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Abstract 
 

Remote analysis servers with disclosure-treatment of analysis output from user queries, 

as an alternative to traditional input disclosure-treated PUFs, form an active research area 

and are likely to be the future mode of output dissemination from data analysis. The main 

reason for this is that the preponderance of publically available datasets containing 

indirect identifiers at present or in future raises concerns about disclosure-safety of 

traditional PUFs based on static assumptions of intruder knowledge. However, success of 

remote analysis servers depends on protection from the challenging problem of possible 

differencing attacks by repeated queries. We describe a new application of a recently 

proposed method of query-based public use file (or Q-PUF) to Medicare claims data that 

is not vulnerable to differencing attacks. The reason for this is that in Q-PUF, the user is 

not allowed to arbitrarily define analysis domains but is required to choose from a 

checklist of pre-screened variables such that the contributor-count; i.e., the number of 

observations making contributions to the analysis domains defined by these variables 

satisfies a minimum threshold. The method is termed PUF, despite being an output 

treatment, because analogous to the traditional input-treated PUFs, the data producer 

controls the type and scope of allowed analytic variables. There are four main 

components of Q-PUF: first, construct a checklist of variables defining analysis domains 

for which the number of contributors from the data is deemed adequately large to provide 

reliable estimating functions of corresponding parameters, and hence rendering them 

automatically disclosure-safe for analysis; second, perform a disclosure audit to choose 

data-specific adequate confidentiality threshold; third, to provide an interface for users to 

communicate with the microdata via queries; and fourth, impose additional restrictions 

specific to the analysis output if needed. The checklist of allowed variables can be 

updated over time to accommodate new queries as long as disclosure-safety of existing 

domains is not jeopardized. We provide empirical examples as an illustration of 

descriptive inference using a working synthetic PUF created from Medicare claims data. 

 

Key Words: Differencing Attacks; Remote Analysis Servers; Input vs. Output 

Disclosure Treatment; Checklist of Pre-screened Analytic Variables. 

 

 

1. Introduction 
 

We motivate the general problem of developing a query-based approach to analysis 

output disclosure treatment as follows. First we note that the basic data framework 

required for any analysis should be able to support inferential estimation and testing 

which essentially require computation of estimating functions and corresponding 

variance estimates; see e.g., Godambe and Thompson (1989, 2009) and McCullagh and 

Nelder (1989, Chapter 9). An estimating function is a sum of elementary estimating 
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functions where each elementary estimating function is a function (linear or nonlinear) of 

data or parameters or both and has mean 0. Thus, given parameters, only aggregate level 

information from the unit level microdata is needed for computing totals of elementary 

estimating functions, and so a method of analysis output disclosure treatment needs to be 

able to ensure that any confidential information about an individual is not released from 

values of estimating functions. For descriptive inference, such a disclosure-safe data 

framework for estimating functions is generally adequate for point and variance 

estimation except for estimating some parameters such as minimum and maximum values 

in a distribution. Similarly, for analytic or model-based inference, the above framework is 

also generally adequate for estimating model parameters except for certain parameters in 

some circumstances, unit-level predictions and residuals for model diagnostics. 

Therefore, additional output treatment may be needed for disclosure-prone unit-level 

output or certain parameter estimates such as regression coefficients when R-square value 

is almost 1 (Lucero et al., 2011). Here the output treatment could simply entail 

suppression of such information or releasing a lower bound in the case of R
2
 or 

transformation of model residuals to an aggregate level version as discussed in Section 6. 

For the important problem of model diagnostics using residuals, an alternative approach 

based on an innovative application of multiple imputation for producing synthetic 

residuals was proposed by Reiter (2003a).  

 

For a simple illustrative example of the use of the above general framework of estimating 

functions for descriptive parameters such as population counts and totals for domains (or 

subpopulations) of interest, consider the Data Entrepreneurs’ Synthetic Public Use File 

(De-SynPUF) for CMS Medicare Claims Data for years 2008-2010 (www.cms.gov) 

containing about 7.5 million records representing a 5% sample per year. Table 1 is based 

on an extract of a 50% sample of DE-SynPUF where domains of interest are defined by a 

cross-classification of age (single years except for bottom and top categories of 50 and 

under and 90 and over respectively), race, gender and diabetes. Table 1A, in particular, 

shows observed domain counts and total amounts of in-patient expenditure as well as 

counts of contributors to expenditure for Hispanic females. The corresponding 

formulation of estimating functions for estimating domain population counts and totals is 

considered in Section 5 which is seen to give rise to usual estimates. 

