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Abstract 
One method of protecting confidentiality of tabular data is to apply random perturbation 
on select variables in the underlying microdata. Perturbation variability needs to be 
appropriately accounted for in variance estimation for estimates derived from a data file 
altered through random perturbation. In previous work, we had studied methods for 
estimating variances using a single perturbed data set, and developed a variance estimator 
that incorporates a variance component associated with data perturbation. In this paper, 
we further explore three alternative approaches that can be considered in comparison to 
the initial estimator, with a goal of increasing the stability of the variance estimation, 
especially when estimates are extreme. The first alternative modifies the initial estimator 
through use of multiple perturbed data sets. The second alternative is a limited bootstrap 
approach that can be done by conducting the perturbation of the bootstrap samples 
multiple times, producing the replicate estimates, and subsequently computing the 
variance among the replicate estimates. The third alternative adjusts the initial estimator 
through the idea of small area estimation. Computational aspects of estimators are 
discussed. A simulation study was conducted to evaluate and compare the performance of 
the initial and alternative variance estimators using select variables in two test sites from 
the American Community Survey 2005-2009 sample data. The results are summarized in 
terms of the coverage rates and margin of errors of the estimators. 
 
Key Words: Data perturbation, disclosure limitation, small area model, bootstrap, 
multiple perturbation 
 
 

1. Introduction 
 
One popular method of protecting confidentiality in tabular products is to apply random 
perturbation to the underlying microdata that are used to generate the tabular products. 
Perturbation is executed at the data preparation stage before the tabular products are 
generated. Unlike the Statistical Disclosure Control (SDC) treatments at the table level, 
this approach ensures consistency across tables because the original data are being 
altered. The successful application of data perturbation requires a thorough initial risk 
analysis beforehand to identify the variables and data values that are of high disclosure 
risk. After that, a random perturbation approach should be tailored to meet both goals of 
reducing the disclosure risk and maintaining the data usability. Last and importantly, the 
variance estimation approach for the tabular products must appropriately account for the 
additional variance caused by random perturbation. In previous work, we studied 
methods for estimating variances using a single perturbed data set, and developed a 
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variance estimator that incorporates a variance component associated with data 
perturbation. In this paper, we further explore three alternative approaches that can be 
considered in comparison to the initial estimator, with a goal of increasing the stability of 
the variance estimation, especially when estimates are extreme. A simulation study was 
conducted along with the theoretical illustration to evaluate and compare the performance 
of the initial and alternative variance estimators using select variables in two test sites 
from the American Community Survey (ACS) 2005-2009 sample data. In Section 2, we 
introduce the background and motivation of our work, followed by a brief summary of 
findings in previous studies. The alternative variance estimators are discussed in Section 
3. In Section 4 we describe the evaluation design and show the simulation results. A 
discussion and summary are given in Section 5. 
 

2. Motivation and Previous Work 
 
This study was motivated by Westat’s work of perturbing the ACS data prior to 
generating the Census Transportation Planning Products (CTPP) for the American 
Association of State Highway and Transportation Officials (AASHTO). CTPP are large 
sets of tabulated data products involving dozens of variables generated by the U.S. 
Census Bureau at various geographical aggregations. These tables are designed to support 
a wide range of transportation planning needs. The data underlying the CTPP tables were 
changed from the Census Long Form to the ACS data in 2000. Due to the smaller size of 
the ACS, the CTPP tables were severely compromised because of the Census Bureau 
Disclosure Review Board’s (DRB) extensive tabular data suppression rules in the new 
tables. In the NCHRP Project 08-79: Producing Transportation Data Products from the 
American Community Survey That Comply With Disclosure Rules, Westat developed 
an operationally practical perturbation approach which can generate a mixed set of data 
with real values and randomly perturbed values. The perturbed data can be used to 
generate select sets of CTPP tables directly without table cells being suppressed. This 
enables transportation planners to make significantly better use of the ACS-based CTPP 
tables than they could otherwise do. The perturbation process involves four major steps: 
initial risk analysis, data perturbation, weight calibration, and risk and utility evaluation. 
Full descriptions of the methods can be found in the NCHRP final report on the study 
(Krenzke et al. 2011). 
 
As an important component of the NCHRP 08-79, Westat also studied the methods for 
estimating variances associated with a single perturbed dataset (Krenzke et al. 2011, Li et 
al. 2011). The successive difference replication approach (see Fay and Train 1995; and 
Census Bureau 2009) was used to compute variances for the ACS estimates. Suppose 𝜃�0 
represents the ACS estimate of 𝜃 , and 𝜃�𝑘  is the ACS estimate of 𝜃  for replicate 𝑘 =
1, . . ,80. Then the variance of 𝜃�0 can be estimated as 
 
 var�𝜃�0� = 4

80
∑ (𝜃�𝑘80
𝑘=1 − 𝜃�0)2. (f1) 

 
Throughout this document, we use the formula numbers originally in Li et al. (2011). 
Treating the perturbed data as if they were observed and directly applying the usual ACS 
variance formula will result in the naïve estimator (f4): 
 
 var�𝜃�0� = 4

80
∑ (𝜃�𝑘 − 𝜃�080
k=1 )2. (f4) 
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In the formula 𝜃�0 represents the CTPP perturbed estimate of 𝜃 and 𝜃�k is the estimate for 
replicate 𝑘. This estimator can be biased because it only accounts for the ACS sampling 
error, but not the variance component associated with the perturbation. 
 
