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Abstract
In sample surveys variance generally decomposes into the sum of two terms: variance among

primary units and variance within primary units. If the secondary units are composite, variance
within a primary unit can be decomposed into variance among secondary units and variance within
secondary units. This can be extended as necessary. This decomposition is the central idea in
stratified sampling, cluster sampling, regression and ratio estimation, and ANOVA. It can also be
applied to cases where the primary units overlap.
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1. Introduction

A population is divided into subpopulations or clusters, and we study a variable y on this
population. The variable y has a mean µ and a variance σ2. The variance σ2 can be
decomposed into two parts: the variance within clusters and the variance between clusters.

Our theme is how this decomposition takes place for the variable y on the population
and for estimators of µ on random samples from the population. We consider multiple
settings: clusters, strata, regression/ratio, and overlapping clusters.

Our subject matter is thus Analysis of Variance or ANOVA, and the role it plays in sam-
ple surveys. In ANOVA we apply multiple treatments and compare the resulting values of a
variable y. Treatments can be likened to clusters or strata, and we undertake a comparison
of treatments by ANOVA to determine whether the treatments are significantly different
from one another. The basic equation is:

Σi,j(yij − y)2 = ΣiΣj(yij − yi)
2 + ΣiNi(yi − y)2

or

SST = SSW + SSB.

HereNi is the size of the i-th treatment group. The above equation is the basis for ANOVA.
Under assumptions of normality and independence we study the ratio SSB/SSW properly
scaled, expecting it to behave as an F distribution if the treatments are indistinguishable.

We propose that analysis of variance also happens to be the fundamental theme in
survey sampling (other than simple random sampling). In ordinary ANOVA we are testing
hypotheses whereas in sample surveys we are estimating parameters, but the differences
obscure the commonality. We make no claims for the originality of this observation. See,
for example, Särndal et al. [2, p. 261 and p. 281]. Our presentation is merely a review
and recasting of familiar ideas in this light. Standard formulas that appear below are to be
found in Cochran [1].
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2. Clusters and Strata

We consider a finite population on which a variable y is defined, the population being
divided exhaustively into k mutually exclusive subpopulations, which for the moment we
call “clusters.”

The variable y has mean E(y) = µ and variance σ2 = E((y − µ)2). The deviation
y − µ can be rewritten as y − µ = y − µi + µi − µ where y is a value taken on a unit in
the i-th cluster and µi is the mean of y on the i-th cluster (and σ2

i is the variance of y on the
i-th cluster). Then it is easily seen that:

σ2 =
ΣiNiσ

2
i

N
+

ΣiNi(µi − µ)2

N

where Ni is the size of the i-th cluster. This equation is the sample survey version of
SST = SSW + SSB.

If we attempt to estimate the population mean µ by the sample mean y of a simple
random sample without replacement from the population, we arrive at the familiar results:

E(y) = µ

and

V (y) = (
N − n

N − 1
)
σ2

n
= (

N − n

N − 1
)
1

n
(
ΣiNiσ

2
i

N
+

ΣiNi(µi − µ)2

N
)

≈ N − n

Nn
s2 =

N − n

N

1

n
(Σi

ni − 1

n− 1
s2
i + Σi

ni
n− 1

(yi − y)2).

We see from the above that when a sample mean is used to estimate the population mean,
the variance of this estimator also divides into a portion that measures variance within
clusters and a portion that measures variance between clusters. In the last line we have
replaced the true variances by sample and subsample variances s2, s2

i , which are unbiased
estimates of the former. Of course yi and s2

i may not be available for some clusters unless
they are represented by at least one or two elements in the sample.

Another possible estimator for the population mean µ is

yw =
ΣiNiyi
N

provided that each cluster is represented in our random sample. In this case the familiar
result is:

E(yw) = µ

and

V (yw) = Σi(
Ni

N
)2(

Ni − ni
Ni − 1

)
σ2
i

ni

≈ Σi(
Ni

N
)2(

Ni − ni
Ni

)
s2
i

ni
.

