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Abstract:  

The work of this paper is prompted by the particular case of the Current Employment 
Statistics (CES) Survey conducted monthly by the U.S. Bureau of Labor Statistics. 
Besides estimates at the national level, the survey yields estimates of employment for 
numerous domains defined by intersection of industry and geography, providing 
important information about the current status of the local economy. Variances of the 
employment estimates are estimated from the sample. However, the sample based 
estimated variances can be unstable, especially in smaller domains. 

More stable variance estimates can be obtained using a model-based generalized variance 
function (GVF). The modeling is based on past years of the survey and, assuming a 
satisfactory model fit, the result can be applied to predict variances for the current period. 
However, some features of the design or population characteristics may change from one 
year to another, making it necessary to adjust the model parameters. We here give a 
method for evaluating the suitability to current data of a GVF model based on past years' 
data and suggest ways to calibrate the GVF to the current data. 
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1. Introduction 

1.1 Reasons for indirect variance estimation   

Sample based estimates of variances are usually unbiased or nearly so. However, there 
are reasons for avoiding estimating variances contemporaneously from the same data as 
is used for the point estimates: 

- such estimation may take considerable time, which makes it infeasible in a tight 
production timeline; 

- it may be desirable to have the measure of variability available and published ahead 
of the actual estimation; 

- even when the variance estimates can be easily produced in real time, variation in 
these estimates can be worrisome. It is often due to random noise and does not have 
good substantive explanation. 

Instability of the estimates is often related to the form of the distribution governing the 
data. Long tailed distributions are particularly prone to occasional extreme observations 
that can have undue effect on survey estimates. The variances could potentially be used 
in detecting outliers in the estimates. However, if the sample data contain extreme 
observations (as often happens in the establishment surveys), sample based variance 
estimates tend to be inflated. This creates a masking effect and renders such measures 
useless for detecting outliers in survey estimates. 

                                                           
1 Any opinions expressed in this paper are those of the authors and do not constitute policy of the 
Bureau of Labor Statistics 
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Conversely, if extreme observations happen to exist only in the non-sampled part of the 
population, the sample based estimate of variance understates the true variance. 

The result is that estimates of variance obtained from samples drawn from such outlier-
prone populations may be seldom “correct”, even though they are unbiased when 
averaged over all possible samples. The implication is that, without some sort of 
smoothing, these variance estimates cannot be used to characterize the quality of the 
point estimates.  For example, raw past year estimates cannot be applied to the same 
domains in the current year, even when the finite population characteristics and sample 
design remain unchanged. 

1.2 Issues in assessing quality of the indirect variance estimates  

Another kind of estimate of variance is the model-based generalized variance function 
(GVF). There is no underlying written-in-stone theory for developing a particular GVF. 
Generally, it is a modeling exercise, where a set of raw estimates of variances (or some 
function thereof) play the role of dependent variables. The independent variables are 
usually related to sampling design characteristics and may also include any available 
auxiliary information that is deemed appropriate. Domains considered for inclusion in the 
GVF modeling are grouped based on some perceived similarity; for example, domains 
included in the model may belong to the same industry; at times, determining the 
grouping itself may be a non-trivial task (Valliant 1992.) 

It is sometimes difficult to assess what can be considered a good model fit: as previously 
noted, the raw estimates involved in the modeling are very unstable and the instability 
can hardly be explained by the model. As a result, the usual goodness-of-fit statistics may 
not be informative. For example, the R-square in many real-life situations can be 
relatively low. Some may make the claim that one should not be concerned with 
explaining random noise. On the other hand, the unexplained variation may indeed have 
some underlying meaning that was not explained with the model at hand (see related 
discussion in Cho et al. 2002)  

Our proposed solution for assessing model fit comes from the confidence interval. Upon 
obtaining the confidence interval coverage properties of the resulting GVF, we could 
evaluate the result without using the traditional goodness-of-fit measures. The approach 
explored in this paper concerns the possibility of evaluating coverage in real time, 
without knowing the true population value, and using a particular pivotal quantity. 

