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ABSTRACT 
 

In this paper, a new two-step technique for the calibration of design weights is proposed. 
In the first step, the calibration weights are set proportional to the design weights in a 
given sample. In the second step, the constants of proportionality are determined based 
on different objectives of the investigator such as bias reduction or minimum mean 
squared error. Many estimators available in the literature can be shown to be special 
cases of the proposed two-step calibrated estimator. A simulation study, based on a real 
data set, is included at the end. A few technical issues are raised with respect to the use of 
the proposed calibration technique, both limitations and benefits are discussed. 
 
Keywords: Calibration, estimation of total, bias and variance. 
 
 

1. INTRODUCTION 
 
A new method to calibrate the design weights in the Horvitz-Thompson (1952) estimator 
was considered by Deville and Särndal (1992) by making use of auxiliary information. 
Their proposed calibration methods provide a class of estimators.  Some well-known 
estimators such as the classical ratio-estimator belong to this class. Several authors, 
including Singh (2003, 2004, 2006, 2012), Farrell and Singh (2002, 2005), Wu and Sitter 
(2001), Estevao and Särndal (2003), Kott (2003), Montanari and Ranalli (2005), Rueda et 
al. (2006, 2007) among others, considered the Deville and Särndal (1992) method and 
derived important calibrated estimators. But, so far, an estimator, from the class of 
calibrated estimators derived by the Deville and Särndal (1992) method, that is always 
more efficient than the traditional linear regression estimator in the presence of a linear 
trend, has not been found in the literature.  In the present paper, we consider a subclass of 
the class of calibrated estimators provided by Deville and Särndal (1992) such that at the 
first step the calibrated weights are set proportional to the design weights in a given 
sample and at the second step the constants of proportionality are determined based on 
different requirements of the investigator.   

For simplicity, we consider a single auxiliary variable. For a sample s  and for  si , let 

 ii xy   ,  be the values observed. The population total of the auxiliary variable ,x  





i

ixX , is assumed to be known. The objective is to estimate the population total 





i

iyY . The well known Horvitz and Thompson (1952) estimator of the population 

total Y  is given by: 
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where  iid 1  are called design weights and i  are called first order inclusion 
probabilities.  Deville and Särndal (1992) proposed the calibrated estimator of the 
population total Y as: 
 

           



si

ii ywYds
ˆ                                        (1.2) 

 
where the calibrated weights iw , si   are obtained by minimizing the chi-squared 

distance defined as: 
 

 






si ii

ii

qd

dw
D

2
            (1.3) 

 
subject to the calibration constraint: 
 
 Xxw

si
ii 


                                             (1.4) 

 
Here iq , si  are suitably chosen weights. In many situations the value of iq  is 1. The 

form of the estimator (1.2) depends upon the choice of qi . Minimization of (1.3) subject 
to calibration equation (1.4), leads to the calibrated weight:  
 

 





  




si
ii

si
iii

iii
ii xdX

xqd

xqd
dw

2
                                                        (1.5) 

 
Substitution of the value of wi  from (1.5) into (1.2) leads to the generalized regression 
(GREG) estimator of the population total Y as: 
 

  HTdsHT XXYY ˆˆˆˆ
G                                                                             (1.6) 

where 
 















 



 si

iii
si

iiii xqdyxqd 2
ds̂                                           (1.7)  

 
Wu and Sitter (2001) suggest a second calibration constraint, in addition to the calibration 
constraint (1.4), given by: 
  





si

i Nw                           (1.8) 
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Wu and Sitter (2001) estimator takes the form: 
 

   )ˆ(ˆˆˆˆˆˆˆ
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and 

2
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have their usual meanings. Singh (2003, 2004, 2006, 2011, 2012), Stearns and Singh 
(2008) and Singh and Arnab (2011) suggest replacing of the constraint (1.8) with a new 
constraint: 
 
 






si

i
si

i dw                                (1.12) 

 
to get the traditional linear regression estimator due to Hansen, Hurwitz and Madow 
(1953) given by: 
 

  HTolsHTLR XXYY ˆˆˆˆ                                                                    (1.13) 

where 

 1
ˆˆ  ols                        (1.14) 

Singh and Arnab (2011) have shown that it is not likely that the Wu and Sitter (2001) 
estimator could perform better than the linear regression estimator in the presence of a 
linear trend.  Kim (2010) suggests using the constraint (1.8) if the population size is know 
and (1.12) if the population size is unknown. (for details about Kim’s (2010) contribution 
please refer to Singh (2011) “Dual problem of calibration of design weights”) 

There seems to be a debate over the choice of the calibration constraint set by Wu and 
Sitter (2011) and that set by Singh (2003).  We provide here an alternative way of 
looking at the issue which we hope will add some clarity. 
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2. TWO-STEP CALIBRATION TECHNIQUE 
 
In the first step, we suggest setting the calibration weight iw  proportional to the design 

weight id , that  is:  
 
 ii dw               (2.1) 
 
or equivalently, 
 
 iii dkw               (2.2) 
 
where ik  are constants of proportionality to be determined based on different options that 
might  be considered by an investigator.  Summing both sides of (2.2), we have: 
 
 






si

ii
si

i dkw              (2.3) 

 
Now we consider the Lagrange function given by: 
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2

1         (2.4) 

where  0 and 1  are the Lagrange multipliers. 

