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Abstract 
Statistics Canada produces high income statistics that provide information on 
demography, taxation, and income for high income populations. These statistics involve 
estimation of percentiles and quantities in percentile groups using a sample that covers 
around 1/5 of the Canadian population. For variance estimation, re-sampling methods 
may take unacceptable time due to the extremely large sample size; linearization cannot 
be applied directly because of the non-smoothness of the estimators. In this paper we 
propose a weighted estimating equations approach to derive linear variance estimators.  
Data from Prince Edward Island (P.E.I) is used to illustrate the results obtained. 
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1. Introduction 
 
In early 2013, for the first time Statistics Canada published high income tables (1982-
2010) through the Canadian Socio-Economic Information Management System 
(CANSIM), using data from the Longitudinal Administrative Databank (LAD). These 
tables provide statistics on demography, income and taxation in groups defined by 
income percentiles for various levels of geography (Canada, provinces, territories and 
census metropolitan area/census agglomeration). In this paper, we present the methods 
used to evaluate the quality of statistics in high income tables, more specifically variance 
estimation. 
 
The paper is organized as follows. Section 2 briefly introduces the sampling design for 
the LAD. Section 3 summarizes the parameters of interest and their corresponding 
estimators in high income tables. In Section 4, linearization and re-sampling variance 
estimation methods are discussed, and linear variance estimators are derived using a 
unified estimating equations approach. In Section 5, the linear variance estimators are 
evaluated using the data of P.E.I. - the smallest province in Canada. The last section 
summarizes the findings. 
 

2. Sampling Design for the LAD 
 
High income tables are created mainly to provide information on taxfilers in different 
income groups.  
 
The T1 family file (T1FF) is used as the frame. The T1FF is an annual cross-sectional file 
of all taxfilers and their families and created from personal income tax returns (T1) 
submitted to the Canada Revenue Agency (CRA) and other administrative files such as 
Child Tax Benefits. In 2010, the T1FF covered around 95% of the population.   
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The LAD is a 20% random sample of individuals from the T1FF. They are selected using 
Bernoulli sampling with equal selection probability of 1/5. In 2010, more than 5 million 
individuals were on the LAD. Once selected, the individual will be on the LAD file for 
any subsequent year if he or she is on the T1FF file for that year. Thus, the LAD is a 
longitudinal database and has been extensively used for longitudinal studies on income. 
More details about the LAD can be found in the Longitudinal Administrative Data 
Dictionary (Statistics Canada internal document, 2010). However, for high income tables 
the LAD was only used to produce annual cross-sectional estimates.  

 
3. Parameter Estimation 

 
In this section, we describe different types of statistics presented in high income tables, as 
well as their corresponding estimators. Table 1 summarizes the statistics in high income 
tables. The first item is the estimate of income percentile defining the percentile group. 
The others are the demographic, income and taxation characteristics. Items 15-20 are 
longitudinal characteristics, and their estimation depends on the sampling design of 
previous years. For longitudinal statistics, the associated variance estimation is much 
more complicated than that for cross-sectional statistics because of the dependence. In 
our work, the computation was simplified by treating longitudinal indicators as cross-
sectional ones. For large sample sizes, the variance associated with percentile estimators 
is very small and the estimates are close to the actual values. Their CVs may also provide 
an idea of the quality of the longitudinal statistics.  
 

Table 1: A summary of statistics in high income tables 
 Statistics 
1 Income threshold value 
2 Number of tax filers 
3 Percentage, married, males or females 
4 Percentage married by sex 
5 Median age 
6 Median income 
7 Average income 
8 Share of income 
9 Share of income, by sex 
10 Median federal and provincial income taxes paid 
11 Average federal and provincial income taxes paid 
12 Share of federal and provincial income taxes paid 
13 Percentage of income from wages and salaries 
14 Percentage of income from wages and salaries, by sex 
15 Percentage in the same quantile last year 
16 Percentage  in the same quantile 5 years ago 
17 Percentage  in top 5% last year 
18 Percentage  in top 5% five years ago 
19 Percentage at least once in top 5% in preceding  5 years 
20 Percentage always in top 5% in preceding 5 years 

 
 
For methodological purposes, the parameters of interest can be summarized into six 
categories: the percentile of a distribution, and, within a percentile group, the mean, 
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median, share, ratio and a function of them such as the product of share and ratio. The 
estimators for the different types of parameters in the high income tables are given below. 
 
Consider a population of size 𝑁, such that 𝑈 = {1, … ,𝑁}. Let 𝑋 be the income variable 
defining the percentile group and 𝑌  be another variable (demographic, income or 
taxation) whose quantities are of interest. Let 𝜉𝑝 denote the pth percentile of 𝑋 and let 𝛾𝑝 
denote the quantity of interest for 𝑌 in the top pth percentile group defined as �𝑖 ∈ 𝑈: 𝑥𝑖 ≥
𝜉𝑝}. Then, (𝜉𝑝, 𝛾𝑝) are the parameters of interest. Let 𝑆 be the sample drawn from 𝑈 and 
(𝜉𝑝, 𝛾�𝑝) be estimators for (𝜉𝑝, 𝛾𝑝).  
  