An estimator was developed to account for the additional variance due to data 
perturbation. It adds a term of squared difference between the ACS and perturbed 
estimates to the original ACS variance as follows: 
 
 var�𝜃�0� = var(𝜃�0) + �𝜃�0 − 𝜃�0�

2. (f5) 
 
Assuming perturbation is independent of the sampling process, the formula (f5) is 
essentially the sum of the sampling variance and the perturbation variance. The original 
ACS estimate and variance, 𝜃�0 and var(𝜃�0), can be computed from the unperturbed data 
during the process of generating the tabular products. Confidentiality is not a concern 
since the final users will not be able to separate var(𝜃�0) from var�𝜃�0� or derive 𝜃�0 from 
var�𝜃�0�  using the released tabular data. Evaluation results of a simulation study 
supported the use of the formula (f5) as the variance estimator for the CTPP tabulations. 
The Census DRB and the Census Bureau ACS Sample Design group also approved the 
decision of using the formula (f5) for variance estimation in the production process of the 
CTPP tables. 
 

3. Alternative Variance Estimators 
 
We extended the previous work to investigate alternative variance estimation methods 
that are feasible, acceptable to the user audience, as well as being accurate and stable. 
This research can directly benefit the Census Bureau and the users of its transportation 
products by further enabling effective use of perturbed ACS data for transportation 
planning purposes. Meanwhile, variance estimation, with perturbed data in general, is an 
important and interesting problem. 
 
Three alternative approaches were considered in comparison to the variance estimation 
formula (f5), with a goal of increasing the stability of the variance estimation, especially 
when estimates are extreme. 
 

1. The method (f5) used a single dataset in variance estimation. Methods suggested 
by Reiter (2003) in another context used multiple datasets to assess between 
perturbation variability. Following that idea, we developed a new variance 
estimation approach through multiple perturbations. This approach is numbered 
as (fn1), thereafter. 

2. The second option is a limited bootstrap that could be done by perturbing the 
bootstrap samples of the original data, producing the replicate estimates, and 
subsequently measuring the variance among the estimates. This approach is 
numbered as (fn2), thereafter. 

3. The third option is a small area estimation style estimator, which introduces a 
modest adjustment to (f5). The goal of the modest adjustment is to increase the 
stability of the variance estimator through borrowing strength and shrinkage 
estimation. This approach is numbered as (fn3), thereafter. 
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3.1 Multiple Perturbation Variance Estimator 
The multiple perturbation approach replaces �𝜃�0 − 𝜃�0�

2 in (f5) by an average of 𝑚, say 
5, squared deviations from multiple perturbation datasets. The average of the squared 
deviations should be more stable than a single squared deviation. This adjustment 
procedure can be implemented by producing and utilizing multiple copies of the 
perturbed dataset. The formula for the multiple perturbation estimator is 
 
 𝑣𝑓𝑛1𝑚 =  4

80
∑ (𝜃�𝑘80
𝑘=1 − 𝜃�0)2 + 1

𝑚
∑ �𝜃�0𝑖 −  𝜃�0�

2𝑚
𝑖=1  (fn1) 

 
where 𝜃�0𝑖  is the estimate of 𝜃 computed from the 𝑖th perturbed dataset. The estimate 𝜃�0𝑖  
uses the full sample weights. 
 
Increasing the number of replicates 𝑚  should increase the stability of the variance 
estimator. Doing so, however, increases the computational burden. The trade-off in 
accuracy versus computing cost should be carefully evaluated before implementation. 
 
3.2 Limited Bootstrap Variance Estimator 
The limited bootstrap approach can be done by conducting the perturbation of the 
bootstrap samples multiple times, producing the replicate estimates and subsequently the 
variance among the estimates. This approach is computationally intensive and requires 
additional development and programming. The potential advantage of this approach is 
that the sampling and perturbation variability are captured simultaneously. A full 
bootstrap variance estimate based on 100s or 1000s of bootstrap replicates surely will be 
computationally impossible for the national ACS data due to the complexity of 
perturbation. In order to implement a bootstrap variance estimation methodology, a 
number of choices for defining the algorithm should be considered. 
 

• Is the bootstrap drawn before or after perturbation of the ACS data? If it is 
before, it means that a perturbed ACS dataset and all perturbed bootstrap 
datasets need to be available to compute variances. If it is after, then the source 
of variability due to (random) perturbation logically is not captured by the 
bootstrap. But the amount of data that need to be made available, however, is 
much smaller. 

• Should one draw the bootstrap sample from the original dataset with equal 
probabilities or with probabilities proportional to ACS sampling weights? In Rao 
and Wu (1988), bootstrap resampling is done with equal probabilities and 
weights are rescaled based on the number of times cases are selected.  

