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Abstract 
Estimates from probability samples may not match known totals of populations due to 
sampling variation, undercoverage, or nonresponse. In this situation, special weighting 
adjustments such as raking or poststratification are implemented so the sums of weights 
match known totals. This process improves the face-validity of the survey because the 
total estimates reproduce the “true” or accepted total population generally produced by 
official statistical agencies. The totals, which are used as benchmarks in weighting, are 
sometimes generated combining different sources and in some situations they do not 
match the eligible population of the survey. In this paper we take a heuristic approach and 
propose methods for computing control totals that are consistent and represent the 
population of interest while maintaining the face validity of the estimates. 
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1. Benchmarking of Probability Sampling Weights 
 
In the creation of weights for some surveys, there is the need for the sum of adjusted 
weights to match known totals available from official sources (Deming and Stephan, 
1940). In practice, this type of weighting adjustment is generally done through 
poststratification or raking (Kalton and Flores Cervantes, 2003). In a more formal 
definition, poststratification and raking are members of a family of estimation procedures 
known as sample weight calibration or calibration weighting initially described by 
Deville and Särndal (1992); and Deville, Särndal, and Sautory (1993). There are several 
definitions of calibration but one commonality is that these methods use auxiliary 
information to adjust probability-sampling weights constrained by the calibration 
equation defined as 
 
 ∑ 𝑤𝑘𝐱𝑘 = 𝐭𝑥𝑠 , (1) 
 
where 𝑤𝑘 is the calibrated weight, 𝐱𝑘 is the auxiliary variable vector of a characteristic of 
the sampled element k, and 𝐭𝑥  is the population total of 𝐱𝑘  defined as 𝐭𝑥 = ∑ 𝐱𝑘𝑈 . In 
addition to providing face validity to the sum of sampling weights to known population 
totals (i.e., consistency with external sources), calibrations methods are used to reduce the 
variance of estimates, and to adjust for nonresponse (Särndal and Lundströn, 2005). 
 
There are numerous papers that deal with the left hand of the calibration equation (1). In 
most of the literature, it is assumed that the control totals are available and ready to use. 
In practice, this is not the case and these totals have to be estimated. In this paper we 
describe several methods for producing these consistent control totals. We describe 
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several approaches and their statistical properties. Some of these methods have been used 
since 2001 in a telephone survey. 
 

2. Control Totals 
 
The principal sources of control totals are statistical federal or state government agencies. 
In the US, the Census Bureau disseminates population data by demographic 
characteristics from programs such as the decennial Census or continued surveys like the 
American Community Survey. In order to facilitate the use of the data and to address 
concerns related to the confidentiality of individuals in the population, the data is released 
in the form of contingency tables. The population totals are cross-classified by few 
demographic characteristics in these tables. There is partial overlap among the 
contingency tables; and, there are not tables with a full demographic profile with the 
combination of all demographic characteristics. Table 2 illustrates this situation. Table 2 
lists some tables from the 2010 U.S. Census of Population and Housing Summary File 1 
(U.S. Census Bureau, 2011). In this case, no table contains population totals for all 
combinations of categories by sex, race, ethnicity, age, and group quarter type.  
 

Table 1: Example of tables available in from the 2010 Census of Population available 
from the Census Bureau 

 
Table 
Numbers Description 
PCT012rxxx Population subjects by sex by age (103 levels) by race/ethnicity (White alone, 

Black or African American alone, American Indian and Alaska Native alone, 
Asian alone, Native Hawaiian and other Pacific Islander alone, some other race 
alone, two or more races, Hispanic or Latino, White alone, not Hispanic or 
Latino) 

P04300xx Group quarters population by sex by age (under 18, 18-64, 65 and over) by group 
quarters type 

P01200xx Population subjects by sex by age (23 groups) 
PCO00100xx Group quarters population by sex by age (18 groups) 
PCT020r0xx Group quarters population by group quarters type by race and ethnicity (White 

alone, Black or African American alone, American Indian and Alaska Native 
alone, Asian alone, Native Hawaiian and other Pacific Islander alone, some other 
race alone, two or more races, Hispanic or Latino, White alone, not Hispanic or 
Latino) 