Since 𝛾𝑝 is a parameter of the population in a percentile group, the estimation of 𝛾𝑝 relies 
on the estimation of the percentile 𝜉𝑝. The weighted percentile estimator 𝜉𝑝  is defined as  

𝜉𝑝 =

⎩
⎪
⎨

⎪
⎧ 𝑥(1)                    𝑖𝑓 1

𝑁�
𝑤1 > 𝑝

1
2
�𝑥(𝑖) + 𝑥(𝑖+1) �        𝑖𝑓 1

𝑁�
∑ 𝑤𝑗𝑖
𝑗=1 = 𝑝

                    𝑥(𝑖+1)           𝑖𝑓 1
𝑁�
∑ 𝑤𝑗𝑖
𝑗=1 < 𝑝 < 1

𝑁�
∑ 𝑤𝑗𝑖+1
𝑗=1

�                    (1) 

 
where 𝑥(𝑖) is the ordered values of the income variable, 𝑤𝑖 is the sampling weight (the 
inverse of the selection probability) associated with  𝑥(𝑖) and 𝑁� = ∑ 𝑤𝑖𝑖∈𝑆 . The weighted 
percentile estimator is consistent and its bias is negligible for large sample sizes. The 
estimate can be obtained from the SAS procedure PROC UNIVARIATE. Given 𝜉𝑝 , the 
percentile estimate, 𝛾�𝑝 is defined below for the different types of parameters. 
 
Case 1.   𝜸𝒑 is an average in the top pth percentile group 
For both continuous income variables and categorical demography variables, many 
parameters in these tables can be expressed as an average. For example, the percentage of 
males in the population is the average of an indicator variable indicating male or not. 
Item 3, 7 and 11 in Table 1 can be expressed as an average.  The estimator for an average 
is 

𝛾�𝑝 =
∑ 𝑤𝑖𝐼{𝑥𝑖 ≥ 𝜉𝑝}𝑖∈𝑆 𝑦𝑖
∑ 𝑤𝑖𝐼{𝑥𝑖 ≥ 𝜉𝑝}𝑖∈𝑆

                                           (2) 

where  𝐼{𝑥𝑖 ≥ 𝜉𝑝} = � 1    𝑖𝑓 𝑥𝑖 ≥ 𝜉𝑝
     0    otherwise

�. 

 
Case 2. 𝜸𝒑 is a median in the top pth percentile group 
The top pth percentile group is treated as a sub-population.  Let 𝑆𝑝 be the corresponding 
sub-sample such that 𝑆𝑝 = �𝑖: 𝑖 ∈ 𝑆, 𝑥𝑖 ≥ 𝜉𝑝� . Let 𝑦(𝑖)  be the ordered values of the 
variable 𝑌 for sampled units in 𝑆𝑝,  and 𝑤(𝑖) be the sampling weight associated with the 
unit whose y-value is 𝑦(𝑖). Then, the estimator of the median of 𝑌  based on 𝑆𝑝 is  

𝛾�𝑝 =

⎩
⎪
⎨

⎪
⎧ 𝑦(1)                        𝑖𝑓 1

𝑁�𝑝
𝑤1 > 0.5

1
2
�𝑦(𝑖) + 𝑦(𝑖+1) �       𝑖𝑓 1

𝑁�𝑝
∑ 𝑤𝑗𝑖
𝑗=1 = 0.5

                    𝑦(𝑖+1)                  𝑖𝑓 1
𝑁�𝑝
∑ 𝑤𝑗𝑖
𝑗=1 < 0.5 < 1

𝑁�𝑝
∑ 𝑤𝑗𝑖+1
𝑗=1

�                (3) 

where 𝑁�𝑝 = ∑ 𝑤𝑖𝑖∈𝑆𝑝 . 
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Case 3. 𝜸𝒑 is a ratio in the top pth percentile group 
Some statistics may be expressed as a ratio of the totals (average) of two variables. In 
Table 1, the estimator of the percentages of income from wages and salaries in the pth 
percentile group is defined as   

𝛾�𝑝 =
∑ 𝑤𝑖𝐼{𝑥𝑖 ≥ 𝜉𝑝}𝑖∈𝑆 𝑦𝑖
∑ 𝑤𝑖𝐼�𝑥𝑖 ≥ 𝜉𝑝�𝑥𝑖𝑖∈𝑆

                                                 (4) 

where 𝑌 is the wage and salaries and 𝑋 is the income variable.  
 
The estimator of the percentage of married by sex, can also be expressed as the ratio as 

𝛾�𝑝 =
∑ 𝑤𝑖𝐼{𝑥𝑖 ≥ 𝜉𝑝}𝑖∈𝑆 𝐼{ 𝑖 is married and male}

∑ 𝑤𝑖𝐼�𝑥𝑖 ≥ 𝜉𝑝�𝐼{ 𝑖 is male }𝑖∈𝑆
, 

where 𝐼{𝑖 is married and male} = �    1      if  𝑖 is married and male 
 0               otherwise             

�  and  

𝐼{𝑖 is male} = �     1      if  𝑖 is  male 
     0     otherwise     

�.  
 
Longitudinal statistics are also treated as ratios. For example, the estimator of the 
percentage in top 5 percentiles at least once during the preceding five-year period (Item 
19) is  

𝛾�𝑝 =
∑ 𝑤𝑖𝐼{𝑥𝑖 ≥ 𝜉𝑝}𝑖∈𝑆 𝐼{in top 5%  at least once during the preceding 5 year }

∑ 𝑤𝑖𝐼�𝑥𝑖 ≥ 𝜉𝑝�𝐼{ 𝑖 �iled during the preceding 5 year }𝑖∈𝑆
. 