Adjusting the weights of the subsample means eliminates the between component of the
variance. Stratification has resulted in the disappearance of a component of variance!

Use of yw has suppressed the between-cluster variance. The estimator works directly
with the individual clusters assigning them weights proportional to the cluster sizes. The
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only variability is that between the individual sample means and the individual cluster
means.

Of great importance in this setting is that the clusters are exhaustive and all clusters are
represented in the sample. In this situation we call the clusters strata, and we are engaging in
stratified random sampling. If some clusters are not represented in the sample, a customary
stratagem is to collapse clusters or strata so that each stratum is represented. The choice of
clusters or strata, and any collapsing are based on a principle of homogeneity: we would
like the within-cluster variance to be small so strata are chosen to be as homogeneous as
possible with respect to the variable y or its surrogates.

Another indispensable requirement for the use of yw is that the sizes Ni of each cluster
are known.

3. Regression and Ratio

Now let us consider regression. In addition to y, we suppose that another variable x is
available about which considerable information is available, and we consider a regression
of y on x. The least squares model for such a relationship is:

ŷ = A+Bx

where B =
σxy
σ2
x

and A = µy − Bµx and ŷ is the imagined component of y that depends
linearly on x.

The variance of y on the population, alrady computed above, can be thought of in terms
of clusters, one cluster corresponding to each value of x. Then the variance decomposes as
follows:

V (y) =
ΣxNxσ

2
y/x

N
+

ΣxNx(ŷ − µy)
2

N

where σ2
y/x =

Σfixed x
(y−ŷ)2

Nx
. The decomposed variance is here seen to be the mean within-

cluster variance plus a between-cluster variance. In the mean within-cluster variance the
quantity σ2

y/x can be thought of as the mean square error of y as an estimate of ŷ within the
cluster (fixed x value). The between-cluster variance is equal to

ΣxNx(ŷ − µy)
2

N
= B2σ2

x =
σ2
xy

σ2
x

.

We have decomposed the variance of y on the population into a component that repre-
sents variability for given x and a component that varies linearly with x. If the variability
of y with x is far from linear, then the within-cluster variances will tend to be large and
unstable.

Turning to estimation from a sample, we have two possible estimators based on the
population mean of x, µx, assumed known:

yB = y +B(µx − x)

and

yb = y + b(µx − x).

Here
B =

σxy
σ2
x
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and is assumed known, while

b =
Σ(y − y)(x− x)

Σ(x− x)2

is determined by summations over a random sample of n points (x, y). Then

E(yB) = µy,

and

E(yb) ≈ µy

if the sample size n is sufficiently large. In addition

V (yB) = (
N − n

N − 1
)
σ2
y −B2σ2

x

n

and

V (yb) ≈ (
N − n

N − 1
)
σ2
y −B2σ2

x

n
≈ (

N − n

N
)(
n− 1

n− 2
)
s2
y − b2s2

x

n
,

where the approximations are valid for n large.
In each of these cases we see that the variance of the regression estimate is adjusted

downward by removing a term of the form B2σ2
x (or b2s2

x). This is the term previously
identified with between-cluster variance. What is removed is variability due to mono-
tonic variation of y with x. What is left is within-cluster variability together with the
non-monotonic component of variation between y and x.

Turning to a ratio estimate of µy, we have many different estimators available. Ex-

amples ares yr1 = y
xµx, yr2 =

Σ y
x
n µx where the summation is over sample units, and

yr3 =
ΣiNi

yi
xi

N µi. The third estimator can only be used when all clusters or strata are
present in the sample, and their frequencies Ni and the mean of x on each are known. A
special case of this is when the clusters are the different values of x.