 

On setting 0



iw

L
, we get 

 
 iiiiiii xqdqddw 10              (2.5) 
 
On substituting (2.5) into (2.3) and (1.4), we have 
 
 









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ii dkxqdqd )1(10                          (2.6) 

and 

 )ˆ( HT
2

10 XXxqdxqd
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iii
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iii  





           (2.7) 

 
On solving for 0 and 1  and substituting into (2.5), the calibrated weights are given by: 
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       (2.8) 

 
On substituting the calibrated weights (2.8) into (1.2), we obtain a new class of estimators 
of the population total given by: 
 

   



si

iiHTHT dkXXYY )1(ˆˆˆˆˆ
01new                       (2.9) 

Obvious Special Cases:  

( a ) If 1ik  for all si , the proposed estimator (2.9) reduces to the traditional 
regression estimator derived by Singh (2003). 

( b ) If ii n

N
k   for  si , the proposed estimator (2.9) reduces to the estimator due to 

Wu and Sitter (2001).    In the next section, we show that such a choice of ik  for all 

i  makes the Wu and Sitter (2001) estimator equivalent to the traditional linear 
regression estimator. 

3. PROPERTIES OF THE PROPOSED ESTIMATOR 
 
In order to study the properties of the proposed estimator, we define: 

 1
ˆ

0 
Y

YHT , 1
ˆ

1 
X

X HT , 1
ˆ

0

0
0 




 , 1
ˆ
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1 



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)1(













i
i

si
ii

k

dk
  

so that 
 0)()()()()( 1010   EEEEE  
 

Now the new proposed estimator newŶ  in terms of 0 , 1 , 0 , 1  and   can be easily 
written as: 
 

 )1]()1()[1()]1()[1()1(ˆ
001110new   

i
ikXXYY  

or 

          )1(ˆ
000111110new  



  


NkXXYYY

i
i            (3.1) 

 

Note carefully that if ii n

N
k   for all i , then 0)( 


Nk

i
i  for any unequal 

probability sampling design. Thus the choice ii n

N
k   for all i  makes the Wu and 

Sitter (2001) estimator the same as the linear regression estimator. In other words, for a 
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choice of ii n

N
k   for all i , the traditional linear regression estimator is the 

optimal estimator among the Wu and Sitter (2001) class of estimators.  See Singh and 
Arnab (2011) where they have shown through a simulation study that the Wu and Sitter 
(2001) estimator is likely to remain less efficient than the traditional linear regression 
estimator.  
 
Now a natural question arises? Is there any choice of the proportionality constants ik  

such that the proposed estimator can perform more efficiently than the linear regression 
estimator?  As is often the case these does not seem to be an obvious answer, but we 
made an attempt in this direction as follows.   
 
Remark: It is not easy to analytically find individual values of ik  which results either in 

reduction in bias or minimum mean squared error of the newly estimator. 
 
Assume  kki   for all si , then we set 






si

i
si

i dw  or equivalently  






si

i
si

i dkw .  

Taking expected value on both sides of (3.1), and setting the bias in the estimator equal to 
zero, we get: 
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          (3.2) 

 
Thus to get an unbiased estimator of the population total, one obvious choice of the 
proportionality constants k  is given by: 

 
 












si

i

HT

dCovN

XCov
k

,ˆ

ˆ,ˆ
1

00

1




 for all i                        (3.3) 

 
So to obtain an exactly unbiased estimator of the population total, the value of the 
proportionality constants ik  remain constant, but differ from unity.  

Let us look at another choice for the values of the proportionality constants ( ik ) based on 

minimizing the mean squared error of the resultant estimator newŶ .  For simplicity, let us 

assume kki   for all i .  Under such an assumption, we get 
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and the new estimator can be written as: 
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By the definition of the mean squared error, we have: 
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By taking the expected values and by neglecting the higher order terms, we have 
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On setting 0
)1(

)ˆ(





K

YMSE new  and keeping the same constants 0  and 1  we have, 

 
 
The minimum mean squared error of the proposed estimator is given by: 
 

 2
new 1)ˆ()ˆ(Min.MSE xyHTYVY   

                                       
(3.5) 

where 
)ˆ()ˆ(

)ˆ,ˆ(

HTHT

HTHT
xy

XVYV

XYCov
  is the correlation coefficient. 

