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Abstract

We use simulation to study and compare the performance, in terms of coverage rate and
length, of four methods of constructing confidence intervals for population size based on
a two-stage Capture-Recapture (CR) experiment. Two methods are based on the
asymptotic normality of point estimators and two are obtained from inverting chisquare
and likelihiood ratio tests. In the scope of the settings we studied, we found that the
method based on inverting a chisquare test is best and that none of the methods performs
well if sampling fractions are small. As a practical matter, our conclusion is that that CR
designs are most useful for relatively small populations, such as endangered species,
where there may be a rough prior estimate of poulation size to guide sample size
selections or in a populations where large samples are easy to obtain.
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1. Introduction

How many endangered or threatened animals, such as Giant Pandas, Bald Eagles, whales,
polar bears, etc., are still living in their natural habitats? How many fish are there in the
Connecticut River? How many people have type Il diabetes? How many faults are there
in newly-developed software? These are but few instances of the important problem of
estimating a population size N when a census cannot be taken. As described in
Lohr(2010) and Buckland et al (2000) and many other references, capture—recapture (CR)
experiments, described below, have long been used as multi-stage sampling designs to

obtain estimators, denoted N , of population size. The behavior of N depends heavily
on N and the sampling fractions, all unknown quantities. In particular, the distribution of

N in finite samples can be highly skewed and far from normality so that reporting its
standard error may not convey an accurate assessment of the uncertainty that should be

attached to N as an estimator of N. Instead, a confidence interval for N is often reported

to augment the point estimator N . For example, Boyce and Andel (2012) used a two
stage CR experiment, as described in the example below, to estimate the number of adult

sockeye salmon in the Taku river in calendar year 2009 and obtained an estimate N=
85528 and a nominal 95% confidence interval [77395, 93361]. Here, we use simulation
to study the behavior of several methods of constructing nominal 95% confidence
intervals for NV in terms of actual coverage rate and mean length. Although there is an
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extensive literature on the CR method, we have not found any references to comparative
studies similar to ours.

2. Capture-Recapture Experiments and Estimation of Population Size

2.1 Basic Idea

The basic idea of the Capture-Recapture (CR) Method is to use the “overlap information”
contained in different samples from a population to estimate some characteristics of a
population, such as the population size, survival rate, etc. In its simplest, two-stage form,

a Capture-Recapture experiment randomly selects n, units from the population and
marks them. A captured fish, for example, could be marked by placing a tag on its tail.
The tagged units are then returned to the population and assumed to be in their original
conditions. A second random sample of size #, is then selected, resulting in x marked
units. We use simulation to explore the performance of four methods of constructing
confidence intervals for size N based on observing (7,, n,, x ). These assumptions
imply that the number of marks may be modeled as the number of common elements
obtained from independent simple random samples without replacement from the same
population. Taking, as we do, the sample sizes n, and n, to be fixed by design, x, the

number of marks in the second sample, is the observed value of a random variable X
having the hypergeometric distribution with mass function given in by

GO0
—(N) ) (1

n;

f(Xlnll ny, N) =

where max{0,n; + n — N} < x < min(nq,ny) .

There are more complex versions, not considered here, of CR designs that allow, for
example, stratifed sampling, more than two stages, time dependent and varying capture
rates among individuals, immigration and emigaration. See Darroch (1961), Buckland et
al (2000), Cormak (1992), Chao (1989) and Jolly (1965).

2.2 Estimation from CR Experiments

Since E(X /n,) = n,/ N , the proportion of marked items in the population, the
method of moments point estimate of N is given by

A

N=nn,/x, )

if x > 0 and undefined otherwise. For x > 0, an approximate variance of N is given in
Lohr (2010) by

V(N) = (nn, | x)*(n, = x)/ (x(n, = 1)) (3)
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~nn,(n,—x)/ x° .

Note that the uncertainty in N increases rapidly as x decreases. In this simple form,
capture-recapture estimation is a special case of ratio estimation of a population total and

up to approriate round off to an integer, N s also the maximum likelihood estimator. If
the sample sizesn, and n, are not fixed by design, T}(]\? ) may be interpreted as being
conditional on them. Properties of N were studied by Chapman (1951) , who showed that

althoughN is a best asymptotically normal estimate of Nas N — o0, it is biased, and its
bias can be large for small samples. However, when n,+n, = N, his modified,
unbiased estimate, which may even be used when x =0, is given by

N=@m+D)(n,+1)/(x+1)—1. (4)

An approximate variance of N when x > 0 was given in Seber (1970) and Wittes
(1972) by

V(N) = (n,+ D(n, + 1), = x)(n, = x) / [(x + 1)’ (x +2)] )

Although n, +n, > N is a very restrictive and unrealistic condition, the use of (4) and
(5) has some flexibility. Researchers sometimes apply them to their CR studies even if
n, +n, <N. Specifically, in our simulation study, the Chapman estimation method was

used as a substitute for two of the methods we investigate which are not defined
whenever no marked units are recaptured in the second sample.