 

The main purpose of this paper is to discuss an application of a query-based method 

proposed by Singh, Borton, and Crego (2012a) termed query-based PUF (or Q-PUF) to 

CMS Medicare Claims data. Q-PUF offers a balance between very high data 

confidentiality and data utility but users are not free to submit queries about arbitrary 

analysis domains. In particular, Q-PUF puts restrictions on the allowable analysis 

domains through screening of analytic variables so that the domain size (i.e., the number 

of contributors to the domain) meets a minimum threshold—denoted D* if the variable is 

categorical or GD* if it is continuous as described in Section 2. The goal of Q-PUF is to 

be able to provide descriptive parameter estimates (such as means, totals, ratios, and 

percentiles but not min and max) along with standard errors, and analytic parameter 

estimates (such as regression model parameter estimates and predictions subject to 

certain restrictions) and their standard errors but only for variables in the checklist 

comprising pre-screened variables. For variables not in the checklist, model-based 

estimates of domain totals can be produced. It is because of pre-screening of analysis 

variables that it does not require a DUA (data use agreement) and can be viewed as a 

PUF although not in the traditional PUF sense because it entails disseminating de-

identified analysis output data and not any de-identified input data to be used for 

subsequent analyses. 
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2. Domain or Cell Aggregation for Disclosure-Safety 
 

We observe that analysis domains are typically formed by cells or their aggregates from a 

cross-classified table of a moderate number (    or so) of variables at a time although 

there could be many more variables in the dataset. Therefore, to ensure disclosure-safety 

of estimated totals, it is natural to consider the size or the number of contributors in the 

domain of interest. In other words, the size of the support of estimating functions should 

be sufficiently large. In the case of population count parameters such as the number of 

diabetic medicare beneficiaries, this amounts to the specification of a minimum threshold 

D* (denoting DSTAR--domain size threshold for analysis restrictions) for confidentiality 

protection of domains (defined by cells or cell aggregates) in tabular data, while in the 

case of population totals of continuous variables such as the expenditure amount, a 

threshold for a modified count is needed which was termed GD* (denoting generalized 

D*) by Singh, Borton, and Crego (2012a). The modified count for each domain is defined 

by the number of contributors in the data to the domain total. This modified count is not 

released because it will put individuals with zero contribution at risk of disclosure. In our 

application, suppose we set in a somewhat ad hoc manner GD* for expenditure at 10 for 

illustration and D* for diabetes counts at 50. The threshold for diabetes is set higher than 

the threshold for expenditure amount so that the number of contributors could be 

expected to meet the GD* threshold. In fact, for output disclosure treatment, it is more 

meaningful to work with specifying a reliability threshold (such as 30) in the interest of 

stability of resulting estimates than the traditional confidentiality threshold (10 or so) 

which is of course satisfied by the reliability threshold. In Section 3, we provide an 

objective criterion to choose suitable thresholds D* and GD* for each dataset. If the GD* 

threshold is reasonably high in the interest of reliability, then the problem of disclosure 

by dominance is considerably diffused. However, we might want to specify an additional 

threshold GD** to ensure that a new modified count of number of contributors with 

amounts more than the domain average is at or above a minimum such as 3.  

 

Table 1B shows cell aggregates for diabetes counts and expenditure amounts that meet 

the thresholds D* of 50 and GD* of 10 respectively as in cell suppression for a tabular 

output. Cells not aggregated are safe by themselves. Cells labeled NA* correspond to 

suppressed cells. Choice of cell aggregation (or equivalently, choosing suppression 

partners such that their aggregation is safe for release) is based on the quasi-hierarchical 

aggregation proposed by Singh et al. (2013a). It first defines rules for category collapsing 

within each variable at different levels of aggregation in order depending on the need as 

shown in Table 2. For example, Table 2A shows four levels of age category collapsing in 

increasing order. After specifying rules for category collapsing within categorical 

variables, we need to specify the aggregation order to be implemented between variables 

in order to meet the threshold by cell aggregates as shown in Table 2C. Table 3 shows the 

aggregation summary for the example for both counts and expenditure amounts. In 

particular, it shows that for the full age by race by gender by diabetes table of 656 cells, 

the number of safe cells and cell aggregates reduces to 560 using the threshold of 50 for 

counts, and 396 using the threshold of 10 for modified counts. The method of quasi-

hierarchical aggregation for cell suppression was motivated from the commonly used 

hierarchical collapsing of categories in log linear modeling for introducing various factor 

effects (0-dimensional or the intercept, 1-dimensional, 2-dimensional and so on). It was 

termed quasi to signify that in the case of cell suppression to meet the threshold, it is 

desired to preserve or release as many cells or cell aggregates, and therefore, category 

collapsing for a particular variable is not done uniformly across categories or category 
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combinations of other conditioning variables in a given multi-dimensional table; see 

Singh et al. (2013) for more details.  