Another twist related to the same idea is an adjustment of the GVF using the 
aforementioned pivot. In surveys repeated over time, the modeling involved in 
developing GVF usually is based on variances obtained from past years. While it is 
logical to expect certain continuity of the variances from one year to another, such GVF 
potentially would fail to account for true changes in the underlying population variability. 
For example, it is conceivable that the underlying population variance of the employment 
data vary during rapid economic growth or decline, or during periods of economic 
stability. Thus, we also explore evaluation of the applicability of GVF obtained from past 
years to current data and possible adjustments to it. 

The evaluation procedure is described in Section 2. Adjustments in the case of under- or 
over-coverage of the confidence intervals are considered in Section 3. Section 4 describes 
a simulation study based on repeated samples from the real population and includes the 
simulation results and discussion. 
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2. The evaluation procedure 

Suppose we are given variance estimates for a set of G  independent domains. These may 
be, for example, GVF based variances with parameters estimated from past years of the 
same survey or some sort of smoothed variance estimates, or indeed variances estimated 
using any available direct or indirect method. The first task in the evaluation of variances 
is to compare the coverage properties of the corresponding confidence intervals.  

The plan is to form a pivotal quantity in each domain and evaluate its properties based on 
a set of domains. To form the pivot, we obtain replicate estimates from the sample similar 
to the way it is done in a replication based variance estimation procedure. The difference 
from the whole-scale replication exercise is that, since we use the assumption that the 
pivots in the G  domains are independent, as little as a single replicate along with the 
original sample estimate will suffice here.  

To clarify the idea, let us consider the following simple setup. 

Let 1,..., ny y  be a sample of independent measurements with  
1

ˆ
n

j
j

N
y y

n 

  , the estimate 

of the population total.  

Suppose n  is an even number. The set can be randomly divided into halves. Denote by 
1  and 2  the sets of units in half 1 and 2 for a given random subdivision  . 

Let 1
1

2
j

j

N
y y

n


   and 2
2

2
j

j

N
y y

n


  , so that  1 2

1
ˆ

2
y y y   . 

Next, for a chosen constant K  (say, 0.5K  ; this is similar to Fay’s factor in the 
balanced repeated replication procedure), let us adjust the weights of units in half 1  by 
2 K ; adjust the weights of units in 2  by K .    

Let   1 2

1
ˆ 2

2
y K y Ky       . The proposed approach is based on the readily seen 

fact that quantity    ˆ ˆ 1y y K    has mean 0 and variance  ˆVar y . 

Suppose now we have 1,...,g G  independent domains and measurements  g
jy , 
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ˆ
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   for domain g and     ˆg gv Var y the true variance of  ˆ gy . 

Let  ˆ gy  be a replicate estimate for domain g . For example, this can be a replicate from 

the setup similar to balanced half sample replication (BHS). Again, let K  denote the 
Fay’s factor that is often used with the BHS method (Judkins 1990; Rao and Shao 1999.) 
We focus on this setup because this is the way variances are estimated in the Current 
Employment Statistics (CES) survey that motivated the research. Alternatively, the setup 
may be similar to the one used in the bootstrap scheme as described in Rao et al. (1992). 

Consider a set of G  independent observations  
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1

g g
g y y

z
K

 



.        (1) 
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For a large enough sample in a domain, we usually assume normality of  ˆ gy  when 

constructing confidence intervals. Thus, the same normality assumption holds for  gz : 

    ~ 0,
ind

g gz N v .        (2) 

Next, suppose a set of proposed estimates  g  of variances  gv is available from an 

earlier study. To evaluate  g  based on a group of domains 1,...,g G , we compute the 

percentage of times interval  ,t t   contains  

   g gz  ,         (3) 

where t  is a quantile of the normal distribution. The nominal coverage is 

    1 2t t       , where  is the standard normal distribution function. 

Remark: In the case of sampling without replacement, when forming  gz  we need to 

account for the fact that the variance under evaluation accounts for a non-negligible 
sampling fraction. 

3. The adjustment procedure 

If the coverage of the confidence intervals described in the previous section deviates from 
the nominal level, we may think of some sort of adjustment to the set of proposed 

variances  g . In this Section, we consider several alternatives. 

