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Abstract

In Gilary, Maples, and Slud (2012), we compared three possible models for small
proportions in small survey domains: Fay-Herriot (Fay and Herriot 1979), GLMM
(Jiang and Lahiri 2006), and Beta-Binomial (Prentice 1986). The comparisons used
bootstrap-based confidence intervals which were justified by asymptotic theory or
established only for large samples. Here we build upon that work by conducting
simulations of small area data in moderate-sample settings, for two purposes: to
evaluate the performance of different analysis methods when using each of the three
simulation models; and to assess the validity of predictors and Wald-type confidence
interval coverage properties for each method.
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1. Introduction

Gilary, Maples, and Slud (2012) addressed two similar problems relating to the
estimation of proportions in small survey domains. The first one was to provide
bounding intervals of small estimated proportions in American Community Survey
(ACS) tabulations. The second was to construct a measure of uncertainty for county
and place level estimates of Erroneous Enumeration (EE) rates among Housing
Units in the 2010 Census Coverage Measurement (CCM) program.

These problems have a common, salient feature: they require interval estimates
corresponding to survey point estimates with values near zero. This feature com-
mands special treatment because the straightforward design-based variance estima-
tors of small proportions yield interval estimators unrealistically close to zero as a
function of the point estimate.

Gilary, Maples, and Slud (2012) discussed three general model-based small-
area techniques for one-sided interval estimation of small survey proportions, and
compared the resulting estimates to ‘cell-based’ or direct interval estimates that do
not borrow strength across small domains or cells. The methods were applied to
ACS 2009 data in Slud (2012) and to the EE rates for housing units in the 2010
CCM in Gilary, Maples, and Slud (2012).

This paper presents a medium-scale simulation study (which we disconnect from
the applications) to measure the accuracy of predictions for each of the three models
studied, and the benefits of each type in bracketing the unknown proportions for
these areas. The performance is assessed by reducing the mean error and matching
the empirical variance to the theoretical variance. The paper also examines the
empirical coverage properties of Wald-type 90 percent confidence intervals using
these simulations, and studies the sensitivity of the results to different choices of
parameters.

1.1 Models and Background

The small area models used in this investigation were defined by Gilary, Maples,
and Slud (2012). The details are restated below with some points condensed.

The motivating setting is a data structure in which m small domains (called
‘areas’ here) i = 1, . . . ,m are fitted with survey-weighted (ratio) estimators π̂i ≡
Ŷi/N̂i, where Ŷi and N̂i are the area y-indicator total and population-total
estimates, respectively. The survey-estimated proportion π̂i is defined equal to the
further generalized expressions:

π̂i =
Ŷi

N̂i

=
yi
ni

(1)

The denominator ni represents the number of people or units sampled in area
i, which is defined by (1) and interpreted as the counts of y-indicators of 1 in the
sample. In survey estimation contexts ni may be defined as an “effective” sample
size, used as a measure of how many ‘independent’ units are represented in the
estimate (e.g., Kish, 1965).

All of the models used involve a nonlinear transformation from input parameters
to the probability scale.
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1.1.1 Small Area Models

The three models explored here are the transformed Fay-Herriot, the GLMM, and
the Beta-Binomial. All of these models contain a fixed-effect component ηi (a
linear combination x

′
iβ ), an area-level random effect which is explicit (ui) in the

Fay-Herriot and GLMM models and implicit in the Beta-Binomial, and a design-
based error term which is explicit (εi) in the Hay-Herriot model and implicit in
GLMM and Beta-Binomial through the binomial distribution. We jointly specify
a form for both πi and the observation yi/ni. First, we consider a transformed
Fay-Herriot model based on the classic model of Fay and Herriot (1979):

FHtr :



θrawi = x
′
i β + ui

θi = max(0,min(θrawi , π2 ))

yi/ni = sin2(max(0,min(θrawi + εi), 1))

πi = sin2 θi

(2)

The target parameter θi is x
′
i β + ui before transformation and possible truncation.

Then the response fraction maps and truncates the target parameter πi on the
probability scale. The point of the transformation within this model is to stabilize
the variance, so that for binomial or simple random sampled data, the variance of
this transformation of the sample mean does not depend on the underlying rate πi.

Note that because values outside the range (0, π/2) are possible with the raw
target θrawi , those values are truncated at 0 and π/2. We refer to this as truncation
although in other contexts it might be called censoring (see Slud and Maiti, 2011,
for the distinction). This process yields a mass of values at the zero bound, which
can reflect the motivating data examples if there is a sizeable number of small areas
with observed zeroes. The resulting model is not precisely a Fay-Herriot model.