 

3. Disclosure Audit for suitable selection of thresholds D* and GD* 
 

For the example considered in the previous section, the thresholds were chosen somewhat 

arbitrarily from confidentiality considerations. However, there is a need for an objective 

method to choose thresholds that are data-driven and provide adequate protection from 

disclosure or reverse-engineering. To this end, for a given threshold D* or GD* and a 

given high-dimensional table of counts or modified counts as the case may be, a non-

parsimonious log-linear model with parameters corresponding to all linearly independent 

and safe cells and cell aggregates is fitted so that all the safe cells and cell aggregates are 

preserved at their observed true values. Once the model is fitted, all the unsafe or 

suppressed cells and cell aggregates can be estimated. This implies that with the usual 

practice of releasing a tabular output of counts with suppressed unsafe cells, an advanced 

user could also fit such a model and estimate all the suppressed cells.  

 

The disclosure audit proposed by Singh et al. (2013a) entails comparing observed and 

estimated counts for suppressed cells and defining risk metrics based on lower quantiles 

(e.g., 5% or 10%) of absolute error and absolute relative error between observed and 

estimated counts over suppressed cells. In practice, the absolute error may be more 

meaningful than the absolute relative error because for small or primarily suppressed 

cells, the relative error may be high but the absolute error may not be adequate while for 

large or complementarily suppressed cells, the relative error may be small but the 

absolute error may be adequate. It may be noted that analogous to the classical 

classification error problem in gross flows, where a small classification error does not 

affect much the count of people who do not change their status from one time point to 

another but it does affect considerably the count of people who do change because the 

actual change is quite small, we would like to set the threshold such that the absolute 

relative error in complementarily suppressed cells may not be much but absolute error in 

primarily suppressed cells may be substantial—in practice if the 5% quantile of absolute 

errors is at least 1, it may be deemed adequate for primary cells. In any given application, 

the threshold can be revised so that a suitable risk metric is achieved for a given dataset. 

It is important to note that the errors in estimated suppressed cells are not released to 

users. It is only the data producer who can use the disclosure audit to determine a suitable 

threshold. Table 4B shows estimated counts for primary and secondary suppressed cells 

and Tables 5A and B show corresponding absolute errors and absolute relative errors. It 

is seen that for the threshold of 50, among the primarily suppressed cells for Hispanic 

females, the absolute error for most cells is at least 1 implying that the threshold of 50 

seems adequate. For in-patient expenditures, the threshold of 10 for modified counts (i.e., 

the number of contributors) also seems adequate.  

 

More specifically, estimates of suppressed cells are obtained by solving the following set 

of equations to obtain parameter estimates of a log-linear model; see Singh et al. (2013). 

First, we form a matrix with rows having elements of 1s and 0s with the number of 

elements being equal to the total number of cells in the final cross-classified table of 

interest; i.e., elementary cells, say M, and where rows correspond to all constraints of 

cells and cell aggregates. Each row has a 1 in the place that indicates which cell is 

included in the constraint, and 0 elsewhere. It is possible that all cells are suppressed and 

constraints are only in terms of margins or cell aggregates. Rows of this matrix could be 

linearly dependent because some constraints could be derived from others by algebraic 
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manipulations. However, it is sufficient to work with only linearly independent 

constraints. So we reduce the row dimension of the matrix to achieve linear 

independence. Suppose there are p independent rows and the number of columns is M—

the total number of cells in the cross-classified table of interest. The estimating equations 

for p model parameters (   ) can be written as follows where log of the expected counts 

are assumed to be linear in    ,    denotes the ith positive constraint (value of safe cell or 

cell aggregate), and     is the kth column element of the ith row of the constraint matrix 

taking values of 1 or 0; i=1,…, p; k= 1,…,M. There are p equations and p unknowns (   ) 

and the above system of nonlinear equations in principle can be solved by wellknown 

methods such as Newton-Raphson. However, in real applications, p can be quite large 

and so an alternative method of nonlinear Gauss-Seidel (Jiang, 2000) can be used. It may 

be noted that although all cell counts are estimated (i.e., both suppressed and non-

suppressed cells) and hence all cell aggregates, cells and cell aggregates that are safe are 

preserved at their true values. In other words, estimated counts match safe cell and cell 

aggregate values (to be preserved) by construction via  
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constraints in the estimating equations. The above estimating equations coincide with 

maximum likelihood equations for the model parameters under the working assumption 

of multinomial sampling, and thus the estimates are optimal in some sense. 