3.1 A simple adjustment 

Let us assume that     g gVar z  , where factor   is not domain-specific (Model 1).  

An unbiased estimate of   can be found by solving equation 
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1

1
1

gG

g
g
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G 

 ,        (4) 

which gives us 

 

 

2

1

1
ˆ

gG

g
g

z

G




  .        (5) 

Note:  The normality of  gz  is not required here.  

3.2 The model when the direct estimates of variances are available 

In this subsection, we assume that the direct estimates of variances, denoted  gv , are 

available. In addition, we assume the design variance  gV  of these estimates is known. 
As discussed in the introduction, such a favorable setup is not expected in real time. 
Nevertheless, we considered this ideal situation and the corresponding estimator in our 
simulation study of Section 4.  
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In situations where the current year’s direct estimates are not available, we would view 
the procedure as follows. The development in this subsection can be considered as an 

updating step for an “old” set of functions  g  based on the most recent available set of 

direct variance estimates (usually, the year immediately preceding the current one). The 

use of historical  g ’s (rather than modeling “from the scratch”, i.e., from the updated 

set of the auxiliary variables) aims at ensuring continuity of the GVF. This step can be 

followed by the contemporaneous evaluation and adjustment based on the  gz ’s, as 

described in earlier subsections.   

Model 2: 

          | ~ ,
ind

g g g g gv V   ,      (6) 

   2~ , .
ind

g           (7) 

In reality, the variance  gV  is not known; for this research, we approximated it by using 

simulations based on repeated sampling from past years. 

The marginal expectation of    g gv   is 
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 and an unbiased estimate of   can be found as 

 

 
1

1
ˆ

gG
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.         (9) 

Our goal is to find a set of optimal weights  g Cw  that minimize the mean squared error 

of the following composite estimator (superscript C stands for “Composite”):  

          ˆ ˆ1 ,g C g C g g C gv w v w v          (10) 

where component  ˆ gv  is the estimate of variance based on the adjustment factor given by 

(9): 

   ˆˆ g gv  .         (11) 

The optimal weights are expressed in terms of the mean squared errors of the estimators 
involved in the composite form (10) (see Rao 2003, pp. 57-58). In our case, the weights 
are 
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To find an estimate of the mean squared error of  ˆ gv , we have 

         2 2
2 ˆˆ g g g gE v v E     .      (13) 

Note that 

            2 22
ˆ ˆ ˆ2 .g g gE E E E                     (14) 

Let us consider each term of the above expression:  

(a)    
  

 

 

 
2

2 22 2
1 1

1 1
ˆ ˆ

g gG G
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Var v V
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G G
  

  

    


.   (15) 

(b)      2
2g gE Var      ,      (16) 

and thus 2  can be estimated as 

  2
2

1

1
ˆ ˆˆ

G
g

gG
  



  ,       (17) 

where      ˆ g g gv    and ̂  is defined by (9). 

(c) The covariance term is zero: 

          ˆ ˆ | 0g gE E E                       (18) 

Weights  ˆ g Cw  are obtained by using (15), (17), and (18) to estimate (14). 

4. Simulation using repeated samples from real population 

In this Section, we describe the simulation experiment that we carried out in order to 
assess the usefulness of the proposed approach. We focus on the monthly estimation of 
employment from the Current Employment Statistics (CES) survey of the U.S. Bureau of 
Labor Statistics (BLS). 

For the simulation, we use the population of businesses as reflected in the Quarterly 
Census of Employment and Wages (QCEW) dataset. The QCEW dataset closely matches 
the target population of the CES survey, and also provides the sampling frame and 
benchmark values for the CES. The QCEW contains administrative data for all 
businesses covered by the Unemployment Insurance program. It is released quarterly, 
several months after the publication of the corresponding CES estimates (which are 
designed to give more timely information).  Although there are some differences between 
the available historical QCEW employment data and the population that was actually 
targeted by CES, these differences are considered minor and disregarded for the purposes 
of this simulation study. 
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We start with a brief overview of the CES sampling design and estimation. Next, we 
describe the simulation setup and present results followed by discussion. 