2.3 Some Methods for Constructing Confidence Sets for N

We consider several commonly used methods for constructing approximate 1-«
confidence sets for the unknown population size N.

(i) Asymptotic Normality: N + ZM\/; , where N is the estimator given in (2)
when x > 0 and or |V (N), where N is the Chapman’s estimator given in (4) and
z, s the 100(1- 7 ) percentage point of a standard normal distribution .

(i1) Inverting a Test for N: We used two versions of this approach described in Lohr
(2010). The first is based on a chisquare test for independence in the only partially

observed two-way contingency table given below, where x,, = N —x,, —x,, —x,,
is the unknown number of units observed in neither sample. Let p(x,,) be the p-
value obtained by carrying out the chisquare test with x,, =x,, . The set

{N;p(x,,)>1-a}, constructed using an iterative search is then an approximate
1 -« confidence set for V.
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Table 1: Two-way Contingency Table

In Sapple 2

Y Ma

Iin Sample |

Similarly, we also inverted a likelihood ratio test of H,' N=N, vs. H,: N # N, with

0
critical region {x; —2Log []L((T?IO))] > x2_o (1)}, the likelihood L(N) from is given by
N-n)\ (N
L(N)= / . For 1 —a = 0.95, the confidence level we used through out,
n,—Xx n,

the confidence set CI is expicitly given by
CI ={N;L(N)/L(N) < &%}

where N is the estimate given in (2) for x > 0. Chapman estimator was used when x = 0
Note that N € CI and that CI contains values less than and greater than N. To
iteratively construct CI, suppose first that N* € CI. Then, to find values of N greater
than N* that may be in CI, check if

L(N)/L(N*+1) _ [L(N)/LIN*)IL(N)/L(N* +1) <

Note that many terms cancel in L(N )/ L(N” +1) and the process is started with

N* =N . Proceed similarly using L(]\7) / L(N* —1) to find values of N < N that are
in CI. This method is not defined when x=0.

2.4 Example

The design used in the example cited above on the estimation of the number of
Salmon in the Taku River actually used a stratifeid sample consisting of two strata.
However, since the second startum was small and following Darroch (1961), we
may use our simpler setup as an approximation with n, = 3135, n, = 11217 and x

= 405 observed marks in the second sample. Hence N = 3135%11217/405 ~
86828, which is close to the value of 85528 reported by Boyce and Andel (2012),
along with their approximate 95% interval given as [77395, 93661]. Our
approximate 95% intervals are: [78526, 95130] using the asymptotic normality of

N :[78937, 94359] using the asymptotic normality of N ; [79480, 94996] based
on inverting the chisquare test; [79562, 95104] based on inverting the likelihood
ratio test. Note the similarity among the intervals and how wide they are.

3. Simulation Study

3.1 Basic Procedure
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Simulation studies were implemented out and visualized using R and SAS to
evaluate the performance, in terms of actual coverage rates , and mean width of
the four CR methods of constructing confidence intervals for the population size

N: Asymptotic Normality of N, Asymptotic Normality of N (Chapman estimator),

Inverting the XZ Test and Inverting a Likelihood Ratio Test, denoted respectively
NormAN, NormCM, InvCQ and InvLR, based on the data (n,, n,, x). Data were
generated using the assumpions given in Section 2 and the resulting
hypergeometric distribution of X given in (1). Specifically, two independent,
simple random samples of sizes (#, and n,) without replacement were selected
from a predetermined population of size N. The units found in both samples, namely
“overlap”, were used as the recapture value x. The sample sizes were represented
as proportions ( p, and p, ) of the population size N, namely n, = Np, and

n,=Np, , where p, and p, are looped from 0.05 to 0.45 in steps of 0.10,
resulting in twenty five pairs, and N set equal to 1000 and 5000. For each pair
(p,» p,) 1000 independent data intervals were generated resulting in 1000 values

of the number of marked items in the second sample. Confidence sets were
constructed as described above. Estimated coverage rates, and mean half widths
were recorded in order to compare the four methods’ performance. Note that all
four methods are used on each data set. The observed coverage rates, denoted é,
and estimated mean half width of the 1000 intervals, denoted MHW, were
obtained for each of the twenty five settings and displayed in Tables 2 and 3.

