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ABSTRACT

In this paper, a new two-step technique for the calibration of design weights is proposed.
In the first step, the calibration weights are set proportional to the design weights in a
given sample. In the second step, the constants of proportionality are determined based
on different objectives of the investigator such as bias reduction or minimum mean
squared error. Many estimators available in the literature can be shown to be special
cases of the proposed two-step calibrated estimator. A simulation study, based on a real
data set, is included at the end. A few technical issues are raised with respect to the use of
the proposed calibration technique, both limitations and benefits are discussed.
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1. INTRODUCTION

A new method to calibrate the design weights in the Horvitz-Thompson (1952) estimator
was considered by Deville and Sérndal (1992) by making use of auxiliary information.
Their proposed calibration methods provide a class of estimators. Some well-known
estimators such as the classical ratio-estimator belong to this class. Several authors,
including Singh (2003, 2004, 2006, 2012), Farrell and Singh (2002, 2005), Wu and Sitter
(2001), Estevao and Sérndal (2003), Kott (2003), Montanari and Ranalli (2005), Rueda et
al. (2006, 2007) among others, considered the Deville and Sarndal (1992) method and
derived important calibrated estimators. But, so far, an estimator, from the class of
calibrated estimators derived by the Deville and Sé&rndal (1992) method, that is always
more efficient than the traditional linear regression estimator in the presence of a linear
trend, has not been found in the literature. In the present paper, we consider a subclass of
the class of calibrated estimators provided by Deville and Sérndal (1992) such that at the
first step the calibrated weights are set proportional to the design weights in a given
sample and at the second step the constants of proportionality are determined based on
different requirements of the investigator.

For simplicity, we consider a single auxiliary variable. For a sample s and for ies, let

(y;, %) be the values observed. The population total of the auxiliary variable X,

X = Y Xj, is assumed to be known. The objective is to estimate the population total
ieQ

Y = Xy;. The well known Horvitz and Thompson (1952) estimator of the population
ieQ

total Y is given by:
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~ y
Yyt == —'=_ZdiYi (1.1)
ies Ty ies
where dj =1/7; are called design weights and 7z are called first order inclusion

probabilities. Deville and Séarndal (1992) proposed the calibrated estimator of the
population total Y as:

Yis = X W Yj (1.2)

1€S

where the calibrated weights w;, i €s are obtained by minimizing the chi-squared
distance defined as:

Y
p-y Wi-di)] (1.3)
ies  djq;
subject to the calibration constraint:
Z WX = X (1.4)

ies

Here q;, i s are suitably chosen weights. In many situations the value of q; is 1. The

form of the estimator (1.2) depends upon the choice of ¢;. Minimization of (1.3) subject
to calibration equation (1.4), leads to the calibrated weight:

W; =di+M(X—Zdixi] (L5)

2 ies

2digiX

les

Substitution of the value of w; from (1.5) into (1.2) leads to the generalized regression
(GREG) estimator of the population total Y as:

Yo =Y + fas (X - )zHT) (1.6)

where
Bas =(_ZdiQiXiYiJ/[_ZdiQiXi2J (1.7)
1eS 1eS

Wu and Sitter (2001) suggest a second calibration constraint, in addition to the calibration
constraint (1.4), given by:

>wi =N (1.8)

ies
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Wu and Sitter (2001) estimator takes the form:

Yws =Yhr +,é1(x - )ZHT)““,éo(N _izsdij:YALR +Bo(N-N) (1.9)
€
where
X [_Zdiqixin(_zdiQiyij_(_zdiQiXiyiJ(_zdiQixij
ﬂo — 1€eS €S leS |€2S (110)
[ ZdiQi]( Zdiqixizj_[ ZdiQiXi)
ies ies ies
and
X (_ZdiQij(_zdiQixiYiJ_(_ZdiQiYij(_zdiQixi)
B = ies ies ies ies (1.11)

2
[_ZdiQi j[_zdiQixizj_(_zdiQixij
1eS 1eS IS

have their usual meanings. Singh (2003, 2004, 2006, 2011, 2012), Stearns and Singh
(2008) and Singh and Arnab (2011) suggest replacing of the constraint (1.8) with a new
constraint:

