])1([ˆ 01   and iX  is the known 

population total. 
 

(2) The relative efficiency of the composite calibration estimator for each study variable 
),,2,1( Jjy j   

 

Jj
Y

YMSE

j

C
j ,,2,1,

ˆ

)ˆ(
0

 ,                                                                 (4.6)  

 

where )ˆ( C
jYMSE is often replaced by the variance estimate in practice.   

 
The first measure allows us to see how much benchmark constraints (BC) δ  should be 
relaxed for a given value of  ; or what values  can take for certain tolerance level .δ

For the given weights 1
kw  and 0

kw , the relative error 1ˆ i
C
i XX  is a function of  . The 

second measure is the relative efficiency of the composite calibration estimator for each 
study variable.  The efficiency may be good for some study variables, but not so good for 
others.  We have to find a balance by properly choosing a value for  . The first measure 
is not that important if consistency on the auxiliary variables is not of interest.  
 
The ad hoc method of choosing a value for   is through plots. From plots of the relative 

error against   for auxiliary variables ix ( pi ,,2,1  ), we can choose a value range 

of   such that benchmark constraints δ  are still within our tolerance level.  Then from 

plots of relative efficiency against   for study variables jy ( Jj ,,2,1  ), we can 

narrow down a value or a value range of   that gives reasonable efficiency levels for all 
study variables. 
  
4.2 Modified Linear Calibration 
It is a simple modification over the model-based calibration for a single variable and the 
linear calibration. Recall that the model-based calibration weights are calibrated to the 

total of fitted values such that Nw
s k   and  

U ks kk uuw ˆˆ (equation 2.1), while 

linear calibration weights are calibrated to totals of auxiliary variables such that 

Nw
s k   and ),,2,1( pixxw

Uk iksk ikk  
 (equation 1.1). The modified 

linear calibration is simply the mix of these two. First, the set of auxiliary variables is 
divided into two sets, one for working model of the ‘priority’ study variable 1y  and the 

other for linear calibration models of ‘non-priority’ study variables )1( jy j . Let 

),( 01
kkk

xxx  . The calibration equations are: 

  







U ks kk

Us k

uuw

w
kk

)(ˆ)(ˆ 11

00

xx

xx
.                                                                   (4.7) 
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This method is supposed to reduce the variance of the estimate for the ‘priority’ study 
variable under the condition that the working model for fitted values is good enough. 
However, it can also increase the variances of estimates for other study variables 

)1( jy j .                                                                         

 
5. Simulation Study 

The simulation population includes 3000 units, 8 study variables 821 ,,, yyy   and 8 

auxiliary variables 821 ,,, xxx  .  Let 1y  be our priority study variable and closely related 

to 1xe .  The correlation coefficients among variables are given in Table 1. 
 

Table 1: Correlation Coefficient Matrix  

 
 
 
The simulation population is divided into five strata based on a design variable.   B=200 
stratified simple random samples are selected. For the ‘priority’ variable 1y , five 
estimates are calculated:  
 

(1) 1
1̂Y  - the linear calibration on 821 ,,, xxx   ;  

(2) 2
1̂Y  - the model-based calibration on 110

ˆˆˆ zu   , where 1
1

xez  ;  

(3) 3
1̂Y  - the linear calibration on 821 ,,, xxx   and 1z , where 1

1
xez  ;  

(4) 4
1̂Y  - the linear calibration on 1z  only, where 1

1
xez  ;  

(5) CY1̂  - Composite calibration estimate, CY1̂ = 2
1

1
1

ˆ)1(ˆ YY    
 
Methods (3) and (4) are the modified linear calibration outlined in section 4.2. Another 
modified linear calibration estimation could be the linear calibration on 821 ,,, xxx   and 

û , also outlined in section 4.2. This method makes sense only if method (2) performs 
well, which is not the case in the simulation. So we do not present it here. The relative 

efficiency is 11 )ˆ( YYMSE , where 2

1

1
1 )ˆ(100)ˆ( YYBYMSE i

B

i

 


 . Figure 2 shows 

the relative efficiency of the composite calibration estimate of 1Y  vs.  , along with 
reference lines of relative efficiency from the other four methods. The green line is the 
composite calibration estimate.  As shown in Figure 2, the regular linear calibration 
estimate on all x-variables has the worst efficiency and the model-based calibration on 

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8  

y1 0.16 0.08 0.35 0.14 -0.04 0.04 0.08 0.04 0.93

y2 -0.02 0.89 0.22 0.08 0.00 0.00 0.03 -0.05 0.10

y3 0.06 0.19 0.89 0.24 -0.04 -0.02 0.16 0.10 0.32

y4 0.04 0.05 0.21 0.92 -0.01 0.00 0.05 0.06 0.13

y5 -0.02 0.00 -0.05 -0.01 0.88 -0.07 -0.02 -0.01 -0.02

y6 0.07 0.02 -0.01 0.01 -0.08 0.91 -0.01 -0.02 0.04

y7 0.01 0.00 0.20 0.05 -0.04 0.05 0.68 0.23 0.06

y8 0.02 -0.04 0.17 0.06 -0.02 0.00 0.16 0.87 0.04

1xe
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1
10

ˆˆˆ xeu    also performs poorly. The linear calibration on 1xe only has the best 

efficiency, while the modified linear calibration on all x-variables and 1xe is also a good 
candidate. The composite calibration estimator performs well when   is small.  
However, as shown in Figure 3, the composite calibration estimator would give bad 
efficiency for other study variables when   is too small.  
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Relative Efficiency of the Composite Calibration Estimator CY1̂  vs.   