• Should one draw independent bootstrap samples within strata or ignore ACS 
strata when drawing samples? One likely should respect the stratum structure in 
the original ACS sample. If not, one then introduces variability due to random 
sample sizes within strata. Sitter (1992) implemented Rao and Wu's (1988) 
rescaling bootstrap within strata (Lohr 1999; page 307). A question then is 
whether ACS stratum information is available on the ACS data file for this 
purpose. If not, then it cannot be used. 

• Should one independently resample individuals, households, or clusters (of 
individuals or households)? If one resamples clusters, should one have 
resampling within sampled clusters as well? It would make sense that one should 
bootstrap PSUs instead of individuals directly, because the individuals are not 
independent of each other when there is a cluster structure organizing them. A 
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question then is whether appropriate cluster information is available on the ACS 
data file for this purpose. 

• Should one rake the bootstrap weights to match ACS control totals? When the 
original ACS sample was drawn, it was drawn with the expectation that weights 
would be raked to control totals. That is, all possible ACS samples that would be 
considered would ultimately have weights adjusted so that they were within an 
accepted tolerance of raking control totals. As such, the weights for comparable 
samples should have the property of matching control totals. It would seem 
reasonable then that bootstrap samples should also have weights adjusted to 
match control totals. 

• Should one use approximate Bayesian bootstrap or regular bootstrap? The 
bootstrap resamples with replacement from the distribution of observed values in 
order to mimic the process that yielded the original dataset. If the original 
dataset is small, then the resulting empirical distribution has a limited support 
set. Rubin (1981) proposed a Bayesian version of the bootstrap to address this 
situation in particular and a limitation of the bootstrap in general. An 
implementation of the Bayesian bootstrap in practice has become known as the 
approximate Bayesian bootstrap (ABB). Instead of using constant probabilities 
1 n�  resampling, the ABB draws probabilities from a Dirichlet distribution for 
each bootstrap dataset. The varying probabilities are then used when drawing the 
bootstrap sample. The Bayesian bootstrap may not be feasible for the ACS data 
due to its large size and the number of additional complications (e.g., 
perturbation, computing time). 

 
Decisions concerning the factors described above will to a large extent define the 
bootstrap replication process for the CTPP variance estimation based on perturbed ACS 
data. 
 
3.2.1 Bootstrap before Perturbation Estimators 
Let 𝜃�0 be the ACS estimate. First, perturb the ACS data creating a perturbed dataset. Let 
𝜃�0 be the estimate from the perturbed dataset. Next, independently bootstrap the ACS 
dataset 𝐾 times and perturb each bootstrap sample. Rake each perturbed dataset to ACS 
control totals. Let 𝜃�𝑏𝑘 be the estimate from the 𝑘th perturbed bootstrap sample, with the 
subscript b indicating “bootstrap before perturbation.” Let 𝜃�̅𝑏 = ∑ 𝜃�𝑏𝑘𝐾

𝑘=1 /𝐾  be the 
average of the estimates from the K perturbed bootstrap samples. Bootstrap variance 
estimate centered at the average of the K perturbed bootstrap estimates is estimator (fn2 

B.A): 1
𝐾−1

∑ �𝜃�𝑏𝑘 − 𝜃�̅𝑏�
2

𝐾
𝑘=1 . A bootstrap variance estimate centered at the single 

perturbed dataset estimate is estimator (fn2 B.B): 1
𝐾−1

∑ �𝜃�𝑏𝑘 − 𝜃�0�
2𝐾

𝑘=1 . A bootstrap 

variance estimate centered at the ACS estimate is estimator (fn2 B.C): 1
𝐾−1

∑ �𝜃�𝑏𝑘 −𝐾
𝑘=1

𝜃�0�
2. 

 
3.2.2 Bootstrap after Perturbation Estimators 
Again, let 𝜃�0 be the ACS estimate. The data are perturbed once, creating a perturbed 
dataset. Let 𝜃�0 be the estimate from the perturbed dataset. Independently bootstrap the 
perturbed dataset 𝐾 times. Let 𝜃�𝑎𝑘 be the estimate from the 𝑘th bootstrap sample of the 
perturbed dataset, with the subscript 𝑎  indicating “bootstrap after perturbation.” Let 
𝜃�̅𝑎 = ∑ 𝜃�𝑎𝑘𝐾

𝑘=1 /𝐾 be the average of the estimates from the 𝐾 bootstrap samples of the 
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perturbed dataset. A bootstrap variance estimate centered at the average of the 𝐾 

bootstrap estimates is estimator (fn2 A.A): 1
𝐾−1

∑ �𝜃�𝑎𝑘 − 𝜃�̅𝑎�
2

𝐾
𝑘=1 . A bootstrap variance 

estimate centered at the single perturbed dataset estimate is estimator (fn2 A.B): 
1

𝐾−1
∑ �𝜃�𝑎𝑘 − 𝜃�0�

2𝐾
𝑘=1 . A bootstrap variance estimate centered at the ACS estimate is 

estimator (fn2 A.C): 1
𝐾−1

∑ �𝜃�𝑎𝑘 − 𝜃�0�
2𝐾

𝑘=1 . 
 