 

The above modeling is used for disclosure audit for both cell counts and modified cell 

counts for the expenditure variable. In the case of expenditure, although the modified cell 

counts are not released for fear of putting zero contributors at risk of disclosure, the 

estimated expenditure amounts can be released. These amounts for the suppressed cells 

can be estimated in a similar fashion because the expenditure variable is nonnegative; see 

Tables 4B and 5. Above domain estimates are examples of predictions based on 

aggregate or cell level modeling; see Section 8 for use of Q-PUF for general model-based 

predictions of domain totals where the variable need not be nonnegative. 

 

4. Internal Consistency of Analyses Output over Repeated Queries 
 

In any application of Q-PUF, queries may come at different times and they may refer to 

analysis domains formed by different combinations of variable categories with no, 

partial, or complete overlap of variables. In the case of same set of variables, queries may 

correspond to same or different analysis domains. The variables may be cross-sectional 

(i.e., for the same point in time), or longitudinal (i.e., for different points in time), or both. 

In any case we are generally dealing with a moderate number (    or so) of variables at 

a time in each query although the total number of variables could be large, and the 

queries are submitted sequentially. The data producer could anticipate in advance the 

common types of queries from which one could create an initial omnibus set of 

categorical variables some or all of which are expected to be part of most queries. For the 
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omnibus set, safe cells and cell aggregates can be determined with respect to a suitable 

threshold as discussed in the previous section when the outcome variable is either 

categorical or continuous. In the process, we can construct a checklist of variables with 

allowable categories for one-dimensional, two-dimensional, and higher order marginal 

distributions. We need two Checklists I and II: the first list for allowable domains or cell 

aggregates which could be cells by themselves, and the second list for non-allowable or 

suppressed cells. The checklist II will be useful when dealing with subsequent queries 

with some variables being in common with sets in earlier queries so that any suppressed 

complementary cell appearing in response to earlier queries continues to be suppressed. 

This way we can ensure internal consistency between different queries’ output with 

respect to cell aggregation or suppression cell partners. In addition, when dealing with a 

sequence of queries, estimated cell counts for categorical outcome variables or cell totals 

for nonnegative continuous outcome variables can be ensured to be consistent with 

previous queries’ output for common domains by enlarging the vector of safe cell or cell 

aggregates in equation (1) to include estimates obtained for the first time for such 

domains. 

 

Besides maintaining the above internal consistency property of Q-PUF through 

Checklists I and II, there is another important benefit of Checklist construction and their 

updating over time by including more variables to satisfy user needs; this is subject to the 

restriction that new variables (i.e., corresponding domains defined by them) do not 

conflict with domains defined by existing variables in Checklist I with regard to their 

disclosure-safety. Thus Q-PUF is not as flexible as a general query-based analysis system 

for user-specified arbitrary domains but may not be limiting because Checklist I is based 

on common types of analysis needs. This built-in pre-screening of analytic variables 

provides a direct control on the types of allowable analysis, and as a result can thwart 

differencing attacks—a very difficult problem for query-based systems as discussed in 

Gomatnam et al. (2005). It follows that a user cannot game the system. For any variable 

or set of variables defining a rare domain submitted as a query, the system will not 

respond until the variables defining the domain conform to the specification in the 

checklist I—this is essentially another type of output consistency enforced with respect to 

domain definitions involving the same set of variables over different queries.  

 

A different method termed aggregate-level PUF (Singh and Borton, 2012, and Singh et 

al., 2013) allows for arbitrary domain definition because it performs input disclosure 

treatment at an aggregate level (small groups of 10-20 individuals) although there is some 

loss of precision due to subsampling in comparison to Q-PUF results for domains that are 

preserved; i.e., considered safe for release.  

 

5. Descriptive Inference 
 

(a) Inferential Estimation: For all variables in the checklist I, it is easily seen that desired 

estimates for totals for domains defined by the variables will match exactly with the 

estimates from the original data because the domains consist of cells or cell aggregates 

that are preserved. This precision-preserving property of Q-PUF for estimating domain 

totals for variables in the checklist I carries over to more complex parameters. To see 

this, consider the general framework of estimating functions and the size of the support of 

the estimating function. In particular, for the simple problem of estimating the domain 

total count, let       denote the indicator variable for domain ‘d’ and  ∑      
 
    the 

domain count parameter or ∑      
 
    ⁄ , be the domain mean or proportion parameter 

JSM 2013 - Survey Research Methods Section

2118



to be denoted by    where N is the population size or the total number of beneficiaries. 