 
Note that for simple random sampling (SRS), we have: 
 

0)ˆ( NV , 0)ˆ,ˆ( NYCov HT , 0)ˆ,ˆ( NXCov HT , and 0)ˆ,ˆ( 0 NCov   
 
Thus for SRS design, we have: 
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From (3.5) and (3.6), it can be seen that there must a choice of K  such that the proposed 
estimator remains more efficient than the linear regression estimator.  As pointed out by 
Singh (2012), there is no estimator better than the linear regression estimator in the 
presence of a linear trend.  It seems that the optimum value of K  is likely to be very 
close to one, and of course if it is one then we get the traditional linear regression 
estimator. 
 
In the next section we simulated numerical values of the optimizing constant K  such that 
the proposed new estimator can perform better than the linear regression estimator. 
 

4. SIMULATION STUDY 
 
In the next section, we demonstrate performance of the proposed two-step estimator 
through simulation studies. In the simulation study, we consider the following five 
estimators and compare them with each other: 
( a ) Ratio Estimator:  
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( d ) Hansen, Hurwitz and Madow’s estimator: 
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    4
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where 

1
ˆˆ  ols  

 
( e ) Two-Step Calibration Method Estimator: 
 

  501new
ˆ)1(ˆˆˆˆˆ   

si
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We use a dataset, FEV.DAT, available on the CD that accompanies the text by Rosner 
(2006), that contains data on 654 children from the Childhood Repertory Disease Study 
done in Boston. Among the variables are height, age, and FEV (forced expiratory 
volume).  We consider the problem of estimating total (or average) height of the 
population using age at the estimation stage and FEV at the selection stage using the 
Midzuno (1952) and Sen (1953) sampling scheme.  A pictorial representation of the 
datasets used is shown in the following scatter plots: 

 
Fig. 4.1. Scatter plots of the three variables considered in the study. 

 
To investigate various situations, we apply Box-Cox type transformations on all the three 
variables in the population as: 
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for different choice of values of T .  For a given value of 0.2T  (say), from the 
population of size 654N , we select a sample of size n  (say).  Now we compute four 
different population correlation coefficients: 
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and 
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For the Midzuno-Sen sampling scheme, the value of the first order inclusion probability 

i  is given by: 
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Note that the population correlation coefficients xy , xz   and yz  are simple Pearson’s 

correlation coefficients. Their values play more of a role when one applies the simple 
random sampling design. But for any unequal probability sampling design, such as 

Midzuno-Sen sampling design, the weighted Pearson’s correlation coefficient *
xy  plays 

the key role. Thus, for each value of T and n  we also computed the value of *
xy .  The 

first unit has been selected with probability-proportional-to-size sampling by using the 
cumulative total method, and the remaining )1( n  units are selected by SRSWOR 
sampling by using the standard IMSL subroutine: CALL RNSRI (NEWNS,NKK,IR). For 

000,5B  samples, we computed the empirical relative bias in the kth  estimator 
( )5,4,3,2,1k  as: 
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and the mean squared error is computed as: 
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The percent relative efficiency of the 5th estimator 5̂   with respect to the other three 

estimators k̂  for 4,3,2,1k  is computed as: 
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The value of T is changed from 0.5 to 4.5 with a step of 0.5, and the sample size n  
changed from 20 to 60. The proposed two-step calibration estimator remains more 
efficient than the traditional regression estimator for transformations chosen with 2T .  
A pictorial representation of such data sets which have been used in the simulation study 
is given in Fig.4.2. 
 

 

 

 
Fig. 4.2. A pictorial representation of data sets used. 

 
Fig. 4.2 shows that as the value of T  increases from 2.0 to 4.5 with a step of 0.5, the 
scatterness in the datasets becomes wider and wider, and breaks the assumption of 
linearity.  Figure 4.3 shows dot plots of the values of the transformation T  and the 
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sample size n  for which the proposed two-step estimator remains more efficient than the 
linear regression estimator and the absolute value of the relative bias remains less than 
10%. There are more situations when the value of T  is close to 4.5 and sample size n  is 
close to 20 where the proposed estimator performs better than the linear regression 
estimator.  Singh and Arnab (2011) reported that the estimator of Wu and Sitter (2001) is 
likely to remain less efficient if sample size is large, and the same conclusion seems to be 
true in the case of the proposed two-step calibration estimator.  
 

 
Fig. 4.3. Practicable values of T  and n where proposed estimator performs well.   

 
Figure 4.4 is devoted to displaying the values of K and the values of the percent relative 
efficiency (RE) of the proposed two-step estimator with respect to the traditional linear 
regression estimator.  The presentation shows that the choice of K  ranges between 0.980 
and 0.996. The percent relative efficiency (RE) value changes between 103% and 
108.8%. 

 
Fig. 4.4.  Practicable values of K  and percent relative efficiency. 