The longitudinal indicator in the numerator depends on the 5th percentile estimates of the 
last five years. In the case of large sample sizes, those 5th percentile estimates are very 
close to the actual 5th percentile. Therefore, the longitudinal indicators are treated as fixed 
and the above estimator becomes a ratio of two indicator variables. 
 
Case 4. 𝜸𝒑 is a share in the top pth percentile group 
The share of a percentile group reflects the degree of income inequality in a population. It 
is defined as the ratio of total income (or tax) for the persons in the percentile group over 
that for all persons in the population. The estimator is given as 

𝛾�𝑝 =
∑ 𝑤𝑖𝐼{𝑥𝑖 ≥ 𝜉𝑝}𝑖∈𝑆 𝑦𝑖

∑ 𝑤𝑖𝑦𝑖𝑖∈𝑆
.                                                (5) 

 
Case 5. 𝜸𝒑 is a product of share and ratio 
The estimators of some parameters may not be as simple as the above cases, but they can 
be expressed as a function of them. For example, for men in a percentile group, the 
income share, 𝛾𝑝, can be viewed as a product of share 𝛾𝑝

(𝑆) and ratio 𝛾𝑝
(𝑅):  

𝛾𝑝 =
𝑖𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑚𝑒𝑛 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑔𝑟𝑜𝑢𝑝

𝑖𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙
 

=
𝑖𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑔𝑟𝑜𝑢𝑝

𝑖𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙
×
𝑖𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑚𝑒𝑛 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑔𝑟𝑜𝑢𝑝
𝑖𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑔𝑟𝑜𝑢𝑝

 

= 𝛾𝑝
(𝑆) × 𝛾𝑝

(𝑅). 
Accordingly, the estimator is defined as 

𝛾�𝑝 = 𝛾�𝑝
(𝑆) × 𝛾�𝑝

(𝑅),                                                   (6) 
where 𝛾𝑝

(𝑅) and  𝛾�𝑝
(𝑅) are given as Case 3 and  𝛾𝑝

(𝑆)and  𝛾�𝑝
(𝑆) are given in Case 4. 
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4. Variance Estimation 
 
Two types of variance estimation methods are usually considered for household surveys: 
re-sampling and linearization. Bootstrap and jackknife are the two most popular re-
sampling methods used for household surveys at Statistics Canada.  The jackknife 
method is often used for surveys with multi-stage clustering design such as the Labour 
Force Survey (LFS). In this study, the jackknife is ruled out because it performs poorly 
for estimating the variance of non-smooth estimators such as sample percentiles. 
Bootstrap variance estimators are commonly used in household surveys, such as Survey 
of Labour and Income Dynamics (SLID). The advantage of the bootstrap method is that, 
1) it works well for non-smooth estimators under simple sampling designs, and 2) it is 
easy to implement. It is not necessary to develop formulas for the different estimators.  
The bootstrap algorithm for Bernoulli sampling is very simple. The disadvantage of the 
bootstrap is the time and computational resources required. As stated previously, the 
LAD sample size now is more than 5 million records. Running the estimation process 
repeatedly on the LAD for all geography levels would take a tremendous amount of time. 
For example, for Ontario, more than 3 weeks was required to produce all tables. 
However, the bootstrap provides a tool to verify other variance estimators for some 
smaller domains; moreover, the bootstrap may be preferable for analytical purposes as 
the analysts can use the bootstrap samples to generate replicates of test statistics and then 
produce confidence interval estimates. 
 
On the other hand, linearization methods have long been used in surveys and the theory is 
well developed. Standard variance estimation methods from textbooks can be used only 
for linear estimator, such as the Horvitz-Thompson (HT) estimator (see Särndal et al., 
1991).  For a smooth nonlinear estimator, Taylor linearization permits the nonlinear 
estimator to be approximated by a HT total estimator for a new variable - linear variable. 
Then, the variance of the nonlinear estimator may be approximated by the variance of an 
HT total estimator which, in turn, can be estimated by the standard methods. For 
example, suppose 𝜃�  is a non-linear “smooth” estimator and 𝑍  is the associated linear 
variable; then, 

𝑉�𝜃�� ≈ 𝑉(∑ 𝑤𝑖𝑧𝑖𝑖∈𝑆 ),                                                      (7) 
where 𝑆 is the sample and 𝑧𝑖 is the value for the linearized variable attached to unit 𝑖. The 
problem with the linearization method is that a linear variable must be found for each 
estimator and the linearization method is not easily generalized. For example, if a 
quantity in a low percentile group is of interest, the formula for variance estimation 
developed for the top percentile group cannot be reused. However, the linearization 
method does not require replication therefore the computation is fast. In addition, it 
provides consistent variance estimates.  The linearization variance estimation method is 
discussed below. 
 
As stated previously, the sampling design for the LAD is very simple: Bernoulli sampling 
with the selection probability of 0.2. As a result, the variance formula given by (7) can be 
simplified as  

𝑉�𝜃�� ≈ 4∑ 𝑧𝑖2𝑖∈𝑈 ,                                                           (8) 
where 𝑈 is the population. In the case where the number of individuals in the population 
is not available (the population counts in some small geographies may not be provided), 
the variance estimator is then given by  

𝑉��𝜃�� = 20∑ 𝑧̂𝑖2𝑖∈𝑆 ,                                                          (9) 
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where 𝑧̂𝑖 is a proper estimator of 𝑧𝑖 since 𝑧𝑖 may involve some unknown finite population 
quantities. 
 