The other small-area models both treat yi as binomial with ni trials and
success-probability πi, with the mean of the latter expressed in terms of the logistic
distribution function L(x) = ex/(1 + ex). One of these models is the random-
intercept logistic, discussed by Jiang and Lahiri (2006):

GLMM :

{
yi ∼ Binom(ni, πi)

πi = L(x
′
i β + vi) , vi ∼ N(0, σ2v)

(3)

We generate raw targets on the logit scale that are neither transformed nor trun-
cated, and response fractions on the probability scale. Unknown parameters β and
σ2v are computed through maximum likelihood estimation.

Our final model is the Beta-Binomial employing a logit link specifically
studied in Prentice (1986). The Beta-Binomial can be used to explain extra varia-
tion beyond what is modeled directly by the linear fixed effects x

′
i β:

BBIN :

 yi ∼ Binom(ni, πi)

πi ∼ Beta
(
L(x

′
i β) · τ, (1− L(x

′
i β)) · τ

) (4)

where τ is used as a precision parameter.
The Beta-Binomial distribution does not have an explicit random effect, but

there is an implicit effect upon drawing πi from the Beta distribution. The target
for the Beta-Binomial is πi but there is no explicit expression of this target as in
the other models.
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Within all three small area models, the regression coefficients β are unknown
and are estimated by maximum likelihood simultaneously with respective random-
area-effect dispersion parameters σ2u, σ

2
v , or τ .

The first goal for this investigation is to study the estimates under each type
of generation and analysis model, and in particular how they would be affected by
zeroes arising from truncation in the Fay-Herriot model. Another is to validate
confidence interval properties under large-sample normal distribution theory for
parameter estimators. Medium-scale simulations will study the application of the
normal-theory based confidence intervals that underlie our bounds from previous
work. Do these estimated intervals have suitable coverage and widths?

1.2 Small Area Point Estimators

The point estimates of small-area proportions can be expressed through their em-
pirical best predictor (EB) for each of the three models. For the Fay-Herriot model,
the EB is transformed. These EBs π̂BP

i are as follows (Rao 2003; Jiang and Lahiri
2006; Prentice 1986):

FHtr: arcsin(
√
π̂BP
i ) = x′iβ̂ +

σ̂2u
σ̂2u + (4ni)−1

(
arcsin(

√
yi
ni

) − x′iβ̂
)

(5)

GLMM: π̂BP
i = g(yi + 1, ni + 1, x

′
iβ̂, σ̂

2
v)/g(yi, ni, x

′
iβ̂, σ̂

2
v) (6)

where

g(k, n, η, σ2) ≡
∫

e(η+σz)k

(1 + eη+σz)n
φ(z)dz , φ(·) ∼ N (0, 1)

φ(z) =
1√
2π

e−z
2/2

BBIN: π̂BP
i = {yi + τ̂ L(x

′
iβ̂)} / {ni + τ̂} (7)

where recall that L(·) denotes the logistic distribution function.
Now we examine the EB variance estimator V for the difference between the

predictor and the target. For the Fay-Herriot method, V is given through the
‘higher-order correct’ sum of terms g1, g2, g3 (see Rao, 2003, 6.2.2). For GLMM, the
estimator is:

V = g(2, 2, ηi, σ
2
v)−

ni∑
k=0

(
ni
k

)
{g(k + 1, ni + 1, ηi, σ

2
v)}2

g(k, ni, ηi, σ2v)
(8)

and for Beta-Binomial:

V =
τ ex

′
iβ

(τ + 1)(1 + ex
′
iβ)2(ni + τ)

. (9)

The EB is used to construct näıve, first principles confidence intervals bounded
by π̂i ±1.645∗V ar(π̂i). Ultimately, we will use bootstrap techniques as a means of
bracketing our confidence intervals, as asserted in Gilary, Maples, and Slud (2012),
but we evaluate the näıve intervals here to examine their effectiveness in practice.
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2. Simulation Studies

The simulations involved generating estimates using each of the models, and apply-
ing each model for analysis to the same data set. The two parameters of interest
here are the small-area targets πi and responses yi.

In order to generate the models we need input parameters. The sampling vari-
ances for these models borrow the pattern used by Datta, Rao, and Smith (2005).
Their pattern used groups of five area error variances si which are set equal to 1

4ni
.

Each simulation of m small areas will repeat each variance in the group m/5 times.
Our simulations primarily used si values defined as multiples (not depending on i)
of the variance sets (.3, .4, .5, .6, .7).