All of these estimators are biased but for large sample sizes (and large enough in each
stratum) they are approximately unbiased. The variance of yr1 is approximately the same
as that yB or yb, and the others have variances, too complex to report here, that attempt to
eliminate variance due to differences in strata or x values.

4. Overlapping Clusters

In the case of overlapping clusters we assume that the population is contained in the union
of the clusters. Suppose that the parameter of interest is µ̂ = ΣiNiµi

ΣiNi
. This parameter is the

mean of cluster means. In this case the variable y can be replaced by a new variable (y, i)
representing the value of y on a unit in the i-th cluster. Then the variable yo is defined to
be the value of y on a unit of this new population, namely, the set of units-with-clusters.
Furthermore

E(yo) = µ̂

and
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V (yo) =
ΣiNiσ

2
i

ΣiNi
+

ΣiNi(µi − µ̂)2

ΣiNi
.

Note further that if each element of the population is in exactly the same number of
clusters, then µ̂ = µ and V (y0) = V (y). In any case, the variance formula for V (y0)
decomposes the variance into within-cluster variance SSW and between-cluster variance
SSB.

The question is: what do we do if not all units are in the same number of clusters?
This question is a significant one since many times populations are given by lists. The
population is the union of the units in the lists but in general the overlap among lists may
be pronounced. Within a single list there may be ways to eliminate repetitions but when we
use many lists duplications in different lists can be a significant problem.

One example where this arises is when the population is intended to be all members
of a given profession. In this case the clusters may consist of the different professional
organizations that members of the profession belong to. If the population is households
with schoolchildren, the clusters may be schools. From each school we obtain the names
of parents, eliminating extra mentions of parents with more than one student in the same
school (or just removing any redundancies in the subsample from that school). However,
it is more difficult to account for overlaps between different schools. Another example is a
population of consumers, say, of a specialized item, with the clusters being different shops
that sell the item.

Here we do not give full details. However, the general approach in a population con-
sisting of k clusters is to divide the population into subpopulations consisting of those units
that belong to j clusters where j = 1, 2, ..., k. Then treat each subpopulation separately.
Consider the two quantities

Nij = the number of units

in the i-th cluster that belong to j clusters

µij = the mean of y on the units

in the i-th cluster that belong to j clusters.

From these two equations it is possible to compute both µ and µ̂, namely,

µ̂ =
Σi,jNijµij

Σi,jNij
and µ =

Σi,j
Nij

j µij

Σi,j
Nij

j

.

The variance of y for each subpopulation can be decomposed into between and within
components by cluster, and to some extent the analysis is like that for a double stratification
or two-way ANOVA. The kind of issue that we must be concerned with is whether reliable
estimates of Nij are available, and what to do when our sample contains no elements in the
i-th cluster that belong to j clusters. In fact it will often be the case that Nij = 0 for large
values of j and so our approach requires assumptions about values that can occur. In some
cases we will need to assume that Nij =

nij

n Ni, and this is an extra source of variability.
We close by mentioning one extreme case that sheds light on the decomposition of

variance that we have proposed. Suppose that each sample without replacement from a
population is considered to be a cluster. Then the number of clusters in our population is:
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k =N Cn and Ni = n for i = 1, ..., k

and the decomposition SST = SSW + SSB takes the form:

V (y) = V (y0) =
ΣiNiσ

2
i

ΣiNi
+

ΣiNi(µi − µ̂)2

ΣiNi

=
Σinσ

2
i

nNCn
+

Σin(y − µ̂)2

nNCn
=

Σiσ
2
i

NCn
+

Σi(y − µ̂)2

NCn

=
Σi

Σ(y−y)2

n

NCn
+ V (y) = E((

n− 1

n
)s2) + V (y)

=
n− 1

n

N

N − 1
σ2 +

1

n
(1 − n

N
)

N

N − 1
σ2

= σ2.

If our clusters are themselves random samples, then most of the variance is within-cluster
variance and only a small portion is between-cluster variance and that portion shrinks as
the sample size grows!
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