 

 

The relative efficiency for the estimates of two of other study variables 2y  and 3y  are 
shown in Figure 3. Since methods (2) and (4) perform very poorly, we only compare 
methods (1), (3) and (5) in Figure 3. As expected, the relative efficiency of the composite 
calibration estimator gets better as the value of   gets larger. Small values of  that 

result in good efficiency for 1̂Y  would produce poor efficiency for 2̂Y  and 3̂Y . From the 

plots in Figure 2 and Figure 3, 5.0  seems to be a reasonable ad hoc choice. But then, 

method (3), the linear calibration on all x-variables and 1xe  outperforms the composite 

calibration when 5.0 because it gives similar efficiency for 1̂Y , but better efficiency 

for 2̂Y  and 3̂Y .  
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Figure 3: Relative Efficiency of Composite Calibration Estimators CY2̂ and CY3̂ vs.   
 

6. Summary 

The composite calibration estimator is the weighted form of 1y -specific calibration 

estimator and a general linear calibration estimator. Here, 1y is the ‘priority’ variable for 
which an efficient estimate is desired. This composite calibration estimator is 
approximately design-unbiased and multipurpose. It is more efficient for the study 
variable 1y  than the regular linear calibration estimator, but less efficient for some other 

study variables. The 1y -specific calibration estimator can be a model-based calibration 

estimator or linear calibration estimator on a set of selected auxiliary variables. The 
property of consistency to the known population x -totals may be lost, but this may not 
be a concern because our goal is not estimating for auxiliary variables.      

 
The choice of the value of   is ad hoc. It can be based on sample data or prior surveys. 
The  -value balances the efficiency gain in the estimation for the ‘priority variable 1y  

and the efficiency loss in the estimations for some other study variables. The composite 
calibration estimator can be extended to the case of more than one ‘priority’ variable. 
This is interesting as an academic exercise. In practice, it is probably better off to just use 
the modified linear calibration estimation such as mothod (3) in section 5. 
 
Based on the limited simulation study, the composite linear calibration has the advantage 

when a high efficiency for 1̂Y  is preferred even though the efficiency of estimates for 
other variables may not sacrificed at a level we can accept. This decision depends on the 
practical situation. A modified linear calibration estimator such as method (3) in the 
simulation shows a very good potential. 
 

0%

2%

4%

6%

8%

10%

12%

0 0.2 0.4 0.6 0.8 1

(1) Linear Calibration on all x

(3) Linear Calibration on all x and z1

(5) Composite Calibration

0%

5%

10%

15%

20%

25%

0 0.2 0.4 0.6 0.8 1

(1) Linear Calibration on all x

(3) Linear Calibration on all x and z1

(5) Composite Calibration
R

el
at

iv
e 

 E
ff

ic
ie

nc
y 

(f
or

 y
3 

) 

R
el

at
iv

e 
 E

ff
ic

ie
nc

y 
 (

fo
r 

y 2
 )

JSM 2013 - Survey Research Methods Section

3515



References 
 
Bankier, M. D., Rathwell, S. and Majkowski, M. (1992). “Two step generalized least 

squares estimation in the 1991 Canadian Census,” Proceedings of Survey Research 
Methods Section, American Statistical Association, pp. 764–769. 

Bankier, M., Houle, A.M. and Luc, M. (1997). “Calibration estimation in the 1991 
and1996 Canadian censuses,” Proceedings, Section on Survey Research Methods, 
American Statistical Association, p. 6675. 

Beaumont J.F. and Alavi A. (2004). “Robust generalized regression estimation,” Survey 
Methodology, 30, pp. 195-208. 

Deville, J.C. & Särndal, C.E. (1992). “Calibration estimators in survey sampling,” 
Journal of  American Statistical Association, 87, pp. 376-382. 

Clark, R. G. & Chambers, R. L. (2008). “Adaptive Calibration for Prediction of Finite 
Population Totals,” Survey Methodology, 34 (2), pp. 163-172. 

Kott, P. (2009), “Calibration weighting: combining probability samples and linear 
prediction models,” in D. Pfeffermann and C. R. Rao (Eds.), Handbook of Statistics, 
Sample Surveys: Design, Methods and Application, 29B, Amsterdam: Elsevier BV. 

Silva, P.L.D. and Skinner, C.J. (1997). “Variable selection for regression estimation in 
finite populations,” Survey Methodology, 23, pp. 23-32. 

Rao, J.N.K. and Singh, A.C. (1997). “A ridge-shrinkage method for range-restricted 
weight calibration in survey sampling,” Proceedings of the Section on Survey 
Research Methods, American Statistical Association, Washington, D.C., pp. 57-65. 

Särndal, C.E., Swensson, B. and Wretman, J. (1992). “The weighted residual technique 
for estimating the variance of the general regression estimator of the finite population 
total,” Biometrika, 76 (3): pp. 527-537. 

Särndal, C.E. (2007). “The Calibration Approach in Survey Theory and Practice,” Survey 
Methodology, 33, pp. 99–119. 

Schaible, W.L. (1978). “Choosing weights for composite estimators for small area 
statistics,” Proceedings of the Section on Survey Research Methods, American 
Statistical Association, Washington, D.C., pp. 741—746. 

Wu, C., and Sitter, R.R. (2001). “A model calibration approach to using complete 
auxiliary information from survey data,” Journal of the American Statistical 
Association, 96, pp. 185-193. 

Singh, A.C., and Mohl, C.A. (1996). “Understanding calibration estimators in survey 
sampling,” Survey Methodology, 22, pp. 107-115. 

  
    

JSM 2013 - Survey Research Methods Section

3516