 
Table 4.1 provides descriptive statistics of the values of the unknown parameter K  
which are used in the simulation study.  Out of 386 cases, where the two-step estimator 
performs better, the minimum value of K  is found to be 0.9800, maximum value to be 
0.996 and with a median value to be 0.9890. The average value of  K  is 0.9883 with a 
standard deviation of 0.00439. 
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  Table 4.1. Choice of value of K . 
Variables freq  Mean StDev Min Med Max 

K  386 0.9883 0.00439 0.9800 0.9890 0.996 
 
Table 4.2 provides descriptive statistics of the values of the population correlation 

coefficients xy , xz , yz  and *
xy  which are used in the simulation study. Recall that 

as pointed out by Singh and Arnab (2011), only the value of the weighted correlation 

coefficient *
xy  is important where comparing estimators with unequal probability 

sampling schemes.  Out of 386 cases, where the two-step estimator performs better, the 

minimum value of *
xy  is found to be 0.52965, maximum value to be 0.70000 and  

median value to be 0.53800. The average value of  *
xy  is 0.52965 with a standard 

deviation of 0.08504. Thus the proposed two-step estimator is unlikely to perform better 
than the linear regression estimator if the value of the correlation coefficient is more than 
0.70 in a population similar to the one being considered here. 

  Table 4.2. Choice of values of xy , xz , yz  and *
xy . 

Variables freq  Mean StDev Min Med Max 

xy  386 0.60003 0.04913 0.54800 0.58200 0.72800 

xz  386 0.56397 0.04987 0.51100 0.54600 0.69400 

yz  386 0.71830 0.04171 0.67300 0.70400 0.82300 

*
xy  386 0.52965 0.08504 0.33100 0.53800 0.70000 

 
Pictorial presentations of such populations are given in Figure 4.2. It shows that if a 
dataset has a non-linear pattern, then the proposed two-step calibration method estimator 
is found to perform better than the linear regression estimator.  It reconfirms the 
statement of Singh (2012) that in the presence of linear trend there is no estimator which 
is better than the linear regression estimator.  Table 4.3 provides descriptive statistics of 
the values of the percent relative efficiencies RE(1,5), RE(2,5), RE(3,5) and RE(4,5).  
Out of 386 cases, where the two-step estimator attains  the minimum value of RE(4,5) to 
be 103.50%, maximum value to be 108.80% and with a median value to be 104.50%. The 
average value of RE(4,5)  is 104.77 with a standard deviation of 1.32. 
 

  Table 4.3. Values of RE(1,5), RE(2,5), RE(3,5) and RE(4,5). 
Variables freq  Mean StDev Min Med Max 

RE(1,5) 386 1355.7 71.2 1163.9 1353.3 1531.8 
RE(2,5) 386 486.40 122.12 326.90 447.05 962.40 
RE(3,5) 386 111.87 2.43 107.30 111.80 118.60 
RE(4,5) 386 104.77 1.32 103.00 104.50 108.80 

 
Figure 4.5 gives histograms of the percent relative efficiency values for the proposed 
two-step estimator with respect to the ratio (or RE(1,5)), GREG (or RE(2,5) ), Wu and 
Sitter (2001) (or RE(3,5) )  and the linear regression estimator (or RE(4,5) ). 
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Fig. 4.5.  Histograms of percent relative efficiency values. 

 
Figure 4.6 is devoted to study the percent relative bias (RB) values of the five estimators 
considered in the simulation study. 
 

 
Fig. 4.6.  RB values of the five estimators considered. 

 
Table 4.4 shows descriptive statistics values of the percentage relative bias (RB) in the 
five estimators considered in the simulation study. 
 

Table 4.4. Percent  Relative Bias (RB) values. 
Variable freq  Mean StDev Min Med Max 

Ratio 386 3.5160 1.5506 0.8860 3.1525 8.9590 
GREG 386 2.5744 1.0913 0.7820 2.3030 6.1860 
WS 386 1.2241 0.5288 0.4400 1.0845 2.9240 
LR 386 1.2483 0.5413 0.4520 1.1015 2.9880 
Proposed 386 0.2840 0.5476 -0.6200 0.1845 2.2860 

 
The percent relative bias (RB) value  in the ratio estimator varies from 0.8860% to 
8.9590% with a median value of 3.1525%;  in the GREG estimator varies from 0.7820% 
to 6.1860% with a median value of 2.3030%; in the Wu and Sitter (2001) estimator varies 
from 0.4400% to 2.9240% with a median value of 1.0845%; in the linear regression 
estimator varies from 0.4520% to 2.9880% with a median value of 1.1015%; and in the 
proposed two-step estimator varies from -0.6200% to 2.2860% with a median value of 
0.1845%.  Results in Table 4.4 show that the percent relative bias remains negligible in 
all the estimators considered. 
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