The parameters tested for the Fay-Herriot model were designed to produce prob-
ability scale proportions πi ranging between 0 and .3. Then we selected GLMM and
Beta-Binomial parameters that would produce similar proportions once they are
transformed to the probability scale. A series of different arrangements were tested
to find a suitable set of parameters. The chosen parameters were as follows:

FHtr: µ=.25, σ2=.1, ni = 40, (on arcsine scale)
GLMM: µ=-2, σ2=.5, ni = 40, (on logit scale)
BBIN: µ=-1.8, τ=5, ni = 40, (on logit scale).

Other input parameter choices produced similar simulation results. We intend
to expand the simulation to allow nonconstant regression covariates as the xis, but
have not done so yet. We input a constant mean term as the m-vector 1 of 1s.

The parameters µ and σ2u were chosen under the general guideline that they
produce 10 to 40 percent zeroes. The corresponding means πi needed to be suf-
ficiently different from 0 that yi would only seldom fall outside the interval (0,1)
on the probability scale. The simulations began with 15 small areas and 1,000
replications.

2.1 Addressing Values yi = 0 in the Fay-Herriot Model

The first issue to examine is truncation in the Fay-Herriot model. This investigation
began with studying the normality of the difference between target and predictor,
which exposed a concentration of mass near zero for the Fay-Herriot point predictor.
Out of the small-proportion transformed Fay-Herriot cases where θrawi is less than
0 and must be truncated at 0, most are associated with θi = 0. See Figures 1 and 2
which show the distribution of differences between predictor πi and target θi both
before and after removing the zero targets, for a series of 1,000 simulations in one
small area. The density curve in Figure 2 is the same as that in Figure 1, while the
total area in the histogram bars in Figure 2 is reduced due to the removal of cases
with θi = 0. Overall, 85 percent of the θrawi ≤ 0 had θi = 0.

Figures 3, 4, and 5 show the target θi (on the x-axis, on arcsine-square root scale)
plotted against the predictor π̂BPi (on the y-axis) when generation and analysis mod-
els are of the same type, for Fay-Herriot, GLMM, and Beta-Binomial respectively.
The tail of zeroes along the x-axis on Figure 3 shows the truncated cases where the
target equals zero. These plots indicate that the predictors generally estimate the
target well, with little bias.
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Figure 1: Histogram of θi Minus πi for Fay-Herriot Model, as Expressed in (2),
Before Removal of Cases with θi = 0. The Superimposed Line Represents the
Normal Curve with Zero Mean and Empirical Variance.
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Figure 2: Histogram of θi Minus πi for Fay-Herriot Model, as Expressed in (2),
After Removal of Cases with θi = 0. The Superimposed Line Represents the Normal
Curve with Zero Mean and Empirical Variance.
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Figure 3: Predictor π̂BPi Versus Target πi, for the Truncated Fay-Herriot Model
on Probability Scale. For 1,000 Simulations Across 15 Small Areas.
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Figure 4: Predictor π̂BPi Versus Target πi, for the GLMM Model on Probability
Scale. For 1,000 Simulations Across 15 Small Areas.
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Figure 5: Predictor π̂BPi Versus Target πi, for the Beta-Binomial Model on Prob-
ability Scale. For 1,000 Simulations Across 15 Small Areas.

2.2 Estimation Performance

To study estimation performance we set up a 3x3 cross-design for first generating
the data under each of the three models, and then analyzing the generated sets of
targets using each of the models for analysis. All of these tables show results from
a single simulation of 1,000 values in each of 15 small areas. The simulation results
are consistent to within three decimal places over independent, repeated runs.

Table 1 shows estimated probability-scale parameters for empirical average bias
and squared error under truncated Fay-Herriot generation, under each of three types
of analysis models. This table and the following ones can help to compare bias and
variance across models and also look at overall performance of the simulation. The
empirical average bias shows the difference between target and predictor, while the
empirical and theoretical σ2 columns show how the observed mean squared error
from the simulations compares to the theoretical mean squared error (V ), as defined
in (8) and (9) using the true values. In this case, the average bias is small for each
method, but is slightly smaller for the GLMM and Beta-Binomial analysis methods
than for the Fay-Herriot. This speaks to the effect of truncation for the Fay-Herriot
model and to the strong estimation properties of the other two.

The empirical variance is only slightly above the theoretical variance for all
methods, which is a promising result. Because the theoretical variance of the differ-
ence was calculated on the arcsine scale, there is no comparable theoretical variance
here. On the arcsine scale, the Fay-Herriot empirical variance is slightly above the
theoretical variance.