W = 2d; (1.12)

ies ies

to get the traditional linear regression estimator due to Hansen, Hurwitz and Madow
(1953) given by:

YLR =Yt + Bois (X - Xyt ) (1.13)

where

Bols = A1 (1.14)

Singh and Arnab (2011) have shown that it is not likely that the Wu and Sitter (2001)
estimator could perform better than the linear regression estimator in the presence of a
linear trend. Kim (2010) suggests using the constraint (1.8) if the population size is know
and (1.12) if the population size is unknown. (for details about Kim’s (2010) contribution
please refer to Singh (2011) “Dual problem of calibration of design weights”)

There seems to be a debate over the choice of the calibration constraint set by Wu and
Sitter (2011) and that set by Singh (2003). We provide here an alternative way of
looking at the issue which we hope will add some clarity.
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2. TWO-STEP CALIBRATION TECHNIQUE

In the first step, we suggest setting the calibration weight w; proportional to the design
weight d;, that is:

Wi oc di (21)
or equivalently,
Wi = kidi (22)

where k; are constants of proportionality to be determined based on different options that
might be considered by an investigator. Summing both sides of (2.2), we have:

>wj = >kid; (2.3)

ies ies

Now we consider the Lagrange function given by:

. _d:.)2
EE 2: ONl dl) _”&0(
2ies  djq

where Agand A, are the Lagrange multipliers.

_ZWi —_ZkidiJ—/ll(_Zwixi —Xj (2.4)
les €S €S

On setting L =0, we get
oWj

w; =d; + Apd;q; + 41d;0;X; (2.5)

On substituting (2.5) into (2.3) and (1.4), we have

g £digj + A4 2digix = (ki —1)d; (2.6)
1eS l1eS 1eS
and
Ao didiX Jrﬂv1_20|i0h><i2 =(X=XyT) (2.7)
1eS 1eS

On solving for Agand A4; and substituting into (2.5), the calibrated weights are given by:

diqj Higsdimxiz j(ii,(k‘ _1)diJ_(i§sdiQiXi J(X - Xyt )}

2
(_Zdiqij(_zdichxizj_(_ZdiqixiJ
1eS €S l1eS

Wi=di+

2931



JSM 2013 - Survey Research Methods Section

d;d; X {(X - )2HT{_ZdiQiJ_(_ZdiQiXiJ(_z(ki _1)diﬂ
2
[_ZdiQij(_zdiQiXizj—(ZdiQiXij
1eS €S 1eS

On substituting the calibrated weights (2.8) into (1.2), we obtain a new class of estimators
of the population total given by:

+

(2.8)

Yoew = YHT +ﬁ1(x ~ Xyt )+ ﬁoiZS(ki -1)d; (2.9)

Obvious Special Cases:

(a)If kj =1 forall i €s, the proposed estimator (2.9) reduces to the traditional
regression estimator derived by Singh (2003).

(b)If kj = N zi for ies, the proposed estimator (2.9) reduces to the estimator due to
n

Wu and Sitter (2001). In the next section, we show that such a choice of k; for all

i € Q makes the Wu and Sitter (2001) estimator equivalent to the traditional linear
regression estimator.

3. PROPERTIES OF THE PROPOSED ESTIMATOR

In order to study the properties of the proposed estimator, we define:

; ; - . (ki ~Dd;
&0 _Yur _ , glzxi_l, 5o 2&_1, 51=ﬂ_1 and p=1ss 1
Y X Bo B izék‘ -1)
€
so that

E(eg) =E(e1) =E(99) =E(01) =E()=0

Now the new proposed estimator \fnew interms of &g, &1, dp, 01 and n can be easily
written as:

Y new=Y (L+ £0) + By (L+ 8)[X — XU+ a0+ fo(L+ o)L x (ki ~D]IL+7)

or

Ynew =Y +Y &0 —,legl —ﬁ1X€1§1 +,BO|: Zkl - N:|(1+ 50 +7]+§07]) (31)
ieQ

Note carefully that if k; :%ﬁi for all ieQ, then ( ©kj —N)=0 for any unequal
ieQ

probability sampling design. Thus the choice k; :E zj for all i € Q makes the Wu and
n

Sitter (2001) estimator the same as the linear regression estimator. In other words, for a
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choice of kj =— z; for all i< Q, the traditional linear regression estimator is the
n

optimal estimator among the Wu and Sitter (2001) class of estimators. See Singh and
Arnab (2011) where they have shown through a simulation study that the Wu and Sitter
(2001) estimator is likely to remain less efficient than the traditional linear regression
estimator.