Binder (1983) introduced a unified estimating equations approach for estimating finite 
population parameters. The estimating equations approach assumes that the finite 
population is a sample from a superpopulation model and the sample is a subsample of 
the finite population. Any finite population parameter 𝜃 can be viewed as a solution of 
“census” estimating equations: 

𝑈(𝜃) = �𝑢(𝜃,𝑦𝑖)
𝑖∈𝑈

= 0. 

The estimator 𝜃�  can be found by solving the corresponding weighted estimating 
equations: 

𝑈�(𝜃) = �𝑤𝑖𝑢(𝜃,𝑦𝑖)
𝑖∈𝑆

= 0, 

where 𝑈�(𝜃)  is the HT total estimator of 𝑈(𝜃) . Under regularity conditions, 𝜃�  is a 
consistent estimator of 𝜃. For the case where 𝜃 is a parameter vector, 𝑢 is a vector of the 
same dimension as 𝜃. 
 
Suppose 𝜃0 is the true value of 𝜃. Taylor linearization around 𝜃0 leads to  

1
𝑁
�𝑈��𝜃�� − 𝑈�(𝜃0)� ≈

1
𝑁
�
𝜕𝑈�(𝜃)
𝜕𝜃

�
𝜃=𝜃0

�𝜃� − 𝜃0� ≈ �
𝜕𝐸[𝑢(𝜃;𝑌)]

𝜕𝜃
�
𝜃=𝜃0

�𝜃� − 𝜃0�. 

where the expectation is under the superpopulation model. For non-smooth statistics, 
linearization is used after the following approximation,   

1
𝑁
�𝑈��𝜃�� − 𝑈�(𝜃0)� ≈ �𝐸[𝑢(𝜃;𝑌)]|𝜃� − �𝐸[𝑢(𝜃;𝑌)]|𝜃0 . 

The conditions for the approximation are discussed in Randles (1982), Shao and Rao 
(1994). Suppose that 𝜃 is a parameter vector. Then,    

𝜃� − 𝜃0 ≈ −
1
𝑁
�
𝜕𝐸[𝑢(𝜃;𝑌)]

𝜕𝜃
�
𝜃=𝜃0

−1

𝑈�(𝜃0). 

Wang and Opsomer (2011) propose another method for non-smooth estimator that 
produces the similar result, and here we will not discuss it further. Then, the variance of 𝜃� 
is 

𝑉�𝜃�� ≈ 𝑉(∑ 𝑤𝑖𝑢𝑖∗𝑖∈𝑆 ) = ∑ � 𝜋𝑘𝑙
𝜋𝑘𝜋𝑙

− 1� 𝑢𝑘∗𝑢𝑙∗
𝑇

𝑘,𝑙∈𝑈                           (10) 

where 𝑢𝑖∗ = − 1
𝑁
�𝜕𝐸[𝑢(𝜃;𝑌)]

𝜕𝜃
�
𝜃=𝜃0

−1
𝑢𝑖(𝜃0,𝑦𝑖). Since 𝑢𝑖∗ may involve unknown quantities, 

they can be replaced by the proper estimate 𝑢�𝑖∗ . As a result, the variance estimator 
becomes 

𝑉��𝜃�� = ∑ � 1
𝜋𝑘𝜋𝑙

− 1
𝜋𝑘𝑙
� 𝑢�𝑘∗𝑢�𝑙∗

𝑇
𝑘,𝑙∈𝑆 .                                          (11) 

Thus, it remains to find  𝑢, 𝑢𝑖∗ and 𝑢�𝑖∗.  
 
High income statistics involve the estimation of percentiles (non-smooth statistics) and 
quantities in the top pth percentile group. The application of estimating equations 
approach to non-smooth statistics is also discussed in Binder and Kovacevic (1995) and 
Osier (2009).    
 
Let 𝑢𝑖 = (𝑢1𝑖,𝑢2𝑖)𝑇 be estimating functions for (𝜉𝑝,𝛾𝑝), where 𝜉𝑝 is the pth percentile of 
the income variable 𝑋  and 𝛾𝑝  is the quantity of interest for variable 𝑌  in the top pth 
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percentile group defined by 𝜉𝑝. In this study, 𝑋 and 𝑌 are different variables, while both 
reference papers only discussed the case where 𝑋 and 𝑌 are the same. This difference 
leads to the estimation of their conditional distributions for which a nonparametric 
method in Borkowf et al. (1996) is used. 
 
Assume that 𝑋 is a nonnegative continuous variable1. For 𝜉𝑝,  the pth percentile of the 
variable 𝑋, and its estimator 𝜉𝑝, the estimating equation and linear variable are 

𝑢1𝑖 = 𝐼�𝑥𝑖 ≤ 𝜉𝑝� − 𝑝, 

𝑢1𝑖∗ = −
1

𝑓(𝜉𝑝) �
𝐼�𝑥𝑖 ≤ 𝜉𝑝� − 𝑝�,        𝑎𝑛𝑑 

𝑢�1𝑖∗ = −
1

𝑓(𝜉𝑝)
�𝐼�𝑥𝑖 ≤ 𝜉𝑝� − 𝑝�, 

where  𝑢�1𝑖∗  needs the estimation of 𝑓(𝜉𝑝) – the probability density function of 𝑋 at 𝜉𝑝 .  
 