PCT022r0xx Group quarters population by sex by quarters type for the population 18 years and 
over by race and ethnicity (White alone, Black or African American alone, 
American Indian and Alaska Native alone, Asian alone, Native Hawaiian and 
other Pacific Islander alone, some other race alone, two or more races, Hispanic 
or Latino, White alone, not Hispanic or Latino) 

 
The second difficulty is that in some cases the available data do not match the eligible 
population in the survey. For example, most telephone surveys collect data on the non-
institutionalized population. In contrast, the available tables with the most detailed age 
groups do not provide separate totals this population. In this case, estimates for this 
population need to be estimated and subtracted before these totals can be used as 
benchmarks in weighting. Another issue is the different definitions for population 
characteristics between the published tables and collected data in the survey. For 
example, the population projections from the California Department of Finance 
(California Department of Finance, 2013a) use the U.S. Office of Management and 
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Budget (OMB) race definition with only 5 race groups and excludes the race category 
“Other” (Office of Management and Budget, 2003). In most surveys, the data collected 
includes this group as a separate category. If these totals are used, adjustments to either 
the control totals or to the collected data are required to match these definitions. The last 
issue is that the totals become outdated due to changes in the population. Although 
revisions are made after the first release; the updated totals are not generally produced at 
the same level of detail as in the first release. Therefore adjustments are needed to update 
the older and more detailed tables to reflect the latest totals. 
 
The motivation for developing methods for the creation of consistent control totals is to 
address the problems described above. Such methods are most useful in surveys with a 
large number of raking dimensions and with dimensions that incorporate multiple 
demographic variables.1 Furthermore, these methods should be implemented in a timely 
fashion during the production period for the creation of the weights. This calls for 
procedures that do not require specialized software. 
  
The methods described in this paper have been used since 2001 in the California Health 
Interview Survey (CHIS) (California Health Interview Survey, 2011). CHIS is a large 
telephone survey of non-institutionalized civilian residents of California. CHIS is 
designed to provide population-based estimates for most California counties and all 
major ethnic groups, including several ethnic subgroups. In the last step of weighting, the 
CHIS weights are raked to control totals. Due to the need to produce estimates at these 
geographic and demographic levels, the more than 10 raking dimensions with close to 
1,000 cells are used. The raking dimensions are defined by geographic area, age groups, 
gender, race, ethnicity, household tenure, number of adults in household and they 
combine information from the Decennial Census, American Community Survey, and the 
California Department of Finance (DOF). Since the demographic tables from the Census 
Bureau include the population in group quarters, one of the methods described in this 
paper was used to produce control totals that exclude this population but matching at the 
same time any equivalent total (i.e., without group quarters) by any demographic 
characteristics reported in any other table. Depending of the year in the CHIS cycle, 
another method was used to update control totals to reflect changes in the population 
through the years. A similar method was used to create a bridge between the different 
race/ethnicity definitions used in the DOF population projections and the Census Bureau 
tables. The latest implementation of these methods in CHIS 2011-2012 is described in the 
methodology reports found in the CHIS website 
at http://healthpolicy.ucla.edu/chis/design/Pages/methodology.aspx. 
 

3. Computing Control Totals 
 
There are two problems to address when computing the total from contingency tables 
from external sources. The first problem is to generate consistent totals in a single 
contingency table using auxiliary tables where the demographic categorical variables 
partially overlap. The second problem is to generate totals in more than one contingency 
table with totals consistent across all tables using multiple auxiliary tables where there 
                                                 
1If the weighting adjustment uses poststratification or raking with few cells, a more naïve 
approach may be more appropriate. 
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categorical variables do not necessarily overlap. The following sections describe a 
heuristic approach to address these situations. 
 