4.1 CES sampling design and variance estimation 

A stratified sample of unemployment insurance (UI) accounts is selected from the QCEW 
based frame. Strata are defined by the 50 States and DC, industrial supersectors (high 
level industrial aggregations based on North American Industry Classification System, 
NAICS), and employment size classes of UI accounts. The size class is determined based 
on the over-the-year maximum of the monthly total employment for each UI account. 
Sample allocation is determined to minimize, for a given cost, the variance of the over-
the-month employment change at the State level. Within strata, Metropolitan Statistical 
Areas (MSA) define an additional, “implicit” level of stratification; units are selected 
systematically to ensure that the MSA sample sizes are proportional to the number of 
population units in MSAs. The sample is selected annually using the first quarter QCEW-
based frame and is updated with the sample of new businesses (“births”) when the third 
quarter of QCEW becomes available.  

Establishments under a UI account may belong to different industries. The sampling 
procedure is based on the dominant industrial supersector ascribed to the UI account, 
while estimation is done using the establishment-based industry definition. 

In this paper, we consider variances at month m  in domain g  for the estimate of the 
relative over-the-month change in employment level. These variances can be sufficiently 
approximated by the variance of the ratio of two survey weighted sums: 

     
 

 1,

1

ˆ
ˆ ,

ˆ

g
g m

m m g
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      (19)  

where  
  ,

ˆ
g

m

g
m j j mj S

Y w y


  and  
 1 , 1

ˆ
g

m

g
m j j mj S

Y w y 
 ; ,j my  and , 1j my   are 

employment levels reported by a unit j  at months m  and 1m   and jw  is its  sampling 

weight;  g
mS  is a subset of units in the domain that report positive employment in both 

months.  

CES uses a replication-based Repeatedly Grouped Balanced Half Samples (RGBHS) 
method for variance estimation. The method is an extension of the Balanced Half 
Samples (BHS) methodology for the case where there are more than two sampled clusters 
per stratum (Rao and Shao 1996). In addition, instead of using a half of the sample for 
each replicate estimate, CES employs Fay’s method (Judkins 1990), thus using the whole 
sample with perturbed weights (the perturbation factor being 0.5). 

4.2 The simulation setup 

From the sampling frame constructed based on the third quarter of 2009 QCEW data, we 
selected 1,000 samples using the same sampling design used in CES. From each sample, 

we obtained estimates  
1,

ˆ g
m mR   at the State supersector level for 12 months from October 

2010 through September 2011.  

For each of these estimates, we computed estimates of their variances,  g
mv . During the 

actual production of estimates, the variances are computed using replication. For this 
simulation exercise, however, we employed a Taylor linearization formula. This provides 
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results close to the replication outcome  at a far cheaper computational cost, which is 
helpful for large-scale simulations. 

Let  
, , 1, , 1

ˆ g
j m j m m m j mu y R y   ,       (20) 

The Taylor linearization based variance estimate of  
1,

ˆ g
m mR   is 
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, ,2
1 1
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1 1
1 ,

1ˆ

hnH
g h h

m l m h m
g h lh h h
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n N
v u u

N n nY  


   
        

     (21) 

where 1,...,h H  are strata; hn  and hN  are respectively the numbers of sample and 

population UI accounts in stratum h ;  , ,l m j m j g
j l

u u I 


  is the cluster l  total for 

domain g ;  j gI   is the indicator that establishment j  belongs to domain g ; ,h mu  is the 

stratum average of ,l mu :  , ,
1

1 hn

h m l m
lh

u u
n 

  . 

For this simulation, the set of domains is defined as a set of States inside a given 
supersector. Since we have 13 supersectors, there are 13 different sets of domains in a 
given month. For each set, consider the following linear model:   
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    (22) 

where  

   
12

1

1

12
g g

m
m

v v


   ,        (23) 

 gr  is the over-the-year average number of reporting UI accounts in the domain;  
0

gT  is 

the domain true population level at the benchmark month of a given year. (Alternatively, 
we could have taken the month specific variances in place of the over-the-year averages. 
The current version works sufficiently well and is also convenient for demonstration of 
how the proposed adjustment works when a particular month deviates from the average.)  