Two possible methods can be used for the estimation of the density function for complex 
survey data. Francisco and Fuller (1991) use the density estimator  

𝑓(𝑥) =
2𝑧𝛼/2𝛿
ℎ1 + ℎ2 

 

where  

𝛿2 = 𝑚𝑠𝑒 ��𝑤𝑖[𝐼{𝑥𝑖 ≤ 𝑥} − 𝑝]
𝑖∈𝑆

�, 

𝑧𝛼/2 is the 100 �1 − 𝛼
2
�-th percentile from the standard normal distribution, and ℎ1 and 

ℎ2 are found by solving 

inf
ℎ1
�

1
𝑁�
�𝑤𝑖[𝐼{𝑥𝑖 ≤ 𝑥 − ℎ1} − 𝑝]
𝑖∈𝑆

≤ −𝑧𝛼
2
𝛿�, 

  𝑎𝑛𝑑  inf
ℎ2
�

1
𝑁�
�𝑤𝑖[𝐼{𝑥𝑖 ≤ 𝑥 + ℎ2} − 𝑝]
𝑖∈𝑆

≥ 𝑧𝛼/2𝛿�.  

 
Lohr and Buskirk (1999) propose a weighted kernel density estimator such that 

𝑓(𝑥) =
1
𝑁�
�𝑤𝑖𝜙ℎ(𝑥 − 𝑥𝑖)
𝑖∈𝑆

, 

where ℎ is the bandwidth and  

𝜙ℎ(𝑡) =
1

ℎ√2𝜋
exp �−

𝑡2

2ℎ2�
, 

is the standard normal density rescaled by the bandwidth. The bandwidth is obtained by  

ℎ = 0.79𝑄�𝑛−
1
5, 

where 𝑄� is the sample interquartile range (IQR). Note that the kernel density estimation 
is very sensitive to the choice of bandwidth, especially at the tail of the distribution.  
 
In this paper, the method proposed by Francisco and Fuller (1991) is used. As suggested 
by Rao and Wu (1987), 𝛼 is set to 0.05. Using the data from selected small domains, the 
variance estimates are shown to be very similar to the bootstrap variance estimates. 

                                                 
1 Some individuals may have negative income values. Since we only consider estimating the parameters in the top 
percentile groups, setting these negative values to zero has little impact. 
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For a different variable 𝑌 and its corresponding quantity 𝛾𝑝 and estimator 𝛾�𝑝, estimating 
functions and associated linearized variables are presented below for the different cases. 
An approach similar to that given in Binder and Kovacevic (1995) has been used to 
derive the linear variables. 
 
Case 1.   𝜸𝒑 is an average in the top pth percentile group 
The mean estimator 𝛾�𝑝 is used not only for continuous income variables but also for 
categorical demography variables.  For example, to estimate the percentage of males, we 
only need to create a variable indicating male or not, the percentage of males is the 
average of the indicator variable. The estimating function for 𝛾𝑝 is 

𝑢2𝑖 = 𝐼�𝑥𝑖 ≥ 𝜉𝑝��𝑦𝑖 − 𝛾𝑝�, 
and the associated linearized variable is   

𝑢2𝑖∗ = 1
𝑁(1−𝑝)

��𝛾𝑝 − 𝐸�𝑌�𝜉𝑝�� �𝐼�𝑥≤𝜉𝑝� − 𝑝� + 𝐼�𝑥≥𝜉𝑝��𝑦𝑖 − 𝛾𝑝�� . 
 
By replacing all unknown quantities above by proper estimators, the above formula 
becomes  
 

𝑢�2𝑖∗ =
1

𝑁�(1 − 𝑝)
��𝛾�𝑝 − 𝐸��𝑌�𝜉𝑝�� �𝐼�𝑥≤𝜉�𝑝� − 𝑝� + 𝐼�𝑥≥𝜉�𝑝��𝑦𝑖 − 𝛾�𝑝��. 

A nonparametric method is used to estimate �𝑌�𝜉𝑝� , the conditional expected value of 𝑌 
given 𝑋  at 𝜉𝑝. The nonparametric estimator (Nadaraya-Watson kernel estimator with the 
normal kernel and the same bandwidth ℎ for 𝜉ℎ) is given by 

𝐸�[𝑌|𝑥] =
∑ 𝑤𝑖𝑦𝑖𝜙ℎ(𝑥 − 𝑥𝑖)𝑖∈𝑆
∑ 𝑤𝑖𝜙ℎ(𝑥 − 𝑥𝑖)𝑖∈𝑆

. 

Note that if 𝑌 and 𝑋 are the same variable, then 𝐸�[𝑌|𝑥] = 𝑥. 
 
Case 2. 𝜸𝒑 is a median in the top pth percentile group  
Assume that 𝑌  is a continuous nonnegative variable. Denote 𝑓𝑋(𝑥) and  𝐹𝑋(𝑥) as the 
marginal density and cumulative distribution function (CDF) of 𝑋  and 𝑓𝑌(𝑦) and 𝐹𝑌(𝑥) 
as the marginal density and CDF of 𝑌. Denote  𝐹𝑋|𝑌(𝑥|𝑦) as the conditional CDF of 𝑋 
given 𝑌 = 𝑦 and 𝐹𝑌|𝑋(𝑦|𝑥) the conditional CDF of 𝑌 given 𝑋 = 𝑥.  
 