Now a natural question arises? Is there any choice of the proportionality constants k;

such that the proposed estimator can perform more efficiently than the linear regression
estimator? As is often the case these does not seem to be an obvious answer, but we
made an attempt in this direction as follows.

Remark: It is not easy to analytically find individual values of kj which results either in
reduction in bias or minimum mean squared error of the newly estimator.

Assume k; =k forall ies, then we set Twj c ¥d; orequivalently >w; =k >d; .
ies ies ies ies

Taking expected value on both sides of (3.1), and setting the bias in the estimator equal to
zero, we get:

ski = Nk = N+ P1XEE) (3.2)
icO Bofl+E(eom)}

Thus to get an unbiased estimator of the population total, one obvious choice of the
proportionality constants k is given by:

k=1+ Covlf, Xyt ) forall i e Q 3.3)

NS, +Cov[,§o, _zdi)

IS

So to obtain an exactly unbiased estimator of the population total, the value of the
proportionality constants k; remain constant, but differ from unity.

Let us look at another choice for the values of the proportionality constants (k; ) based on
minimizing the mean squared error of the resultant estimator \?new. For simplicity, let us
assume k; =k forall i € Q. Under such an assumption, we get

2 (ki —1)d; 2 (k—-1)d; 2d
77:'65 _1:I€S _1:I€5 —l
> (k; —1) > (k-1) N

ieQ ieQ

and the new estimator can be written as:

Yoew =Y +Y &9 — i X&y — frXe18y + PoN(K =L)AL+ 8y +17+ 517)  (3.4)
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By the definition of the mean squared error, we have:
MSE (Voew) = EVoew Y [
=E[Yzq — BiXe1 — fiXerdy + BoN(K = 1)1+ Sy + 17+ Sn)[
= E[Y 262 4 BEX 262 + BEX 26262 + BN (K —1)2(1+ 8y + 17+ 51)
—2YXBie081 — 2Y By Xe0E101 + 2o YN(K =1 gg + £900 + Eo + £0597)
+ 285X 2628, = 2B P XN(K —1)(&y + 6150 + 177 + 616077 )
— 2B B XN(K =1)&18; + £16301 + £1617 + £160617)]

By taking the expected values and by neglecting the higher order terms, we have
MSE (Ypew) =V (Yur )+ BV (Xt ) = 28.Cov(Ypr , X yr)
+(K -1 [N 282 + N (By) + BV (N) + 4NBoECov(/,, r\])]
+2(K 1| NBoCov(X 7. A1) + BINCOV(X 7 o) + BorCOV(X prr, N)
— NCoV(Yyr . o) - BoCov(Yyr . N) J

OMSE (Ypew)
(K -1)
£ 1. NOCME 7. By) + LNCOW Xy i)+ BofyCov Xy )~ NCoWT gy )~ oConir. N)

N5} + NP (Fg) + B3V (N)+ 45y NCov( g, N)

On setting = 0 and keeping the same constants S, and f; we have,

The minimum mean squared error of the proposed estimator is given by:

Min.MSE (Ve ) =V OV )L - 93 )

_ {Nﬂn&w{f g Fa)+ B ¥CoW X gr . By) Tﬁuﬁlc"‘i?m'j]—wgr Bo)- %Cﬂ‘(fﬂr-ﬁ]r
N £y + NP R+ B3P () +48,NCon . N)

o (3.5)
Cov(Yur, Xyr)
\/V (Yhr )V (Xpr)

where  pyy = is the correlation coefficient.

Note that for simple random sampling (SRS), we have:
V(N)=0, Cov(Yyr,N)=0, Cov(Xpr,N)=0,and Cov(By,N)=0

Thus for SRS design, we have:
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. 5 1- f
Min.MSE (Y ey, ) = (—n) si-pg)

{NBoCOV(R it , ) + AANCOV(R it , o)~ NCovV iy , o) |

N2 5§ +N?V (Bo)
From (3.5) and (3.6), it can be seen that there must a choice of K such that the proposed
estimator remains more efficient than the linear regression estimator. As pointed out by
Singh (2012), there is no estimator better than the linear regression estimator in the
presence of a linear trend. It seems that the optimum value of K is likely to be very

close to one, and of course if it is one then we get the traditional linear regression
estimator.