We fit the above model using a robust linear regression function available in R software 
and obtain estimates of parameters for each repeated sample. The set of GVF functions is 
defined as 

    
 

 

2

0 1 0 2

0

ˆˆ ˆ ˆexp log log ,
2

g
g g

g

r
T

T

   
  

         
    (24) 

where 2̂  is the model MSE. 

We select 1000 samples from the third quarter of the 2010 frame, which is the frame used 
in the following year. The GVF set for this year is defined as 

    
 

 

2
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* 0 1 0* 2
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where subscript “*” in  
*

gr  and  
0*

gT  signifies that the information is specific to the new 

year; the model parameters, however, are estimated using the “old” year sample. 

Next, we obtain direct variance estimates using this “new” year sample. Using repeated 
samples, we obtain the empirical variances of the estimates of variances and use them as 

 gV  of (6) in Model 2. Thus we obtain the set of composite estimates 

          
*

ˆˆ 1 ,g C g g g g
m m m m mv w w v           (26) 

where  
 

   

22
*

22
*

ˆ
.

ˆ

g
g m

m g g
m m

w
V

 
 




 

For each month m , we form   g
mz  variables based on the “new” year and compute 

adjustment for GVF  
*

g  using ˆ
m  of (5), as described in Section 3.1. Using  g

mz , we 

also compute coverages, as described in Section 2, for each of the alternative variance 
estimators. 

We evaluate the results for nine months of the “new” year. The results are summarized in 
the next subsection. 

4.3 Simulation results 

Below is the notation summary of the variance estimators considered in the 
simulation: 

 ˆ g
mE  Estimator 

 g
mv  Direct 
 

12
g

mv   Empirical, m-12 
 

12
g

mv   Direct, m-12 
 gv  Direct, last year average
 
*

g  Unadjusted GVF 
 
*

ˆ g
m   Adjusted GVF 
 ˆ g C
mv  Composite 

 

Tables 1-3 show properties of several estimators of variances, based on the 
simulation results for a single month in the “current” year (January of 2012.) 

Let   
,ˆ g

m sy  denote a point estimator, based on simulation run s , of the true population 

value  g
my  for domain g  at month m . The true coverage of Table 1 is calculated as 

      10001 1
, ,1 1

ˆˆ1000 1.96
G g g g

m s m m ss g
G I y y E 

 
   , where  

,
ˆ g

m sE  is the variance 
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estimate based on simulation run s . Similarly, the z-estimated coverage is calculated 

as     10001 1
, ,1 1

ˆ1000 1.96
G g g

m s m ss g
G I z E 

 
  . 

In Table 1, we observe that although the past year empirical variances provide close to 
nominal average coverage, the corresponding direct variance estimates give low 
coverage. Undercoverage is also observed for the confidence intervals which are based 
on the averaged (across 12 months) direct variance estimates, as well as for the GVF 
before the adjustment. The confidence intervals based on the adjusted GVF and the 
composite estimator provide satisfactory average coverage. 

Table 1. Coverage properties of confidence intervals, for 95% nominal.  

(“T” denotes true coverage over the repeated samples; “Z” denotes z-estimated coverage 
averaged over repeated samples.) 

Industry 10 20 31 32 41 42 43 50 55 60 65 70 80 

Direct T 90 95 94 93 94 94 93 91 94 94 95 95 95 

Z 87 94 93 91 95 94 91 90 95 92 93 92 95 

Empirical,  

m-12 

T 94 96 96 94 95 95 95 95 94 95 95 95 95 

Z 89 95 94 90 95 94 92 94 95 94 93 93 94 

Direct, m-12 T 83 93 92 89 89 93 89 83 89 91 92 94 92 

Z 79 92 91 86 89 92 86 83 89 90 89 91 91 

Direct, last 
year average 

T 84 90 90 87 85 86 89 84 85 85 89 94 91 

Z 80 89 87 84 85 83 86 83 85 82 87 91 90 

Unadjusted 
GVF 

T 88 91 91 88 86 87 91 89 87 85 89 94 91 

Z 85 90 88 87 86 84 89 87 88 83 87 92 91 

Adjusted GVF T 94 95 95 93 93 95 95 93 93 94 95 96 94 

Composite T 93 95 95 94 95 95 95 93 94 94 95 95 95 

 