The estimating function for 𝛾𝑝 , the median of 𝑌 in the top pth percentile group is  

𝜇2𝑖 = 𝐼�𝑥𝑖 ≥ 𝜉𝑝��𝐼�𝑦𝑖 ≤ 𝛾𝑝� − 0.5�, 
and the associated linearized variable is  

𝑢2𝑖∗ =
1

�1 − 𝐹𝑋|𝑌�𝜉𝑝�𝛾𝑝��𝑓𝑌�𝛾𝑝�
��0.5− 𝐹𝑌|𝑋�𝛾𝑝�𝜉𝑝���𝐼�𝑥𝑖 ≤ 𝜉𝑝� − 𝑝�

+ 𝐼�𝑥𝑖 ≥ 𝜉𝑝��𝐼�𝑦𝑖 ≤ 𝛾𝑝� − 0.5��. 
After replacing all the population quantities by their estimates, the formula becomes  

𝑢�2𝑖∗ =
1

�1 − 𝐹𝑋|𝑌� �𝜉𝑝�𝛾�𝑝��𝑓𝑌� �𝛾�𝑝�
��𝐹𝑌|𝑋� �𝛾�𝑝�𝜉𝑝� − 0.5��𝐼�𝑥𝑖 ≤ 𝜉𝑝� − 𝑝�

+ 𝐼�𝑥𝑖 ≥ 𝜉𝑝��𝐼�𝑦𝑖 ≤ 𝛾�𝑝� − 0.5��, 
where  𝐹𝑋|𝑌� ,  𝑓𝑌� , and 𝐹𝑌|𝑋�  are the estimators of 𝐹𝑋|𝑌, 𝑓𝑌 and 𝐹𝑌|𝑋 respectively.  
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For the estimation of the conditional distribution 𝐹𝑋|𝑌 , one can follow Borkowf et al. 
(1997),  

𝐹𝑋|𝑌�𝜉𝑝�𝛾𝑝� = 𝑃�𝑋 ≤ 𝜉𝑝�𝑌 = 𝛾𝑝� 
= 𝑃�𝐹𝑋(𝑋) ≤ 𝑝�𝐹𝑌(𝑌) = 𝐹𝑌(𝛾𝑝)�, 

which leads to  

𝐹𝑋|𝑌� �𝜉𝑝�𝛾𝑝� =
∑ 𝑤𝑖𝐼�𝐹𝑋�(𝑥𝑖) ≤ 𝑝, �𝐹𝑌�(𝑦𝑖) − 𝐹𝑌�(𝛾�𝑝)� ≤ 𝑧𝛼/2𝛿̂�𝑖∈𝑆

∑ 𝑤𝑖𝐼��𝐹𝑌�(𝑦𝑖) − 𝐹𝑌�(𝛾�𝑝)� ≤ 𝑧𝛼/2𝛿̂�𝑖∈𝑆
, 

where  𝛿2 = 0.8
𝑛
𝐹𝑌�(𝛾�𝑝)�1 − 𝐹𝑌�(𝛾�𝑝)� and 𝑧𝛼/2 is the 100 �1 − 𝛼

2
�-th percentile from the 

standard normal distribution.  Similarly, the conditional CDF 𝐹𝑌|𝑋�𝛾𝑝�𝜉𝑝� is given by  

𝐹𝑌|𝑋� �𝛾�𝑝�𝜉𝑝� =
∑𝑤𝑖𝐼�𝐹𝑌�(𝑦𝑖) ≤ 𝐹𝑌��𝛾�𝑝�, �𝐹𝑋�(𝑥𝑖) − 𝑝� ≤ 𝑧𝛼/2𝛿̂∗�

∑𝑤𝑖𝐼��𝐹𝑋�(𝑥𝑖) − 𝑝� ≤ 𝑧𝛼/2𝛿̂∗�
, 

where 𝛿∗2 = 0.8𝑝(1 − 𝑝)/𝑛. 
 
Using the approach used by Francisco and Fuller (1991), the marginal density estimator 
for  ℎ�𝛾𝑝� is given by 

𝐹𝑌��𝛾�𝑝� ≈
∑ 𝑤𝑖𝐼��𝐹𝑌�(𝑦𝑖) − 𝐹𝑌�(𝛾�𝑝)� ≤ 𝑧𝛼/2𝛿̂�𝑖∈𝑆

𝑁�(𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)
, 

where 𝑌𝑚𝑎𝑥 = max {𝑦𝑖: 𝑖 ∈ 𝑆, �𝐹𝑌�(𝑦𝑖) − 𝐹𝑌�(𝛾�𝑝)� ≤ 𝑧𝛼/2𝛿̂}  and 𝑌𝑚𝑖𝑛 = min {𝑦𝑖: 𝑖 ∈
𝑆, �𝐹𝑌�(𝑦𝑖) − 𝐹𝑌�(𝛾�𝑝)� ≤ 𝑧𝛼/2𝛿̂}. Hence, 

�1 − 𝐹𝑋|𝑌� �𝜉𝑝�𝛾�𝑝��𝑓𝑌� �𝛾�𝑝� =
∑ 𝑤𝑖𝐼�𝐹𝑋�(𝑥𝑖) > 𝑝, �𝐹𝑌�(𝑦𝑖) − 𝐹𝑌�(𝛾�𝑝)� ≤ 𝑧𝛼/2𝛿̂�𝑖∈𝑆

𝑁�(𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)
. 