3.1 Computing Consistent Totals for One Contingency Table 
To illustrate the first problem, consider three published tables (A, B, and C) shown in 
Figure 1a. We are interested in creating a raking dimension that excludes the population 
in group quarters by sex by age group 1. However, the only available information 
consists of tables A (sex by age group 1), B (group quarters by sex) and C (group quarters 
by age group 1). In this example, the auxiliary tables are A, B, and C. The categorical 
variable sex overlaps tables A and B; while the variable age group 1 overlaps tables A 
and C. The goal is to create the contingency Table S1 with the estimated totals 
represented by 𝐱 = (𝑥1,𝑥2,𝑥3)𝒕 that are consistent with the totals in auxiliary tables A, B, 
and C. Note that unless there is any other source of data, we cannot compare the 
estimated totals to the true population totals. Therefore, it is important to understand the 
statistical properties of these estimated totals and the implicit assumptions that depend on 
the method used to create them. 
 

 
(a) (b) 

Figure 1: Separating the population in group quarters using auxiliary tables. 
 
3.1.1 Linear programing solution 
Estimating 𝐱 is not a new problem and there are several methods that yield a solution. 
One method is linear programming (LP) where the best outcome is determined (i.e., 
minimizing a linear cost function) for a list of requirements described as linear 
relationships. Mathematically, the problem can be expressed as minimize the objective 
function 𝐷 = 𝐜𝑡𝐱, subject to the constrains 𝐀𝐱 = 𝐛 and 𝐱 ≥ 0, where 𝐜 is a vector of 
known coefficients, and 𝐀 is the matrix of coefficients used to express the constraints 
between the totals 𝐱  and the margins of the auxiliary tables 𝐛 . In this example, the 
variables 𝐀, 𝐱, and 𝐛 are defined in Figure 2.  
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𝐀 = �1 1 0
1 0 1� , 𝐱 = �

𝑥1
𝑥2
𝑥3
� , 𝐛 = �459

250� , 𝐜 = �
𝑐1
𝑐2
𝑐3
� 

Figure 2: Matrix representation of relationships among tables S1, A, B, and C. 
 
Since we are estimating the number of persons, we can add a constrain for the totals to be 
integers (i.e., 𝑥𝑖 ∈ 𝑍), which makes this an Integer Linear Programming (ILP) problem. 
The main drawback of ILP is the use of heuristic approaches that make it very difficult to 
implement without specialized software. In cases where the number of cells is very large 
as in the CHIS dimensions, a solution may not found or the found the solution is not 
optimal. Removing the integer requirement improves the situation but it requires the use 
of simplices (i.e., simplex method). This is a geometric approach and an optimal solution 
may not be found too. However, the main problem with these methods is that there is not 
a clear understanding of the statistical properties of the estimated totals generated using 
this method. 
 