Table 2 shows the mean of respective variances relative to the mean of the direct variance 

estimates, computed as    1

1

G g g
m mg

G E v
 , where    10001

,1
ˆ1000g g

m m ss
E E


   is the 

empirical mean for variance estimator  ˆ g
mE  and  g

mv  is the empirical mean of the direct 

variance estimator (which coincides with the empirical variance, since the direct variance 
estimator is unbiased.) 

In most industries, the last year averaged direct variance estimates were somewhat lower 
than the current year variances. As expected, this property of the mean variance estimates 
translates into the lower mean of the unadjusted GVF. The lower mean may explain the 
cases of undercoverage shown in Table 1. The means of the adjusted GVF and the 
composite estimator are close to the current year's variance.  

On the other hand, in almost all industries, true (empirical) variances for the same month 
of the past year are slightly higher than the current year variances. The same is true for 
the past year direct variance estimates. Thus, undercoverage of the past year direct 
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variances cannot be explained by the lower mean. Discussion of the reasons for 
undercoverage in this case is given in Section 4.4 below. 

 

Table 2. Mean of respective estimates of variances relative to the mean of the direct 
estimates, averaged across States 

Industry 10 20 31 32 41 42 43 50 55 60 65 70 80 

Direct 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Empirical,  

m-12 
1.1 1.1 1.1 1.0 1.2 1.1 1.1 1.2 1.1 1.1 1.1 1.1 1.0 

Direct, m-12 1.0 1.1 1.1 0.9 1.2 1.1 1.1 1.0 1.1 1.1 1.1 1.1 1.0 

Direct, last 
year average 

0.8 0.9 0.9 0.7 0.7 0.8 0.9 0.9 0.7 0.8 0.8 1.0 1.0 

Unadjusted 
GVF 

0.8 0.8 0.8 0.7 0.6 0.8 0.8 0.6 0.7 0.7 0.8 1.0 0.9 

Adjusted GVF 1.0 1.0 1.0 0.9 0.9 1.1 1.0 0.7 0.9 1.0 1.0 1.1 1.0 

Composite 0.9 1.0 1.0 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 1.0 

 

Table 3 shows relative variability of the variance estimators, as 

      1

1
ˆG g g

m mg
G sd E sd v

  , where        21000

,1
ˆ ˆ 999g g g

m m s ms
sd E E E


  .  

The GVF-based and composite estimators are substantially less variable than the direct 
estimator. 

 

Table 3. Variability of respective estimates of variances relative to the variability of the 
direct estimates, averaged across States 

Industry 10 20 31 32 41 42 43 50 55 60 65 70 80 

Direct 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Empirical,  

m-12 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Direct, m-12 1.3 2.5 2.4 1.3 1.8 1.4 4.4 3.7 2.3 3.5 2.0 4.1 1.7 

Direct, last 
year average 

0.6 1.9 0.8 0.6 0.4 0.7 1.0 1.3 0.8 1.1 0.6 2.4 1.9 

Unadjusted 
GVF 

0.4 0.1 0.1 0.2 0.0 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.1 

Adjusted 
GVF 

0.8 0.6 0.6 0.6 0.2 0.6 0.6 0.4 0.4 0.4 0.7 1.0 0.5 

Composite 0.9 0.6 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.8 0.6 
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As noted above, Tables 1-3 display the average coverage across all domains in each 
industry for a particular month. Table 4 displays the distribution of coverage across 
domains and months. It shows the number of cases where the observed coverage is below 
90% (for 95% nominal). For the true (empirical) variances, there are only a few low-
coverage cases. However, for the variances that are based exclusively on the past data, 
we observe a large percentage of such cases. This effect is observed even with the true 
(empirical) variance of the same month of the past year. Estimators using current year 
information, such as the direct variance estimator and the composite estimator have 
significantly fewer low coverage cases. 