It is anticipated that centering at the ACS estimate will generate the largest variance, and 
centering at the average of bootstrap estimates will generate the smallest variance. 
Further it is anticipated that the variance estimates using bootstrapping after perturbation 
will be smaller than the variance estimates using bootstrapping before perturbation. As 
mentioned before, bootstrapping before perturbation probably will be the better option. 
 
3.3 Small-Area Estimation Style Variance Estimator 
We modified the adjustment �𝜃�0 − 𝜃�0�

2  in (f5) to increase its stability. The idea 
originates from the small area estimation models. Small area estimation often takes 
advantage of similarity among small areas through formulas that “borrow strength" and 
“shrink" estimates toward a common value. The amount of shrinkage typically increases 
with the variance of the estimate in question. The essential idea of a modified estimator, 
(fn3), as an adjustment to (f5), is to replace the adjustment �𝜃�0 − 𝜃�0�

2 by an adjustment 
term influenced by shrinkage, �𝜃�0p − 𝜃�0�

2, where 𝜃�0p is a modified estimate. The letter 
𝑝  is used to denote the suggestion that the modified estimate for use in variance 
estimation be a certain posterior mean estimate. This is not suggesting a replacement of 
the estimate based on perturbed data by a shrunken estimate, but rather to use the 
modified estimate arrived at through shrinkage in the adjustment term. 
 
The formula (fn3) is expected to improve coverage of confidence intervals. The estimates 
impacted by shrinkage will be less variable than the raw estimates. As a result, the 
adjustment factors �𝜃�0p − 𝜃�0�

2  might be more stable than �𝜃�0 − 𝜃�0�
2 . In particular, 

small adjustments might be made a little bigger (thereby increasing coverage levels) 
while large adjustments might be made a little smaller (thereby reducing interval 
lengths). The adjustments make more of a difference at lower levels of aggregation. 
 
Details for two versions of (fn3) are presented below. The subscript 0, which denotes that 
an estimate is computed using the full sample weights, is omitted from the formulas in 
this section. In the first version, let 𝜃�̅ be the average of ACS estimates, 𝜃�𝑗, for parameters 
𝑗 = 1, … , 𝐽: 

𝜃�̅ =
1
𝐽
�𝜃�𝑗

𝐽

𝑗=1

. 

 
Let 𝑠𝜃��

2 be the variance of ACS estimates, 𝜃�𝑗, for parameters 𝑗 = 1, … , 𝐽. 
 

𝑠𝜃��
2 =

1
𝐽 − 1

��𝜃�𝑗 − 𝜃�̅�
2

𝐽

𝑗=1
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Consider the following model, independently for 𝑗 = 1, … , 𝐽: 
 

𝜃�𝑗~ 𝑁�𝜃𝑗, 𝑣𝑓5�𝜃�𝑗�� 
 
and 
 

𝜃𝑗 ~ 𝑁�𝜃�̅, 𝑠𝜃��
2�. 

 
For parameters 𝑗 = 1, … , 𝐽, the posterior mean (indicated by subscript 𝑝) for parameter 𝜃𝑗 
is 
 

𝜃�𝑗𝑝(1) =  
𝑣𝑓5�𝜃�𝑗� ∗ 𝜃�̅ + 𝑠𝜃��

2 ∗ 𝜃�𝑗
𝑣𝑓5�𝜃�𝑗� + 𝑠

𝜃��
2 . 

 
The first version of variance estimator (fn3, version 1) is then, for parameter 𝑗 = 1, … , 𝐽: 
 

𝑣𝑓𝑛3.1,𝑗�𝜃�𝑗� = 𝑣𝑓1�𝜃�𝑗� +  �𝜃�𝑗𝑝(1)−  𝜃�𝑗�
2. 

 
The formula (f1) can be used to compute 𝑣𝑓1�𝜃�𝑗�. This is variance estimator (fn3.1). 
 
In the second version of the modified variance estimation (fn3, version 2), the average of 
the estimates from the perturbed datasets are used as the “empirical Bayesian” point 
estimate of the “prior” mean. Thus, this average changes by perturbed dataset.  Let 𝜃�̅ be 
the average of estimates 𝜃�𝑗 for parameters 𝑗 = 1, … , 𝐽 from the perturbed datasets: 
 

𝜃�̅ =
1
𝐽
�𝜃�𝑗

𝐽

𝑗=1

. 

 
Let 𝑠𝛳��

2 be the variance of estimates, 𝜃�𝑗, for parameters 𝑗 = 1, … , 𝐽: 
 

𝑠𝛳��
2 =

1
𝐽 − 1

��𝜃�𝑗 − 𝜃�̅�
2

𝐽

𝑗=1

 

 
Consider the following model, independently for 𝑗 = 1, … , 𝐽: 
 

𝜃�𝑗~ 𝑁�𝜃𝑗, 𝑣𝑓5�𝜃�𝑗�� 
and 

𝜃𝑗 ~ 𝑁�𝜃�̅, 𝑠𝛳��
2�. 