Then, the estimating function for estimating    is simply  ∑              
 
    with    

being the sampling weight. Here the elementary estimating functions are simply       

   . The estimating function is set to zero to obtain an estimator of the domain count as 

 ∑        
 
   ∑   

 
   ⁄ . To check for support of the estimating function, it easily 

follows that we need to consider the number of nonzero contributions of elementary 

estimating functions for a given value of the parameter    which is simply the number of 

sample observations in the domain. In the example presented earlier from DE-SynPUF, 

sampling weights   ’s were not considered although the estimated totals need to be 

weighted up to obtain population estimates. Since the original sample used for DE-

SynPUF is a 5% simple random sample and a 50% simple random subsample of that was 

taken for the example, the resulting weights are common for all sampled units (and equal 

to 1/(.05)(.5)) and do not affect estimation of means. However, for unbiased estimation of 

population totals, they do matter in that the estimates need to be inflated by the factor 

1/(.05)(.5). 

 

Now, for the magnitude data such as the expenditure of in-patients, the estimating 

function for the domain total parameter is given by ∑                
 
     where    is 

the domain mean expenditure over all beneficiaries. It is seen that the support of the 

estimating function is now given by the number of nonzero values of the product 

       ; i.e., the number of contributors to the expenditure in the domain sample. To 

complete inference, variance estimate is also needed besides point estimates. If the 

support of the estimating function for point estimate is large enough to be safe, it is also 

safe for estimating variance of the estimating function, and hence for variance of the 

estimator. 

 

So far we considered analysis domains deemed safe for Q-PUF. However, estimates for 

unsafe cells are also produced under Q-PUF as part of the disclosure audit, and if a user is 

interested in a domain involving unsafe cells, then the resulting estimator will not exactly 

match the estimator obtained from the original data. Moreover, in this case, variance 

estimate will need to be adjusted for estimation (or imputation) of unsafe domains. The 

problem is somewhat similar to the case of partial synthesis under multiple imputation, 

and results developed by Reiter (2003b) should be applicable. This area, however, 

requires further investigation. 

 

(b) Inferential Testing: Comments made above for inferential estimation essentially carry 

over for testing purposes in an analogous manner. 

 

6. Analytic Inference 
 

For regression modeling at the unit or individual beneficiary level, checklist-I provides 

variables or collapsed versions of them that can be used for one factor, two and higher 

order factor effects. In other words, we only introduce covariates and corresponding 

regression parameters for which there is adequate estimation support from the sample. 

Consequently, there will be no change in inference between Q-PUF results and analysis 

from the original data. Despite restrictions on the analysis variables, this is not really 

limiting in practice from the reliability threshold point of view because allowing variables 

that define below threshold domain would not lead to reliable estimates anyway. Besides, 

the categorical collapsing needed for higher order factor effects to be included in the 

checklist I can be chosen in such a way that it meets requirements for common types of 

JSM 2013 - Survey Research Methods Section

2119



analysis. There may be some restrictions that need to be imposed on releasing certain 

parameter estimates (not regression coefficients though) in the interest of disclosure-

safety. For example, only a lower bound of the R
2
-type statistics can be released to 

protect against disclosure situations where the modeling may be almost perfect and 

individual y-values can be predicted extremely well.  

 

There is one important limitation in analysis with Q-PUF with regard to model 

diagnostics using residuals. The reason for this is that residuals are at the unit level, and 

knowledge of predicted values and the corresponding lead to disclosure of the actual 

value of the outcome for each individual record. To overcome this problem, an 

innovative method was proposed by Reiter (2003a) based on synthetic residuals after 

creating a synthetic microdata using multiple imputation. Alternatively, we can use the 

aggregate level PUF (AL-PUF., Singh et al., 2012b, and 2013b) framework of micro-

groups and micro-means to compute average y-values (outcome variable) for each 

category of  ̂-variable (i.e., the predicted values)—here  ̂ is categorized because it is 

continuous. The plot of averages of the dependent (y) variable against the categorized 

predicted ( ̂) variable is expected to provide a reasonable approximation to the original 

residual plot assuming the categorization of the  ̂-variable is not too coarse.   