Table 4. Number of domains with CI coverage lower than 90% (95% nominal) 

Industry Direct Empirical, 
m-12 

Adjusted 

GVF 

Composite Empirical Out of 

10 148 76 112 86 3 396 

20 7 39 35 15 1 396 

31 29 50 74 30 0 432 

32 54 84 70 46 0 432 

41 20 36 63 22 0 459 

42 8 42 40 13 0 459 

43 32 65 71 32 1 459 

50 118 86 86 84 3 459 

55 11 61 89 21 0 459 

60 17 43 47 21 0 459 

65 21 60 52 20 0 459 

70 21 38 20 14 0 459 

80 8 34 39 10 0 450 

 

An alternative visualization the distribution of coverage is shown in Figure 1. The plot 
shows the distribution of coverage across domains in industry 42 (Retail Trade.) A point 
on the plot corresponds to a States at a given month (out of the 9 months considered in 
the simulation.) The direct variance estimator coverage (black dots) is distributed around 
the 95% line and is mostly above the 90% reference line. Similarly, the composite 
estimator coverage (blue squares) is distributed around the 95 % line, with only 13 cases 
found below the 90% line. The adjusted GVF (red triangles), however, has 40 cases 
below the 90% coverage. Similarly, a high percentage of undercoverage, 42 cases below 
90%, is observed when the true (empirical) variance from the same month of the past 
year (green diamonds) is applied to the current year. 
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Figure 1. Confidence interval coverage in Industry 42 (Retail Trade) 

4.4 Discussion 

As noted in Section 4.3, confidence intervals that are based on the past year direct 
variance estimator provide low average coverage, even when they are slightly longer on 
average (Tables 1 and 2.) We conjecture that this effect is due to the properties of the 
employment data distribution. The distribution of the monthly employment change is a 
long-tailed distribution, prone to the appearance of extreme observations. The direct 
variance estimates depend on the realized sample. Since extreme observations occur 
randomly and generally may appear in one domain in the past but in a different domain in 
the current year (i.e., a different realized set of extreme observations across domains and 
years), the past year direct variance estimates are not suitable for the current year. 

To demonstrate the phenomenon, we set up the following simple simulation. 
Observations are generated from a contaminated normal distribution  

  2~  0.03 (0,1) 0.97 (0,10 ),
iid

g
jy N N   

for a set of 50G   domains; 1,...,g G ; 1,..., .j n  

For each domain, we compute the mean,    1

1
,

ng g
jj

y n y


   and the direct sample 

variance of the mean,          211

1
ˆ 1

ng g g
jj

v y n n y y



   . We then randomly re-

assign the variances to the domains. We repeat this procedure 1,000 times and compute 
the percent of the confidence interval coverage for each version of the variances. The 
result is given in Table 5. The confidence intervals based on the direct and true variances 
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have approximately nominal coverage. However, the confidence intervals based on the 
reshuffled variances (standing for the “past year variance” situation) give low coverage. 

Table 5. Average CI coverage  in the case of the contaminated normal distribution 

 Ave coverage (95% nominal) 

n Direct True Reshuffled 
30 96 94 83 
50 96 94 85 

100 96 95 89 

Next, we attempt to explain the case of the observed undercoverage in a large number of 
domains as exhibited in Table 4. Our simulations of Section 4 use a fixed population for 
each year. This means that the number of extreme observations falling in each domain is 
also fixed for a particular year. However, in subsequent years the extreme observations 
may be randomly redistributed across the domains. It is generally not possible to predict 
the pattern of “reassignment” of extreme observations to domains in a new year. If the 
estimates of variances are based solely on the past data, domains where the percentage of 
extreme observations is higher in the current year are at risk of having a low coverage. 
Note that even the true (empirical) variance from the past year has this same property. 