 
For parameters 𝑗 = 1, … , 𝐽, the posterior mean (indicated by subscript 𝑝) for parameter 𝜃𝑗 
is: 
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𝜃�𝑗𝑝(2) =  
𝑣𝑓5�𝜃�𝑗�∗𝜃��+𝑠𝛳��

2∗𝜃�𝑗
𝑣𝑓5�𝜃�𝑗�+𝑠𝛳��

2 . 

 
The second version of variance estimator (fn3, version 2) is then, for parameter 𝑗 = 1, …, 
𝐽: 
 

𝑣fn3.2,𝑗�𝜃�𝑗�= 𝑣𝑓1�𝜃�𝑗� + �𝜃�𝑗𝑝(2)−  𝜃�𝑗�
2 

 
This is variance estimator (fn3.2). 
 
A challenge comes in choosing which adjustments to include in a model together for the 
purpose of shrinkage. A small set of table entries could be defined by a single table. A 
medium set of table entries could be defined by a group of closely related tables. A large 
set of table entries could be defined by a broader group of related tables. A second 
challenge comes in making these choices when estimates are produced for different levels 
of aggregation. Should estimates and variance estimates from different levels of 
aggregation be used together in one hierarchical model? Simulation results from two 
different aggregations are presented later in this paper. Finally, the methodology 
described above is designed for estimators that have a normal distribution. For binary 
variables, one could consider transformations to increase the correspondence of the 
sampling distributions of estimators to the normality assumption. Alternatively, one could 
consider different small area models for non-normal variables. 
 

4. Simulation Study 
 
A simulation study with the aim of evaluating and comparing the performance of 
different variance estimators was conducted at the U.S. Census Bureau using the internal 
five-year ACS sample data from 2005–2009.  
 
4.1 Simulation Design 
The design of the simulation study is illustrated in the following aspects. 
 
4.1.1 Test Sites 
The input data were subset to two test sites: Olympia (OLY) and Atlanta (ATL). Due to 
the computational intensity of the simulation program (in SAS), the Atlanta data were 
subset to two neighboring counties: Henry and Clayton. 
 
4.1.2 Level of Aggregations 
Two levels of aggregations, combined traffic analysis zones (CTAZs), were created and 
used in the evaluation process of this simulation study: (1) CTAZ300, formed by 
combining traffic analysis zones until there were at least 300 sampled workers who lived 
in this area, and (2) CTAZ50, formed by combining traffic analysis zones until there were 
at least 50 sampled workers who lived in this area. The Olympia test site contains 22 
CTAZ300s and 87 CTAZ50s. The Atlanta test site contains more records than Olympia 
and has 33 CTAZ300s and 105 CTAZ50s. 
 
 
 
 

JSM 2013 - Survey Research Methods Section

1689



 
 
 
 

4.1.3 Outcome Variables 
The outcome variables are travel time (variable name: JWMN) and minority status 
(variable name: MINORITY). For each CTAZ300 and CTAZ50, we computed the mean 
of travel time for workers who drove alone and the percentage of the minority population.  
 
4.1.4 Perturbation 
We implemented the data perturbation techniques developed during the NCHRP 08-79 
project (see details in Krenzke et al. 2011), which combine the constrained hot deck and 
the semi-parametric perturbation approaches into one processing step. The constrained 
hot deck was used for ordered variables, whereas the semi-parametric was used for 
unordered categorical or binary variables. Partial replacement was done for each of the 
target variables. At the end of the data replacement, a raking procedure was run to adjust 
the full sample and replicate weights.  
 
4.1.5 Number of Iterations 
Two simulation programs were run for this study: the one for the limited bootstrap 
estimators used 300 iterations, with each involving 40 bootstrap samples; the other for the 
rest of the variance estimators used 400 iterations, with each involving five independently 
perturbed datasets for the estimator (fn1). The number of iterations was limited by the 
computational burden since in each single iteration the data replacement and raking 
process had taken a large amount of time. Even fewer iterations were executed for the 
limited bootstrap estimators to ensure that a reasonable number of bootstrap samples 
could be drawn per replicate.  
 
4.1.6 Summary Measures 
For each variance estimation method, we computed the coverage rates, the average 
margin of error (MOE), and the variation in the MOE from the simulated data. The 
coverage indicator is a binary variable that signifies whether a constructed confidence 
interval covers the true population value (mean travel time or percentage of minority 
population). The true population values were not available since ACS data were just one 
sample. A solution was to use the simulated true values for individual CTAZs which 
were drawn from a normal distribution with the ACS estimates as the mean and the 
variance. The coverage rate was computed as the mean of coverage indicators across all 
iterations. The average MOE was computed as 1.96 multiplied by the average standard 
errors across iterations. The coverage rates and length of MOEs indicated whether the 
confidence intervals based on examined variance estimators cover the true values at the 
nominal level. The variance of the MOE showed the stability of the variance estimators. 
 
All except for the limited bootstrap estimators were evaluated for two test sites by two 
analysis variables by two geographical levels. The limited bootstrap estimators were only 
evaluated for travel time in CTAZ300 using the Olympia data due to its computational 
intensity. 
 