Table 2: Comparisons (N=1000): NormAN vs NormCM vs InvCQ vs InvLR

D pi p2 CHormAMN CMHormCM ClnvCQ  CinviR  MHWMormAN @ MHWNormCM | MHWIneCO | MHWInvLR
1 0.05 005 0.896 o774 0.9 D804 20z2 o508 a40 S5G57
2 005 015 08925 D.8B5 0.959 0821 241 621 623 13459
3 0.05 025 0.968 0.203 0.953 0.853 6oz 448 501 803
4 005 035 0.882 0233 0047 0860 485 355 406 431
5 0.05 045 0.983 D.932 0.068 0.9G6 &20 201 azr 336
6 0.15 005 0.83T 0886 0970 0827 a7 619 6249 1165
T 015 015 0851 0925 0948 09448 405 344 381 400
8015 025 [1B: e 0940 0.858 0847 310 256 274 279
8 015 0.35 0886 0855 0968 0855 257 201 211 213
10 015 045 0891 09z 0860 0960 222 181 167 167
11025 0.05 0848 D902 0863 0863 532 441 484 503
12 025 015 0864 0.936 (E=ry 0945 2849 254 273 .
13 025 D25 0.876 0.345 0.955 0.948 218 184 181 182
14 025 035 0882 0933 0943 0843 184 146 150 150
15 025 045 0.892 0.933 0941 0841 181 118 121 120
168 0235 0.05 0830 D.930 0835 0959 413 361 413 440
17 | 0.35 0.15 0960 O.947 0.957 D.0z8 225 20 21 213
18 035 025 0875 0940 0858 0858 172 14T 151 150
18 035 035 0885 09309 08952 0952 143 114 116 118
20 035 045 0992 0.940 0.953 0.047 127 23 o4 o4
21| 045 005 0857 0926 0.aa2 0962 325 202 328 338
22 045 015 0854 0528 0.945 0945 178 160 1646 166
23 045 D25 0883 0.950 0854 0854 138 118 122 121
24 D45 035 0984 o928 0.946 0932 116 a3 g4 23
25 D45 045 0893 0.960 09508 0.859 103 76 76 75
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Table 3: Comparisons (N=5000): NormAN vs NormCM vs InvCQ vs InvLR

ID| p1  p2  CNormAN CMNormCM GinvCQ | ClnviR | MHWNormAN | MHWNormGM | MEWInGQ | MEWInvLR
1 005 005 0.966 | D88 0877 0961 3135 | 2567 | 2679 | 3517 |
2 005 015 0961 | D947 0851 0043 1631 1430 1526 | 1567
3 005 038 0.979 | Do42 0040 0040 1245 | 1050 | 1004 | 1108
4|00s 035 o.gag | D42  DO45 0858 1034 | a1g | 843 | 848
5 005 045 0.996 | D954 0963 0063 11 667 683 | B85
6015 0.05 0.956 D045 0050 0037 1553 1437 1537 1575
7 015 015 ogrz 0935 0O55 0948 862 782 709 804
8 015 0.25 0978 0851 0860 0066 653 560 577 577
o/ 015 035 0.982 Do2a| 0051 0048 558 | 447 451 451
10| 0.15 045 0.984 D937 0837 0834 493 364 367 | 366
11 025 0.05 | 0.968 | D958 0960 0.960 1106 | 1046 | 1090 | 1102
12025 015 o069 | D547 0835 0942 624 | s70 | 577 | 578
13 025 025 0.085 D964 0084 0064 483 416 418 | a19
14 025 035 og81 D844 0040 D045 406 | 326 | az8 | azy
15 025 045 0.991 pesz 0O57 0057 asg | 265 266 265
18| 0.35 0.05 0.961 D48 0040 0.053 851 822 846 851
17 035 015 0.970 0843 0056 0850 488 | 447 451 451
18 035 025 oa7s D58 DOs0 0058 arg az7 328 az8
19| 035 035 0.980 0953 0054 0.045 ata | 257 258 257
20 035 045 0.903 | 0935 0034 0934 282 | 209 | 208 | 208
21| 045 005 0.965 | D953 0054 0054 604 666 681 | 683
22 045 015] 0964 | 0e52 0855 0052 397 | 364 | 3687 | 366
23 045 025 0877 | 0545 0047 0947 306 | 265 | 265 | 265
34 045 D35 0.980 D948 0O54 0.054 250 208 | 208 | 207
25 045 045 0.994 D953 0843 0043 229 | 170 170 | 169