To illustrate this, we use the same simulation set up as describe above, in conjunction 
with Table 5. The GVF in this case is simply the average of the direct variance estimates, 

 1

1
ˆ

G g

g
G v 


  . Although we repeat the simulations 1,000 times, we keep the number 

of extreme observations fixed in each of the G domains. The result is presented in Table 
6. For the direct variance estimator, there are no domains where the coverage is below 
90%. However, the true variance and the GVF, have a substantial number of domains 
having the low coverage. On average, on the other hand, all the estimators provide the 
nominal coverage. 

Table 6. Average CI coverage  and percentage of domains with low coverage, 
in the case of the contaminated normal distribution 

 Ave coverage (95% nominal) Percent of groups with coverage < 90% 

N Direct True GVF Direct True GVF 
30 96 94 94 0 21 24 
50 96 94 94 0 18 18 

100 96 95 95 0 17 17 

Summary 

We proposed a method of evaluation and adjustment of a previously designed 
GVF using the pivotal quantity obtained from the current sample data. The GVF 
based variances tend to be more stable than the direct variance estimates, and they 
also have the advantage of being available before the actual estimation. However, 
the GVF estimates may be biased. The bias can be evaluated using the proposed 
pivotal quantity method. Under certain assumptions, it is also possible to adjust 
the variance estimates to reduce the bias. 

If the data distribution is prone to extreme observations, direct variance estimates 
are correlated with the point estimates. In such a case, even if the true variance is 
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the same in the past and current years, the confidence intervals based on the past 
year direct variance estimates are not applicable for the current year, as they 
would result in low coverage. 

If extreme observations appear randomly across domains, true variances from the 
past year work on average, over all domains; however, simulations based on 
repeated samples from the fixed finite population for a given year would produce 
a number of domains with the low confidence interval coverage. The same 
phenomenon is also observed with the GVF estimates. This effect creates 
difficulties evaluating the estimates: the simulation results neither produce a 
definitive reassurance of the quality of the variance estimator nor indicate a 
problem. 

The estimates based on the composite estimator represent a compromise between 
the unbiased direct and stable GVF-based estimates. The downside of the 
composite estimator is that it is not available before the actual estimation process. 
It also assumes knowledge of the variance of the direct variance estimates.  

Consider the case where direct variance estimates are available for the year of 
interest. As noted before, in the long-tailed distribution these variance estimates 
are correlated with the point estimates. A manifestation of this is wider 
confidence intervals when extreme observations are present in the sample.  On 
one hand, the wider intervals have a greater chance of covering the true value. On 
the other hand, they mask outliers in the point estimates; in this sense, the direct 
variance estimates hardly provide a satisfactory measure of quality of the point 
estimates, even though they are unbiased. 

References 

Bureau of Labor Statistics (2011). Employment, hours, and earnings from the 
establishment survey. Chapter 2 of BLS Handbook of Methods, U.S. Department of 
Labor, http://www.bls.gov/opub/hom/pdf/homch2.pdf 

Cho, M. J., Eltinge, J. L., Gershunskaya, J. and Huff, L. (2002). Evaluation of the 
Predictive Precision of Generalized Variance Functions in the Analysis of Complex 
Survey Data. In JSM Proceedings, the Section on Survey ResearchMethods. American 
Statistical Association, 534-539. 

Judkins, D.R. (1990). Fay’s method for variance estimation. Journal of Official Statistics 
6(3), 223–239. 

Rao, J.N.K. (2003). Small Area Estimation. JohnWiley & Sons, Hoboken, New Jersey. 

Rao, J.N.K., Shao, J. (1996). On balanced half-sample variance estimation in stratified 
random sampling. Journal of American Statistical Association 91, 343–348. 

Rao, J.N.K., Shao, J. (1999). Modified balanced repeated replication for complex survey 
data. Biometrika 86(2), 403–415. 

Rao, J.N.K., Wu, C.F.J., Yue, K. (1992). Some recent work on resampling methods for 
complex surveys. Survey Methodology 18, 209–217. 

Valliant, R. (1992). Smoothing Variance Estimates for Price Indexes Over Time. Journal 
of Official Statistics 8(4), 433–444 

JSM 2013 - Survey Research Methods Section

2669