 

7. Model-based Prediction of Domain Totals 
 

After any modeling, it is natural to consider prediction of totals for domains defined by 

covariates or x-variables. Such predictions can be produced for any domain--allowed or 

not by Q-PUF. It is assumed that x-variables are available for units in the domain 

subpopulation for which predicted values can be obtained from the estimated model 

parameters and hence the predicted domain total. This estimated domain total is different 

from the estimated cell counts or amounts (such as expenditure) using log-linear models 

under descriptive inference where all the safe cell and cell aggregate values are 

preserved. For this estimation, the model is at an aggregate level (i.e., the elementary cell 

level) and not the unit level for regression modeling.  

 

8. Concluding Remarks 
 

The Q-PUF method for query-based analysis system formulates the problem of disclosure 

treatment of analysis output from queries as that of ensuring sufficient support size for 

estimating functions of descriptive and analytic parameters. Therefore, a version of 

minimum threshold criterion, termed GD*, is used for disclosure-safety. Like the usual 

minimum threshold criterion (D*) used for disclosure-safety of tabular data, GD* 

considers an underlying cross-classified table of categorical covariates used in analysis 

(descriptive or analytic) and the associated modified count defined as the number of 

contributors to the estimating function for each domain. The new criterion is adequate for 

aggregate level output such as domain total estimates or regression parameter estimates 

(hence aggregate level predictions) but for unit level output such as model residuals, extra 

protection is needed as a result of some transformation of the microdata itself such as 

synthetic residuals of Reiter (2003a) or the micro-group micro-mean representation of 

AL-PUF (Singh et al. 2012b). 

 

An objective method of disclosure audit (Singh et al., 2013a) is used to decide adequacy 

of the threshold D* or GD*. In the process, estimates (counts of number of individual or 

contributor amounts for a continuous nonnegative variable) for suppressed cells are 

JSM 2013 - Survey Research Methods Section

2120



obtained using log-linear modeling which serves to complete the table and help in a 

unified and simplified user interpretation by eliminating various ad hoc estimates that 

different users might employ. 

 

The most difficult problem of differencing attacks in any query-based system is 

addressed in Q-PUF by introducing Checklists I and II for the data producer so that user 

queries are limited to analysis domains defined by pre-screened variables in Checklist I. 

Checklist I consists of all the variables defining allowable domains (i.e., safe cells and 

cell aggregates), and Checklist II consists of all primarily or complementary suppressed 

cells and cell aggregates. Checklist creation is not a one-time task. Instead it is 

continually updated over time starting with a comprehensive initial list based on various 

commonly used analysis domains anticipated by the data producer. In any subsequent 

output, Checklist II is used to check if there are any suppressed cells in the current output 

that are common with earlier output, and for the sake of internal consistency, such cells 

or cell aggregates are preserved at their previously estimated values by treating them as 

other safe cells. Moreover, no matter how many attempts are made to submit queries that 

do not conform to Checklist I; i.e., they have variables that in conjunction with existing 

variables may define unsafe domains, the system does not respond unless the query refers 

to variables listed in the Checklist I. This is another type of output consistency that Q-

PUF maintains.  

 

In summary, we list the four main components of Q-PUF required in any application: 

first, construction of Checklists I and II; second, disclosure audit to choose data-specific 

adequate confidentiality threshold as well as estimation of suppressed cells and cell 

aggregates; third, creation of an interface to communicate with the microdata via queries; 

and fourth, imposing additional restrictions specific to any unit level analysis output if 

need be.  
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Table 1: Untreated and Treated (or Aggregated cells) Tables of Total Counts and Expenditure by Age for: 

Race=Hispanic and Gender= Female (based on a 50% sample from DE-SynPUF) 

 
NOTE:  Tables 1, 4 and 5 have been abbreviated to a subset of ages in the interest of space. 