3.2 Coverage Rates:

Cases in Tables 2 and 3 where the true coverage rate C = E(é) is statistically

significantly different from the target value of .95 are marked in red. Note that
true rates are (i) mostly high for NormAN; (ii) often off target for NormCM,
especially for N = 1000; (iii) similar and mostly acceptable for InvCQ and InvLR;
(iv) better for N = 5000 than for N = 1000; (iv) unstable in the first row,
corresponding to the smallest sampling prportions. Overall, /nvLR and InvCQ
appear to be the methods of choice in terms of attaining the desired coverage rate.
These conclusions are supported by the surface plots of estimated rates in Figure
1 for N =1000. Similar plots for N = 5000 are omitted.

pl1 & p2 ==> Coverage of NormAN pl1 & p2 === Coverage of NormCM
(W= 1000 (N = 000

CHomCK
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p1 & p2 ——> Coverage of InvCQ p1 & p2 ——> Coverage of InvLR
(N = 000 (W= 1000

1 }=te]
015
pi 015 Q.08 005

1 }=te]
015
pi 015 Q.08 005

Figure 1: Surface Plots of Estimated Coverage Rates N = 1000

3.3 Analyses of Mean Half Width

We only investigate InvCQ and InvLR here since the other two methods were
considerably less reliable in holding their target coverage rates, especially for N =
1000. Also, to facilitate comparing interval widths across population sizes, we
analyzed Relative Mean Half Width (RMHW) = MHWI/N. As can be seen from
Tables 2 and 3, RMHW is so large for p, = Py~ .05 that including it would have

distorted the plots. Accordingly, this case was deleted. Side by side boxplots of
the remaining twenty four cases of RMHW’s presented in Figures 2 and 3 below
indicate that the intervals are narrower for N = 5000 than for N = 1000 and similar
for the two methods. Specifically, the first and third quartiles of RMHW ‘s are: (i)
For InvLR : 0.13 and .43 (N=1000) and 0.06, 0.17 (N = 5000); For InvCQ : 0.13,
0.40 (N =5000); 0.06, .17 (N=5000). Furthermore, in all 24 cases RMHW for N =
1000 is greater than for N = 5000, for both methods. The decrease in RMHW for
fixed sampling proportions in going from N = 1000 to N = 5000 reflects the
corresponding increases in sample sizes. As can be seen in Tables 2 and Table 3,
confidence interval widths can be very wide unless sampling proportions, which
are rarely known, are large .
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Figure 2: Boxplots of Relative Mean Confidence Intervals InvCQ
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RMHW IMVILR)

Figure 3: Boxplots of Relative Mean Half Widths of Confidence Intervals InvLR

We also used least squares regression analysis to quantitatively explore the
relationship between RMHW and sampling fractions (p, p,) by fitting the model

RMHW = B, + B,p, + B,p, + B;p,p, + ¢ and obtined the fitted surfaces
for InvLR

RMHW =1.44-2.82p, -2.79p, +5.37p,p, , N=1000, R* = .74,

RMHW = 0.38 —0.60 p, -0.60p, +.80p,p, , N=5000, R> = .84, and
for InvCQ:

RMHW =0.76 — 1.07 p, -1.07p, +.97p,p, , N=1000, R> = 83,

RHMH =0.37 - 0.57 p, -0.57p, +.74p,p, , N=5000, R> = 82.

Note that for both methods, RMHW , as expected , decreases as each sampling
fraction inreases, the other being held fixed and that this rate of change decreases
as the other sampling fraction increases, within the range of sampling fractions in
our study. To the extent that these fitted surfaces refelct the true surfaces,
decreases in length achieved by increasing one sampling fraction while keeping
the other fraction fixed are similar for each fitted model. The greater similarity of
the fitted surfaces for InvLR and InvCQ for N= 5000 than for N = 1000 appears
to reflect the instability and large inflation in RMHW for InvLR as (p,,p,)

aproach zero for the smaller population size.

Consequently, although the two methods are similar in terms of coverage rate and
relative mean half width in most cases, we prefer InvCQ because of its greater
stability for the smaller sampling fractions.
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4. Conclusion

In the scope of the settings we studied, we found that the method based on
inverting a chisquare test is best and that none of the methods performs well if
sampling fractions are small. As a practical matter, our conclusion is that that CR
designs are most useful for relatively small populations, such as endangered
species, where there may be a rough prior estimate of poulation size to guide
sample size selections or in a populations where large samples are easy to obtain.

Future studies of this type should include the bootstrap method given in
Bucklandand Garthwaite (1991) and more complex CR designs that can better
handle the zero recapture problem, especially those including more than two
stages.
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