4.2 Simulation Results 
The simulation results from both test sites and both levels of aggregations reach similar 
conclusions. Only the results from the Olympia test site are presented in this paper. 
Sections 4.2.1 and 4.2.2 summarize the results for the analysis variables JWMN and 
MINORITY, respectively, at the CTAZ300 level. The results at the lower aggregation 
CTAZ50 are shown in Appendix A. 
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4.2.1 Results for JWMN 
Table 1 summarizes coverage rates for 22 CTAZ300 locations. A majority of CTAZ300 
locations have coverage rates within 2.5 percent of the desired nominal 95 percent. The 
(f4) approach has lower coverage rates compared to other estimators with some 
CTAZ300 locations having coverage below 92.5 percent or even below 90 percent. 
Estimators (f5) and (fn1) have quite similar performance. Estimators (fn3.1) and (fn3.2) 
have the highest percent of cases with coverage above 95 percent. They also have four 
cases each with coverage above 97.5 percent. 
 

Table 1: Coverage Rate for 22 CTAZ300 Test Sites in Olympia for Variable JWMN 
 

Olympia # of 22 CTAZ300 for JWMN 
Coverage Rate 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

<0.90 1 0 0 0 0 
0.90, <0.925 4 0 0 0 0 
0.925, <0.95 8 10 8 6 6 
0.95, <0.975 9 12 14 12 12 
0.975, 1.00 0 0 0 4 4 
0.925, <0.975 17 22 22 18 18 
Percent of CTAZ with coverage 0.925, <0.975 77% 100% 100% 82% 82% 

 
Table 2 summarizes average MOE for 22 CTAZ300 locations for variable JWMN. All 
MOEs are compared to that for (f4), which is the smallest. The smallest MOE for (f4) 
probably contributes to its lower confidence coverage. Estimators (fn3.1) and (fn3.2) 
have the highest average MOE, which contributes to their slightly higher confidence 
coverage. The MOE is quite similar for (f5) and (fn1), but (f5) is slightly smaller. 
 

Table 2: Margin of Error for 22 CTAZ300 Locations in Olympia for Variable JWMN 
 

Olympia MOE in 22 CTAZ300 for JWMN Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

Average MOE 2.61 2.71 2.72 2.82 2.82 
Average MOE relative to (f4) 1.00 1.04 1.04 1.08 1.08 

 
Table 3 summarizes standard deviations of MOEs across 22 CTAZ300 locations. To be 
clear, each of 22 CTAZ300s has MOEs computed for 400 replicates. Each set of 400 
replicates produces a standard deviation (SD) of MOE. The 22 standard deviations are 
summarized below by their mean and first, second, and third quartiles. It is important to 
note that the SDs of the (fn1)’s MOE are about 50 percent less than those of (f5). 
Estimator (fn1) is more stable since it is based on multiple perturbed datasets. The SDs of 
the (fn3)’s MOE are larger than those of (f5) at the CTAZ300 level, while the results at 
the lower aggregation CTAZ50 in Appendix A show that the SDs of the (fn3)’s MOE can 
be smaller than those of (f5). This indicates the adjustment terms based on the small area 
models can be more stable at lower geographical level. 
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Table 3: Standard Deviation of Margin of Error Estimates for 22 CTAZ300 Locations in 
Olympia for Variable JWMN 

 
Olympia – Standard Deviation of MOE in 22 
CTAZ300 for JWMN 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

Mean of SD of MOE 0.18 0.16 0.07 0.20 0.20 
1st quartile of SD of MOE 0.11 0.11 0.05 0.11 0.11 
median of SD of MOE 0.15 0.13 0.06 0.17 0.18 
3rd quartile of SD of MOE 0.25 0.18 0.08 0.23 0.23 

 
The six bootstrap variance estimation variations were applied only in Olympia at the 
CTAZ300 level on the variable JWMN. Results are presented in the three tables below. 
As can be seen in Table 4, coverage is not very good: several CTAZ300 locations have 
under coverage using all estimators.  
 

Table 4: Coverage Rate for 22 CTAZ300 Locations in Olympia for Variable JWMN 
using Bootstrap Variance Estimation 

 
Olympia # of 22 CTAZ300 JWMN 
Coverage Rate 

Variance Estimators for Bootstrap 
A.A A.B A.C B.A B.B B.C 

<0.90 8 7 6 7 7 6 
0.90, <0.925 5 5 4 6 4 4 
0.925, <0.95 4 4 6 4 5 5 
0.95, <0.975 3 4 4 3 4 5 
0.975, 1.00 2 2 2 2 2 2 
0.925,<0.975 7 8 10 7 9 10 
Percent of CTAZ with coverage 0.925, 
<0.975 

32% 36% 45% 32% 41% 45% 

 
Table 5 shows the average MOE across bootstrap alternatives. They are comparable to 
the MOE of (f4). 
 