Age No Yes Age No Yes No Yes Age No Yes Age No Yes No Yes

55 75 43 55 1 15 $17,000 $148,170 55 55

56 70 40 56 4 9 $60,800 $119,080 56 56

57 70 39 57 4 8 $46,860 $95,090 57 57

58 58 25 58 3 7 $18,300 $76,920 58 58

59 50 44 59 4 13 $72,860 $265,500 59 59

60 68 43 60 1 14 $10,000 $271,340 60 60

61 68 34 61 2 9 $33,000 $188,820 61 61

62 53 44 62 2 14 $13,000 $247,500 62 62

63 54 56 63 4 17 $49,000 $336,310 63 63

64 69 43 64 3 9 $16,000 $164,220 64 64

65 384 140 65 9 21 $119,180 $197,240 65 384 140 65

66 355 163 66 5 41 $73,850 $478,890 66 355 163 66

67 375 149 67 12 29 $207,980 $439,390 67 375 149 67

68 390 143 68 12 27 $105,830 $339,530 68 390 143 68

69 398 157 69 8 25 $174,500 $443,660 69 398 157 69

70 267 151 70 8 32 $109,900 $396,890 70 267 151 70

71 241 154 71 6 38 $71,000 $730,100 71 241 154 71

72 241 153 72 12 27 $96,310 $380,910 72 241 153 72

73 258 171 73 10 35 $247,000 $572,580 73 258 171 73

74 271 164 74 6 31 $135,000 $422,730 74 271 164 74

*IP expenditure is not availabe at this level of 

race crossed with age, gender and diabetes.   It is 

aggregated with other levels of race

Shaded cells 

indicate need for 

primary 

Shaded cells indicate need for primary 

suppression, <10 non-zero contributors to 

the total.

16 52

12 63

$1,898,710

$2,503,210

$681,340

$659,210

(B) AGGREGATED TABLES(A) UNTREATED TABLES WITH SMALL CELLS 

Table Variables:  Race=Hispanic, Gender=Female

COUNTS

Table Variables:  Race=Hispanic, Gender=Female

COUNTSIP ExpenditureContributors

Diabetes Diabetes

191

220

$704,760

$1,208,190

$215,820

$121,000

Diabetes Diabetes

323

312

53 254

36 161

Diabetes

Contributors

Diabetes
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Table 2: Category Collapsing within a Variable and Aggregation Order between Variables 
(Variables gender and diabetes have only two categories and are not collapsed0 

 

2A: Age Variable 

Variable 

1st Level (41 

Categories) 2nd Level (21) 3rd level (9) 4th Level (4) 

Age 50 and Under 54 and under 54 and under 64 and under 

 

51-89 by single year 50-59, 60-64 50-89 by 5 year intervals 65-74 

 

90 and over 65-79 by single year 90 and over 75-84 

  

80-84, 85-89 

 

85 and over 

  

90 and over 

   

2B: Race Variable 
 

Variable 1st Level (4) 2nd Level (3) 3rd level (2) 

Race White White White 

 

Black Black Other 

 

Hispanic Other 

 

 

Other 

   

2C: Cell Aggregation order between Variables 
 

Step Variable Level Move 

1 Age 1 to 2 

2 Age 2 to 3 

3 Race 1 to 2 

4 Age 3 to 4 

5 Race 2 to 3 
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Table 3: Aggregation Summary for the DE-SynPUF Example 
 

1 Dimension 

 

Count (min=50) IP Expenditure  Amount (min=10) 

age (41 categories)) 

no aggregation  

needed 
no agg needed 

race (4 categories) 

gender (2) 

diabetes (2) 

2 Dimensions 

age x race (164) 

no agg needed no agg needed 

age x gender (82) 

age x diabetes (82) 

race x gender (8) 

race x diabetes (8) 

gender x diabetes (4) 

3 Dimensions 

age x race x gender (328) 

no agg needed 

age (lev2) (312) 

age x race x diabetes (328) age (lev 2) (264) 

age x gender x diabetes (164) no agg needed 

race x gender x diabetes (16) no agg needed 

4 Dimensions 

age x race x gender x diabetes (656) age (lev 2) (560) age (lev 3), race (lev 2) (396) 

 

Note: When there is aggregation it means that some categories of the aggregated variable are combined in order to make a combination that meets the threshold 

requirement. In this example, the minimum for diabetes counts is 50 while the minimum for contributors to the mean or total of the continuous expenditure 

variable is 10. Detailed information about the number of cell aggregations for each combination of variables to give an idea of how much aggregation is taking 

place Is not shown to save space 
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Table 4: Observed and Estimated Diabetes Counts and Expenditure Amounts 

  
NOTE:  Tables 1, 4 and 5 have been abbreviated to a subset of ages in the interest of space. 