 
Case 3. 𝜸𝒑 is a ratio in the top pth percentile group 
Within a percentile group, the proportion of total income from wages and salary is a ratio. 
Let 𝑌 be the variable in the numerator and 𝑍 be the variable in the denominator in this 
ratio, the estimating function and linear variable for the ratio are 

𝜇2𝑖 = 𝐼�𝑥𝑖 ≥ 𝜉𝑝��𝑦𝑖 − 𝛾𝑝𝑧𝑖�, 

𝜇2𝑖∗ =
��𝐸�𝑌�𝜉𝑝� − 𝛾𝑝𝜉𝑝� �𝐼�𝑥𝑖≤𝜉𝑝� − 𝑝� + 𝐼�𝑥𝑖≥𝜉𝑝��𝑦𝑖 − 𝛾𝑝𝑧𝑖�� 

𝐸�𝑍𝐼�𝑋 ≥ 𝜉𝑝��
 𝑎𝑛𝑑 

𝜇̂2𝑖∗ =
��𝐸��𝑌�𝜉𝑝� − 𝛾�𝑝𝜉𝑝� �𝐼�𝑥𝑖≤𝜉�𝑝� − 𝑝� + 𝐼�𝑥𝑖≥𝜉�𝑝��𝑦𝑖 − 𝛾�𝑝𝑧𝑖��

𝐸��𝑍𝐼�𝑋 ≥ 𝜉𝑝��
. 

where 𝐸��𝑍𝐼�𝑋 ≥ 𝜉𝑝�� =
∑ 𝑤𝑖𝑧𝑖𝐼(𝑥𝑖≥𝜉�𝑝)𝑖

∑ 𝑤𝑖𝑖
. 

 
Case 4. 𝜸𝒑 is a share for the top pth percentile group 
The estimating function and linear variable for the share are  

𝜇2𝑖 = �𝐼�𝑥𝑖 ≥ 𝜉𝑝� − 𝛾𝑝�𝑦𝑖 

𝜇2𝑖∗ =
1
𝜇𝑦
�𝐸�𝑌�𝜉𝑝��𝐼�𝑥𝑖 ≤ 𝜉𝑝� − 𝑝� + �𝐼�𝑥𝑖 ≥ 𝜉𝑝� − 𝛾𝑝�𝑦𝑖�,   

and 

𝜇̂2𝑖∗ =
1
𝜇̂𝑦
�𝐸��𝑌�𝜉𝑝��𝐼�𝑥𝑖 ≤ 𝜉𝑝� − 𝑝� + �𝐼�𝑥𝑖 ≥ 𝜉𝑝� − 𝛾�𝑝�𝑦𝑖�,   

where 𝜇̂𝑦 = 1/𝑁�∑ 𝑤𝑖𝑦𝑖𝑖∈𝑆 .  
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Case 5. 𝜸𝒑 is a product of share and ratio 
When 𝛾𝑝 is a product of a ratio (as defined in Case 3) and a share (as defined in Case 4) 
such that  𝛾𝑝 = 𝛾𝑝

(𝑆)𝛾𝑝
(𝑅), the estimating function and linear variable are  

𝜇2𝑖 = 𝛾𝑝
(𝑆)𝜇2𝑖

(𝑆) + 𝛾𝑝
(𝑅)𝜇2𝑖

(𝑅), 
𝜇2𝑖∗ = 𝛾𝑝

(𝑆)𝜇2𝑖
(𝑆)∗ + 𝛾𝑝

(𝑅)𝜇2𝑖
(𝑅)∗    𝑎𝑛𝑑 

𝜇̂2𝑖∗ = 𝛾�𝑝
(𝑆)𝜇̂2𝑖

(𝑆)∗ + 𝛾�𝑝
(𝑅)𝜇̂2𝑖

(𝑅)∗, 
where 𝜇2𝑖

(𝑅) ,  𝜇2𝑖
(𝑅)∗, and 𝜇̂2𝑖

(𝑅)∗ have been previously given for a ratio in Case 3 and 𝜇2𝑖
(𝑆) ,  

𝜇2𝑖
(𝑆)∗, and 𝜇̂2𝑖

(𝑆)∗ for a share in Case 4. 
 
A special case: 𝜸𝒑 is the count in the top pth percentile group 
The count in the top pth percentile group where 𝛾𝑝 = 𝑁(1 − 𝑝) and 𝛾�𝑝 = 𝑁�(1 − 𝑝) is a 
special case of parameter of interest. The variance of  𝛾�𝑝 is  

𝑉�𝛾�𝑝� = 4𝑁(1 − 𝑝)2. 
Hence, the corresponding CV estimate is given by 

𝐶𝑉��𝛾�𝑝� = �𝑉��𝛾�𝑝�/𝛾�𝑝 = 2/�𝑁�. 