(3.6)

In the next section we simulated numerical values of the optimizing constant K such that
the proposed new estimator can perform better than the linear regression estimator.

4. SIMULATION STUDY

In the next section, we demonstrate performance of the proposed two-step estimator
through simulation studies. In the simulation study, we consider the following five
estimators and compare them with each other:

(a) Ratio Estimator:

R . X -
YRatio = YHT (A—) = 6, (say) (4.1)
Xy
(b) GREG Estimator:
Yorec = Yur + Bus (X = Xur ): 0, (say) (4.2)
R Esdi Xi Yi
where Sy = s d
ies
(¢ ) Wu and Sitter Estimator:
YAWS =YAHT +ﬁ1<X _>2HT )"',éo(N _izsdi)=é3 (say) (4.3)
where
R (_Zdixiz)(zdi Yi j _[_Zdixi Yi j[_zdixij
ﬂo — les les 1S IES (44)
(2 zeo)-(ze)
les les 1eS
and

,31 _ (Esdi )(iidi XiYi j - (%Sdi Yi j(gsdi Xi j .
(20 ) zoo )-(zm)

(d) Hansen, Hurwitz and Madow’s estimator:
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N

YALR = YAHT + Bois (X = Xur ): 0, (say) (4.6)
where

ﬂAoIs = 131

(e ) Two-Step Calibration Method Estimator:

Yoew = Yt +,5A’1(X — X )+ B 2 (kj -1d; = 05 (say) 4.7)

1€S

We use a dataset, FEV.DAT, available on the CD that accompanies the text by Rosner
(2006), that contains data on 654 children from the Childhood Repertory Disease Study
done in Boston. Among the variables are height, age, and FEV (forced expiratory
volume). We consider the problem of estimating total (or average) height of the
population using age at the estimation stage and FEV at the selection stage using the
Midzuno (1952) and Sen (1953) sampling scheme. A pictorial representation of the
datasets used is shown in the following scatter plots:

Scatterplot of FEV vs Age, FEV vs Height, Age vs Height
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Fig. 4.1. Scatter plots of the three variables considered in the study.

To investigate various situations, we apply Box-Cox type transformations on all the three
variables in the population as:

Height)T —1 Age)” —1 FEV)' -1
_ (Height) ,xi=(g) andZi:( )

Yi
T T T

(4.8)

for different choice of values of T. For a given value of T =2.0 (say), from the
population of size N =654, we select a sample of size n (say). Now we compute four
different population correlation coefficients:

.Z(Yi —Y_)(Xi —)T)

I=9)
Pxy = (4.9)
y \/_Z (X —X)Z =(v —\7)2

ieQ ieQ
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2(zi -Z) X% - X)

Pxz = s (4.10)
\/z (2i-2f s(xi-xF
(Yi_Y)(Zi_Z_)
icQ)
Py = (4.11)
") VP - 2P
and
( Zd; )(de|y|) (de)(Zd,y,)

p;y _ ieQ ieQ) (412)

(Zdi)(x dX|) (de) (Zd)(Z ¢y|) (Zmyd

ieQ ieQ ieQ ieQ

For the Midzuno-Sen sampling scheme, the value of the first order inclusion probability
7j is given by:

gi=MN=Np (=D herep =2,/ 57, . (4.13)
N-1 ' (N-1’ <0

Note that the population correlation coefficients py, , py, and py, are simple Pearson’s

correlation coefficients. Their values play more of a role when one applies the simple
random sampling design. But for any unequal probability sampling design, such as

Midzuno-Sen sampling design, the weighted Pearson’s correlation coefficient p:y plays

the key role. Thus, for each value of T and n we also computed the value of p;y. The
first unit has been selected with probability-proportional-to-size sampling by using the
cumulative total method, and the remaining (n—1) units are selected by SRSWOR
sampling by using the standard IMSL subroutine: CALL RNSRI (NEWNS,NKK,IR). For
B =5,000 samples, we computed the empirical relative bias in the kth estimator
(k=1,2,3,4,5) as:

RB(G )= 12— «100% = RB(K)  (say) (4.14)
and the mean squared error is computed as:

MSE(ék ): % J_%[(ék) j _v]z (4.15)

The percent relative efficiency of the 5™ estimator 95 with respect to the other three

estimators ék for k =1,2,3,4 is computed as:
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RE(ék,é5)= MSE Z“ x100% = RE(K,5) (say) (4.16)
5

The value of T is changed from 0.5 to 4.5 with a step of 0.5, and the sample size n
changed from 20 to 60. The proposed two-step calibration estimator remains more
efficient than the traditional regression estimator for transformations chosen with T >2.
A pictorial representation of such data sets which have been used in the simulation study
is given in Fig.4.2.

Scatterplots With Transformations (T=2 and T=2.5)

FEVIT=2)" AgelT=2) FEV(T—2)=Hoght{T =2} 00| Age(T=2)* Heght({T =2}
15 o - - 16 .. - - -
. sess s
12 :; s - = 12 * ee| 1504 e sem =
- o mme os
. - TP R : .. -y
s, s - K 4 =
e is1', = , ——x*
S - e —
4 1°s 4 . 50 g
o
o 100 200 1200 1800 2400 1200 1800 2400
FEV[T=2.5)=Age(T=2.5) FEV(T=2.5)=Height[T=2.5) Age(T=2.5)=Height(T=2.5]
30 = 30 “e . ©00 o SR
5 %, -, B * | o] B
1 L LA} -
. ey
- HE I 1 e o | 300 e sems o
-, f - - e —o
10 = L 10 L - o—
s . ] e 150 e e—
Allliz 12| 7] i
LR | Q o4
[ 250 500 5000 10000 15000 5000 10000 15000

Scatterplot With Transformations (T=3 and T=3.5)
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Scatterplot With Transformations (T=4 and T=4.5)
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Fig. 4.2. A pictorial representation of data sets used.
Fig. 4.2 shows that as the value of T increases from 2.0 to 4.5 with a step of 0.5, the

scatterness in the datasets becomes wider and wider, and breaks the assumption of
linearity. Figure 4.3 shows dot plots of the values of the transformation T and the
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sample size n for which the proposed two-step estimator remains more efficient than the
linear regression estimator and the absolute value of the relative bias remains less than
10%. There are more situations when the value of T is close to 4.5 and sample size n is
close to 20 where the proposed estimator performs better than the linear regression
estimator. Singh and Arnab (2011) reported that the estimator of Wu and Sitter (2001) is
likely to remain less efficient if sample size is large, and the same conclusion seems to be
true in the case of the proposed two-step calibration estimator.

Dotplot of T, n
T
2.0 2.4 2.8 3.2 3.6 4.0 4.4
n
’ ! l ' ‘ l x
24 30 36 42 48 54 &0
Each symbaol represents up to 6 observations.

Fig. 4.3. Practicable values of T and nwhere proposed estimator performs well.

Figure 4.4 is devoted to displaying the values of K and the values of the percent relative
efficiency (RE) of the proposed two-step estimator with respect to the traditional linear
regression estimator. The presentation shows that the choice of K ranges between 0.980
and 0.996. The percent relative efficiency (RE) value changes between 103% and
108.8%.

Dotplot of K and RE values
K
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Each symbol represents up to 2 observations.

Fig. 4.4. Practicable values of K and percent relative efficiency.

Table 4.1 provides descriptive statistics of the values of the unknown parameter K
which are used in the simulation study. Out of 386 cases, where the two-step estimator
performs better, the minimum value of K is found to be 0.9800, maximum value to be
0.996 and with a median value to be 0.9890. The average value of K is 0.9883 with a
standard deviation of 0.00439.
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Table 4.1. Choice of value of K .
Variables freq Mean

K 386 0.9883

Min
0.9800

StDev
0.00439

Med
0.9890

Max
0.996

Table 4.2 provides descriptive statistics of the values of the population correlation
coefficients pyy, py,, py; and p;y which are used in the simulation study. Recall that
as pointed out by Singh and Arnab (2011), only the value of the weighted correlation
coefficient p;y is important where comparing estimators with unequal probability
sampling schemes. Out of 386 cases, where the two-step estimator performs better, the
minimum value of p;y is found to be 0.52965, maximum value to be 0.70000 and

median value to be 0.53800. The average value of p;y is 0.52965 with a standard

deviation of 0.08504. Thus the proposed two-step estimator is unlikely to perform better
than the linear regression estimator if the value of the correlation coefficient is more than
0.70 in a population similar to the one being considered here.