Age No Yes Age No Yes Age No Yes Age No Yes

55 75 43 55 $17,000 $148,170 55 76.9 41.1 55 $37,196 $127,974

56 70 40 56 $60,800 $119,080 56 67 43 56 $44,136 $135,744

57 70 39 57 $46,860 $95,090 57 67.6 41.4 57 $38,164 $103,786

58 58 25 58 $18,300 $76,920 58 55.6 27.4 58 $13,703 $81,517

59 50 44 59 $72,860 $265,500 59 56 38 59 $82,620 $255,740

60 68 43 60 $10,000 $271,340 60 65 46 60 $27,142 $254,198

61 68 34 61 $33,000 $188,820 61 64.5 37.5 61 $14,801 $207,019

62 53 44 62 $13,000 $247,500 62 54 43 62 $32,798 $227,702

63 54 56 63 $49,000 $336,310 63 57.7 52.3 63 $33,422 $351,888

64 69 43 64 $16,000 $164,220 64 70.8 41.2 64 $12,837 $167,383

65 384 140 65 $119,180 $197,240 65 384 140 65 $82,006 $234,414

66 355 163 66 $73,850 $478,890 66 355 163 66 $103,118 $449,622

67 375 149 67 $207,980 $439,390 67 375 149 67 $201,113 $446,257

68 390 143 68 $105,830 $339,530 68 390 143 68 $126,673 $318,687

69 398 157 69 $174,500 $443,660 69 398 157 69 $168,430 $449,730

70 267 151 70 $109,900 $396,890 70 267 151 70 $114,960 $391,830

71 241 154 71 $71,000 $730,100 71 241 154 71 $108,831 $692,269

72 241 153 72 $96,310 $380,910 72 241 153 72 $104,489 $372,731

73 258 171 73 $247,000 $572,580 73 258 171 73 $200,805 $618,775

74 271 164 74 $135,000 $422,730 74 271 164 74 $130,126 $427,604

Table Variables:  Race=Hispanic, Gender=FemaleTable Variables:  Race=Hispanic, Gender=Female

COUNTS IP ExpenditureCOUNTS IP Expenditure

Shaded cells 

indicate need for 

primary 

Shaded cells indicate need for 

primary suppression, <10 non-

zero contributors to the total.

Diabetes DiabetesDiabetes Diabetes

(B) ESTIMATED TABLES(A) UNTREATED TABLES WITH SMALL CELLS
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Table 5: Estimation Errors in Diabetes Counts and Expenditure Amounts 
 

 
NOTE:  Tables 1, 4 and 5 have been abbreviated to a subset of ages in the interest of space. 

(A) ABSOLUTE ERROR BETWEEN ESTIMATED AND REAL VALUES (B) RELATIVE ERROR BETWEEN ESTIMATED AND REAL VALUES

Age No Yes Age No Yes Age No Yes Age No Yes

55 1.86 1.86 55 20,196$       20,196$       55 2.4% 4.5% 55 54% 16%

56 3.04 3.04 56 16,664$       16,664$       56 4.5% 7.1% 56 38% 12%

57 2.42 2.42 57 8,696$         8,696$         57 3.6% 5.8% 57 23% 8%

58 2.35 2.35 58 4,597$         4,597$         58 4.2% 8.6% 58 34% 6%

59 5.96 5.96 59 9,760$         9,760$         59 10.6% 15.7% 59 12% 4%

60 2.99 2.99 60 17,142$       17,142$       60 4.6% 6.5% 60 63% 7%

61 3.54 3.54 61 18,199$       18,199$       61 5.5% 9.4% 61 123% 9%

62 1.01 1.01 62 19,798$       19,798$       62 1.9% 2.4% 62 60% 9%

63 3.73 3.73 63 15,578$       15,578$       63 6.5% 7.1% 63 47% 4%

64 1.79 1.79 64 3,163$         3,163$         64 2.5% 4.3% 64 25% 2%

65 65 37,174$       37,174$       65 65 45% 16%

66 66 29,268$       29,268$       66 66 28% 7%

67 67 6,867$         6,867$         67 67 3% 2%

68 68 20,843$       20,843$       68 68 16% 7%

69 69 6,070$         6,070$         69 69 4% 1%

70 70 5,060$         5,060$         70 70 4% 1%

71 71 37,831$       37,831$       71 71 35% 5%

72 72 8,179$         8,179$         72 72 8% 2%

73 73 46,195$       46,195$       73 73 23% 7%

74 74 4,874$         4,874$         74 74 4% 1%

Table Variables:  Race=Hispanic, Gender=Female Table Variables:  Race=Hispanic, Gender=Female

Diabetes Diabetes Diabetes

COUNTS IP Expenditure

Shaded cells indicate need 

for primary suppression, 

count<50.

Shaded cells indicate need for 

primary suppression, <10 non-

zero contributors to the total.

Diabetes

COUNTS IP Expenditure
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