 
 

5. Performance Evaluation of Variance Estimation 
 
In this section, the variance estimators are evaluated. The linear variance estimates are 
compared to both the approximate true variance calculated from the T1FF and the 
bootstrap variance estimates. This evaluation is only done for Prince Edward Island 
(P.E.I.) as it yields the largest variances at the provincial level.   
 
Suppose 𝜃 is the parameter of interest and 𝜃� is a consistent estimator of 𝜃. The relative 
bias (RB) is defined as  

𝑅𝐵�𝜃�� = �𝜃� − 𝜃�/𝜃 × 100%. 
The approximate CV (ACV) of 𝜃� is defined as  

𝐴𝐶𝑉�𝜃�� = �𝐴𝑉(𝜃�)/𝜃 × 100%, 

where 𝐴𝑉(𝜃�) is computed by the formula given in (10). The true parameter values are 
computed from the T1FF.  The CV estimator on the sample is defined as 

𝐶𝑉��𝜃�� = �𝑉�(𝜃�)/𝜃� × 100%. 
The bootstrap CV estimate is based on 1,000 bootstrap replicates (bootstrap weights) and 
defined as  

𝐶𝑉� 𝑏�𝜃�� = �𝑉�𝑏(𝜃�)/𝜃� × 100%. 
The replicates were generated, using the pseudo-population approach (see Beaumont and 
Patak, 2012).  
 
Variance estimates for selected high income statistics are produced. Since the parameter 
estimators have large sample properties, it is expected that the CVs for other provinces 
should be smaller than that for P.E.I.  
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Table 2 lists the approximate CV and CV estimates generated using the linearization 
method and bootstrap method for the top 1% income group in P.E.I.. Small differences 
are observed between the approximate CV and two estimated CVs. CV estimates from 
two methods are very similar with largest difference being 0.8% for the product of share 
and ratio. Studies on other income group show that the quality of estimation for large 
group usually is better because of the larger sample size.  
 
Table 2. Comparison of CV estimates for linearization and Bootstrap for estimates 
of the top 1% group for P.E.I (2009) 

     
CV      

Measure Variables 𝜽 𝜽� RB 𝑨𝑪𝑽�𝜽�� 𝑪𝑽��𝜽�� 𝑪𝑽�𝒃�𝜽�� 

Threshold Income 131,115 130,824 -0.2% 1.9% 1.8% 2.0% 
Total Counts 1,098 1,089 -0.8% 0.6% 0.6% 0.6% 

Mean 

% of Male 78.20% 80.3% 2.7% 3.2% 3.0% 3.0% 
% of Married 82.40% 83.5% 1.3% 2.8% 2.7% 2.9% 
Income 214,589 212,371 -1.0% 5.7% 4.6% 4.6% 
Tax 65,700 63,132 -3.90% 7.4% 6.1% 6.0% 

Median 
Income 166,331 166,192 -0.1% 3.0% 2.4% 2.5% 
Tax 48,666 48,923 0.5% 3.6% 3.7% 3.9% 
Age 53 53.5 0.9% 1.1% 1.9% 2.2% 

Ratio Wage/Income 59.70% 63.0% 5.50% 4.8% 4.8% 4.9% 

Share 
Income 6.6% 6.5% -1.5% 5.2% 4.2% 4.3% 
Tax 11.40% 11.0% -3.5% 6.5% 5.3% 5.3% 

Share By 
Ratio 

Income  
 by males   5.3%     5.0%  5.8%  

 
 
Table 3 gives the 95% confidence interval (CI) estimates from both methods. The linear 

CI estimates is calculated as  �𝜽� − 1.96�𝑉�(𝜽�),𝜽� + 1.96�𝑉�(𝜽�)�; the bootstrap CI is 

based on 1000 bootstrap replicates �2𝜽� − 𝜃�(0.025)
∗ , 2𝜽� − 𝜃�(0.975)

∗ � . Two methods produce 
very similar results. This implies that the asymptotic normality assumption of the 
estimators is satisfied. It should be noted that the linearization intervals may be slightly 
shorter than the bootstrap intervals, which is very common for those two methods. 
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Table 3. Comparison of 95% Confidence Interval (C.I.) estimates from linearization 
and Bootstrap for parameters in the top 1% group for P.E.I (2009) 

  95% Confidence Interval 
  Linearization Bootstrap 

Measure Variables lower upper lower upper 

Threshold Income 126,209 135,439 125,486 135,660 
Total Counts 1,076 1,102 1,068 1,098 

Mean 

% of Male 75.6% 85.0% 75.6% 85.0% 
% of Married 79.1% 87.9% 79.0% 88.3% 
Income 193,224 231,518 193,297 231597 
Tax 55,584 70,680 55,301 70,335 

Median 
Income 158,700 173,684 158,136 172947 
Tax 45,567 52279 46,883 53,789 
Age 51.5 55.5 52.0 56.0 

Ratio Wage in Income 57.1% 68.9% 56.4% 68.6% 

Share 
Income 6.0% 7.0% 5.9% 7.0% 
Tax 9.9% 12.1% 9.8% 12.1% 

 
 

6. Summary 
 
In this paper, two methods for variance estimation have been considered for statistics in 
the high income tables: linearization and bootstrap. The estimates of CVs and CIs for 
these two methods are very close. However, in practice, the linearization method is 
employed as the computing time for the bootstrap method is extreme. Note that the 
linearization method requires the first derivative for each estimator.  
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