Table 4.2. Choice of values of pyy, px;, py, and p;y .

Variables freq Mean StDev Min Med Max
Py 386 0.60003 | 0.04913 | 0.54800 | 0.58200 | 0.72800
Oxz 386 0.56397 | 0.04987 | 0.51100 | 0.54600 | 0.69400
Py 386 0.71830 | 0.04171 | 0.67300 | 0.70400 | 0.82300
P;y 386 0.52965 | 0.08504 | 0.33100 | 0.53800 | 0.70000

Pictorial presentations of such populations are given in Figure 4.2. It shows that if a
dataset has a non-linear pattern, then the proposed two-step calibration method estimator
is found to perform better than the linear regression estimator. It reconfirms the
statement of Singh (2012) that in the presence of linear trend there is no estimator which
is better than the linear regression estimator. Table 4.3 provides descriptive statistics of
the values of the percent relative efficiencies RE(1,5), RE(2,5), RE(3,5) and RE(4,5).
Out of 386 cases, where the two-step estimator attains the minimum value of RE(4,5) to
be 103.50%, maximum value to be 108.80% and with a median value to be 104.50%. The
average value of RE(4,5) is 104.77 with a standard deviation of 1.32.

Table 4.3. Values of RE(1,5), RE(2,5), RE(3,5) and RE(4,5).

Variables freq Mean StDev Min Med Max
RE(1,5) 386 1355.7 71.2 1163.9 1353.3 1531.8
RE(2,5) 386 486.40 122.12 326.90 447.05 962.40
RE(3,5) 386 111.87 2.43 107.30 111.80 118.60
RE(4,5) 386 104.77 1.32 103.00 104.50 108.80

Figure 4.5 gives histograms of the percent relative efficiency values for the proposed
two-step estimator with respect to the ratio (or RE(1,5)), GREG (or RE(2,5) ), Wu and
Sitter (2001) (or RE(3,5) ) and the linear regression estimator (or RE(4,5) ).
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Histograms: RE(1,5), RE(2,5), RE(3,5), RE(4,5)
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Fig. 4.5. Histograms of percent relative efficiency values.

Figure 4.6 is devoted to study the percent relative bias (RB) values of the five estimators
considered in the simulation study.

Individual RB Value of the Ratio, GREG, WS, LR, Proposed (Two-Step) estimators
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Fig. 4.6. RB values of the five estimators considered.

Table 4.4 shows descriptive statistics values of the percentage relative bias (RB) in the
five estimators considered in the simulation study.

Table 4.4. Percent Relative Bias (RB) values.
Variable | freq Mean StDev Min Med Max

Ratio 386 3.5160 1.5506 | 0.8860 | 3.1525 | 8.9590
GREG 386 2.5744 1.0913 | 0.7820 | 2.3030 | 6.1860
WS 386 1.2241 | 0.5288 | 0.4400 1.0845 | 2.9240
LR 386 1.2483 | 0.5413 | 0.4520 1.1015 2.9880
Proposed | 386 0.2840 | 0.5476 | -0.6200 | 0.1845 | 2.2860

The percent relative bias (RB) value in the ratio estimator varies from 0.8860% to
8.9590% with a median value of 3.1525%; in the GREG estimator varies from 0.7820%
to 6.1860% with a median value of 2.3030%; in the Wu and Sitter (2001) estimator varies
from 0.4400% to 2.9240% with a median value of 1.0845%; in the linear regression
estimator varies from 0.4520% to 2.9880% with a median value of 1.1015%; and in the
proposed two-step estimator varies from -0.6200% to 2.2860% with a median value of
0.1845%. Results in Table 4.4 show that the percent relative bias remains negligible in
all the estimators considered.
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