Table 2 shows the estimated parameters for GLMM generation under the same
analysis models. This table shows that GLMM and Beta-Binomial have much
smaller average biases than the Fay-Herriot, and once again all methods have com-
parable (and generally strong) empirical variances.

Table 3 shows the estimated parameters for Beta-Binomial generation under the
same analysis models. These results are similar to the GLMM results, and show
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Table 1: Probability-Scale Estimation Parameters for Bias and Squared Error, for
each Analysis Model, Under Fay-Herriot Generation

F-H Generation Model
Emp. Avg. Bias Emp. MSE Theor. MSE

Analysis Model
F-H -.0087 .0633 –

GLMM .0062 .0634 .0590
BBIN .0062 .0628 .0599

Table 2: Probability-Scale Estimation Parameters for Bias and Squared Error, for
each Analysis Model, Under GLMM Generation

GLMM Generation Model
Emp. Avg. Bias Emp. MSE Theor. MSE

Analysis Model
F-H -.0138 .0627 –

GLMM .0005 .0603 .0499
BBIN .0005 .0606 .0492

the benefits of coverage under GLMM and Beta-Binomial analysis.
When the number of small areas was expanded to 75, the results were gener-

ally the same. The empirical variance shrunk slightly, approaching the theoretical
variance.

2.3 Coverage Performance of Bounds

Finally, we wanted to explore the general coverage properties of näıve, normal-
theory confidence intervals. Because these sample sizes are moderate, the central
limit theorem will not mandate normality.

Table 4 shows the percentage of targets covered by näıve 90 percent confidence
intervals when they are implemented under the cross design. The results range
from overcoverage (with the Fay-Herriot) to undercoverage (with GLMM and Beta-
Binomial). The results are affected both by truncation in the Fay-Herriot and
non-normality in the other two distributions. Overall, these näıve intervals do not
perform as well for the GLMM or Beta-Binomial as for the more conservative Fay-
Herriot model.

There is no disadvantage found in the overall coverage proportion from the
analysis model being of a different type. The table indicates that the nominal
coverage rates are even better in such an instance. (Because of zero-truncation, the
generation and analysis models are never technically the same, even when they are
of the same type.)

Table 3: Probability-Scale Estimation Parameters for Bias and Squared Error, for
each Analysis Model, Under Beta-Binomial Generation

BBIN Generation Model
Emp. Avg. Bias Emp. MSE Theor. MSE

Analysis Model
F-H -.0150 .0672 –

GLMM .0005 .0660 .0602
BBIN -.0004 .0656 .0606
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Table 4: Confidence Interval Coverage Under Different Generation and Analysis
Model Combinations

Analysis Method FH-gen GLMM-gen BBIN-gen

Fay-Herriot .919 .867 .880
GLMM .884 .778 .873

Beta-Binomial .885 .773 .874

3. Conclusion

3.1 Summary

GLMM and Beta-Binomial analysis results track very closely. They are similar
models handled in a similar style for this project, but the average biases under
those analysis models are less than .01, and the difference between their empirical
and theoretical variances is similarly small. These methods are robust to the choice
of generation model.

The inadequacy of normal-theory confidence intervals can be seen here. In
some results they cover close to 90 percent of estimates, but on the whole coverage
is inadequate especially for matching model types. Nor did testing different input
parameters yield the specified coverage level. There is enough deviation from normal
theory in the implementation of these complex models that one should be skeptical
of normality-based confidence intervals in similar contexts.

Matching model type for generation and analysis makes less difference than
anticipated. In some cases, unmatched model types provided smaller average biases
and variances, or better overall coverage rates, as seen in the coverage shown in
Table 4.

3.2 Priorities for Future Research

We plan to increase the number of small areas, and complexity of small-area models.
We have begun this effort by expanding to 75 small areas, but there is more to do.
We would also like to base these models on estimated regression coefficients, and
incorporate effective sample sizes as well.

To supplement our work here, we are working on bootstrap results which are
still in progress. We plan to examine bootstrap-based confidence intervals from
the GLMM and Beta-Binomial models. We will extend the work on Fay-Herriot
bootstrap methods covered by Chatterjee, Lahiri, and Li (2008). We will test to
see if parametric bootstraps can yield coverage properties accurate to within a
small interval given as a function of the number of small areas m. Once we generate
bootstrap-interval simulations, we will be able to assess the merits of different modes
of analysis through their confidence intervals.
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