Table 5: Margin of Error for 22 CTAZ300 Test Sites in Olympia for Variable JWMN 
using Bootstrap Variance Estimation 

 
Olympia MOE in 22 CTAZ300 for 
JWMN 

Variance Estimators for Bootstrap 
A.A A.B A.C B.A B.B B.C 

Average MOE 2.53 2.62 2.66 2.56 2.66 2.69 
Average MOE relative to (f4) 0.97 1.00 1.02 0.98 1.02 1.03 

 
Table 6 presents standard deviation of MOE estimates for the six bootstrap variance 
estimation alternatives. The first three bootstrap alternatives that introduce less variability 
into the bootstrap procedure produce less variable MOE estimates. This makes sense 
given the different amount of variability captured by the two classes of procedures 
(bootstrap after perturbation versus bootstrap before perturbation). 
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Table 6: Standard Deviation of Margin of Error Estimates for 22 CTAZ300 Test Sites in 
Olympia for Variable JWMN using Bootstrap Variance Estimation 

 
Olympia – Standard Deviation of MOE 
in 22 CTAZ300 for JWMN 

Variance Estimators for Bootstrap 
A.A A.B A.C B.A B.B B.C 

Mean of SD of MOE 0.26 0.27 0.25 0.32 0.30 0.32 
1st quartile of SD of MOE 0.21 0.23 0.21 0.26 0.24 0.26 
Median of SD of MOE 0.27 0.29 0.25 0.32 0.29 0.30 
3rd quartile of SD of MOE 0.31 0.33 0.31 0.38 0.36 0.36 

 
A major conclusion of this part of the study is that it is likely that more than 40 bootstrap 
replicates will be required in order to stabilize MOE estimates and improve coverage 
levels. 
 
4.2.2 Results for MINORITY 
Methods were also implemented on the binary variable MINORITY, which takes values 
of “Yes” and “No.” Coverage rates for CTAZ300 locations are given in Table 7. Results 
for (f5) and (fn1) are very comparable and quite good. Results for this variable using 
other estimators are a little bit worse than they were for JWMN. For the (fn3.1) and 
(fn3.2) estimators, this is possibly because MINORITY is a binary variable and the 
normality assumption in the small area estimation model does not hold very well. In 
particular, the variances in binomial models depend on the means, so one could consider 
implementing a transformation to stabilize the variance (e.g., the arcsin square root 
variance stabilizing transformation). 
 

Table 7: Coverage Rates for 22 CTAZ300 Locations in Olympia for Variable 
MINORITY 

 
Olympia # of 22 CTAZ300 for MINORITY 
Coverage Rate 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

<0.90 10 0 0 2 2 
0.90, <0.925 7 0 0 1 0 
0.925, <0.95 3 7 8 10 10 
0.95, <0.975 2 15 14 7 8 
0.975, 1.00 0 0 0 2 2 
0.925, <0.975 5 22 22 19 20 
Percent of CTAZ with coverage 0.925, <0.975 23% 100% 100% 86% 91% 

 
A summary of the MOEs for variable MINORITY in 22 CTAZ300 locations is given in 
Table 8. The MOEs are much smaller due to the scale of MINORITY (binary) versus 
JWMN (continuous). As before, (f4) is the smallest on average. The other estimators 
have larger average MOEs. As with JWMN, for variable MINORITY the estimators 
(fn3.1) and (fn3.2) are impacted by a few outliers. 
 
Table 8: Margin of error for 22 CTAZ300 locations in Olympia for variable MINORITY 
 

Olympia MOE in 22 CTAZ300 for 
MINORITY 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

Average MOE 0.0512 0.0599 0.0602 0.0600 0.0601 
Average MOE relative to (f4) 1.000 1.169 1.175 1.172 1.173 
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Table 9 presents standard deviations of MOE across 22 CTAZ300 locations in Olympia. 
Qualitatively, the results are similar to those of variable JWMN: estimator (fn1) has a 
smaller variability in MOE estimates. 
 
Table 9: Standard Deviation of Margin of Error Estimates for 22 CTAZ300 Locations in 

Olympia for Variable MINORITY 
 

Olympia – Standard Deviation of MOE in 22 
CTAZ300 for MINORITY 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

Mean of SD of MOE 0.004 0.009 0.006 0.008 0.008 
1st quartile of SD of MOE 0.003 0.006 0.004 0.005 0.005 
Median of SD of MOE 0.003 0.008 0.005 0.007 0.007 
3rd quartile of SD of MOE 0.004 0.010 0.007 0.009 0.010 

 
For both analysis variables and both geographical areas, a common pattern is seen. 
Estimators (f5) and (fn1) have similar coverage rates, and estimators (fn3.1) and (fn3.2) 
have similar coverage rates. Estimator (f4) has lower coverage rates compared to other 
estimators. It also has the smallest estimated margin of error, which probably contributes 
to lower confidence coverage. Estimators (fn3.1) and (fn3.2) have the highest average 
margin of error, which contributes to their slightly higher confidence coverage. Margin of 
error is quite similar for (f5) and (fn1). However, the standard deviations of the (fn1)’s 
MOE are about 50 percent less than those of (f5). The higher stability of (fn1) comes 
from averaging adjustment terms from multiple perturbed datasets. The SDs of the 
(fn3)’s MOE can be either larger or smaller than those of (f5). 
 

5. Summary 
 
For both test sites, both levels of aggregation and both analysis variables, we found that 
the gain from using estimators (f5) and (fn1) accounting for perturbation errors over the 
other options is quite obvious in terms of better coverage rates and, particularly in the 
case of (fn1), smaller standard deviation for margins of error. If computing resources are 
available, then the variance estimator (fn1) is recommended over (f5). This statement is 
due to the fact that (fn1) provides stable estimates of margins of error through its 
averaging of multiple independent squared deviations, whereas (f5) relies on a single 
squared deviation to account for variation due to perturbation. Estimator (f5) worked well 
and remains an acceptable choice. 
 
In the future, we could further investigate the performance of (fn1) and (f5) in the 
following aspects: 
 

• Compare (fn1) and (f5) estimators in terms of coverage, margin of error, and 
stability of variance estimates on more test sites, on more variables, and at 
different levels of aggregations. 

• Evaluate the computational issues regarding (f5) and (fn1) on a much broader, 
and perhaps national, scale. 

• For (fn1), examine the issue of the number of replications (M = 5,10,20, …) in 
terms of the performance of the multiple perturbation estimator. 

 
In addition, further study can be carried out on the small area estimation style estimators 
and the limited bootstrap approach. For the small area estimation style estimators, we 
could examine the model and potential variance stabilizing transformations especially for 
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the estimator of proportions based on binary data. Additionally, we could examine the 
role of outliers on the modeling. It was noted that a few CTAZ locations appeared to have 
outlying results. Robust shrinkage methods or shrinkage methods that push adjustments 
(through strategically developed prior distributions) toward the (f5) adjustment might 
improve performance. For the limited bootstrap approach, we could examine the issue of 
the number of replicates. 
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Appendix A: Simulation Results for 87 CTAZ50 Locations in Olympia 

 
Table A-1: Coverage Rate for 87 CTAZ50 Locations in Olympia for Variable JWMN 

 
Olympia # of 87 CTAZ50 for JWMN 
Coverage Rate 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

<0.90 20 0 0 2 2 
0.90, <0.925 16 2 3 4 5 
0.925, <0.95 33 33 36 26 26 
0.95, <0.975 17 50 46 40 39 
0.975, 1.00 1 2 2 15 15 
0.925, <0.975 50 83 82 66 65 
Percent of CTAZ with coverage 0.925, 
<0.975 

57% 95% 94% 76% 75% 
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Table A-2: Margin of Error for 87 CTAZ50 Locations in Olympia for Variable JWMN 
 

Olympia  
MOE in 87 CTAZ50 for JWMN 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

Average MOE 4.98 5.42 5.44 5.78 5.76 
Average MOE relative to (f4) 1.00 1.09 1.09 1.16 1.16 

 
Table A-3: Standard Deviation of Margin of Error Estimates for 87 CTAZ50 Locations 

in Olympia for Variable JWMN 
 

Olympia – Standard Deviation of MOE in 87 
CTAZ50 for JWMN 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

Mean of SD of MOE 0.55 0.41 0.19 0.41 0.41 
1st quartile of SD of MOE 0.27 0.23 0.11 0.18 0.18 
Median of SD of MOE 0.41 0.33 0.16 0.32 0.32 
3rd quartile of SD of MOE 0.65 0.48 0.24 0.47 0.47 

 
Table A-4: Coverage Rate for 87 CTAZ50 Locations in Olympia for Variable 

MINORITY 
 

Olympia # of 87 CTAZ50 for MINORITY 
Coverage Rate 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

<0.90 35 1 1 4 3 
0.90, <0.925 18 0 1 7 9 
0.925, <0.95 23 30 33 32 30 
0.95, <0.975 11 55 52 35 34 
0.975, 1.00 0 1 0 9 11 
0.925, <0.975 34 85 85 67 64 
Percent of CTAZ with coverage 0.925, <0.975 39% 98% 98% 77% 74% 

 
Table A-5: Margin of Error for 87 CTAZ50 Locations in Olympia for Variable 

MINORITY 
 

Olympia MOE in 87 CTAZ50 for 
MINORITY 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

Average MOE 0.0978 0.1147 0.1153 0.1168 0.1172 
Average MOE relative to (f4) 1.000 1.173 1.179 1.194 1.198 

 
Table A-6: Standard Deviation of Margin of Error Estimates for 87 CTAZ50 Locations 

in Olympia for Variable MINORITY 
 

Olympia – Standard Deviation of MOE in 87 
CTAZ50 for MINORITY 

Variance Estimators 
(f4) (f5) (fn1) (fn3.1) (fn3.2) 

Mean of SD of MOE 0.010 0.017 0.012 0.015 0.015 
1st quartile of SD of MOE 0.006 0.010 0.007 0.007 0.007 
Median of SD of MOE 0.008 0.014 0.010 0.012 0.012 
3rd quartile of SD of MOE 0.013 0.021 0.015 0.018 0.019 
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