3.1.2 Least norm solution 
Following a more algebraic approach, we remove the integer and positive constraints and 
solve the equation 𝐀𝐱 = 𝐛. Since 𝐀 is not a square matrix, it does not have full rank and 
its inverse matrix 𝐀−1 does not exist. In this case, the system is undetermined with fewer 
equations than unknown variables (m rows < n columns) with an infinite number of 
solutions. A way to overcome this is to compute the generalized pseudo inverse matrix or 
the Moore–Penrose pseudo-inverse as 𝐀+ = (𝐀𝑡𝐀)−1 and use it to find the solution as 
𝐱0 = 𝐀+𝐛. The solution 𝐱0 minimizes the squared Euclidean distance or norm 𝐷 = ‖𝐱‖2 
where the Euclidian distance is defined as ‖𝐱‖ = �∑ 𝑥𝑖2𝑛 . This result is known as the least 
norm solution. The implementation requires inverting the matrix 𝐀𝑡𝐀. There are several 
drawbacks in this approach. First, the optimal solution may include negative values. In 
CHIS, this may be acceptable because negative counts are likely to be computed for the 
population in group quarters (i.e., they represent a small proportion of the total 
population) and these negative totals are excluded when computing the control totals. The 
second problem is that the solution is influenced by the larger counts in the distance 
function 𝐷. This is easier to address by modifying the distance function and scaling the 
contribution of each 𝑥𝑖 as 𝐷𝑥2 = ∑ (𝑥𝑖 − 𝐸𝑖∈𝑟𝑐)2𝑖 𝐸𝑖∈𝑟𝑐⁄  where 𝐸𝑖∈𝑟𝑐 = 𝑁𝑟𝑁𝑐 𝑁⁄ , 𝑁𝑟  and 
𝑁𝑐 are the row and column margins associated to cell 𝑥𝑖, and  𝑁 is the population grand 
total. This distance function is known as the Chi-squared distance. The optimal solution 
allocates the counts as if they are generated independently from any column and rows 
interaction. Notice that since minimizing D does not imply that 𝐷 = 0 , the optimal 
solution does not necessary produces independent counts. On the other hand, it is 
possible that the optimal solution meets this condition and the generated counts reflect 
this model of independence implicitly imposed. Although the linear approach is an 
improvement over the previous method, this approach requires specialized software such 
SAS IML to compute the inverse of large and sparse matrices.  
 
As mentioned before, the optimal solution may include negative totals that are not 
acceptable in some situations. The negative total problem can be solved by using 
nonlinear distance functions where the optimal solution is forced to be non-negative. The 
disadvantage of the use of non-linear distance functions is that more complex 
mathematical methods are needed to find the optimal solution. 
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3.1.3 Nonlinear distance solutions 
In the next approach, we start by re-parameterizing 𝑥𝑖′ = 𝑒𝑥𝑖 and minimizing the linear 
distance function defined before. Since the domain of the exponential function is only 
defined for values greater than 0, the optimal total will be greater than 0. An additional 
parameterization of 𝐱 defining 𝑥𝑖′ = 𝑒𝑟𝑗+𝑐𝑘 = 𝑒𝑟𝑗𝑒𝑐𝑘 enables us to better understand the 
statistical properties of the totals in the combined contingency table under this 
parameterization. Table S1 in Figure1a is represented as a contingency table in Table 2.  
 

Table 2: Re-parameterizing of the contingency tables by gender and group quarters 
 

 
  In group quarters 

 
 

  Yes  No 
    Column effect  

Sex Age group 1 Row effect 𝑒𝑐1 𝑒𝑐2 Total 
1 1 𝑒𝑟1  𝑒𝑟1+𝑐1 𝑒𝑟1+𝑐2 137 
1 1 𝑒𝑟2  𝑒𝑟2+𝑐1 𝑒𝑟2+𝑐2 433 
2 2 𝑒𝑟3  𝑒𝑟3+𝑐1 𝑒𝑟3+𝑐2 163 
2 2 𝑒𝑟4  𝑒𝑟4+𝑐1 𝑒𝑟4+𝑐2 437 
Total   970 200 1,170 

 
Rather than computing the total 𝑒𝑥𝑖 in a cell, we compute it as the product of the effects 
of row 𝑟𝑗 and column 𝑐𝑘 subject to the same margin constraints. This re-parameterization 
matches the log-linear model that is more appropriate for contingency tables with positive 
counts. The log-linear model is ln�𝐹𝑖𝑗� = 𝜇 + 𝜆𝑖𝐴 + 𝜆𝑗𝐵 + 𝜆𝑖𝑗𝐴𝐵 , where ln�𝐹𝑖𝑗� is natural 
logarithm of the expected cell frequency in cell  𝑖𝑗, 𝜇 is the overall mean of the natural 
logarithm of the expected frequencies,  𝜆𝑖𝐴 and 𝜆𝑖𝐵 are the main effects of variables A and 
B respectively and 𝜆𝑖𝑗𝐴𝐵 is the interaction term between the variables A and B. Notice that 
this parameterization matches the unsaturated model where the interaction term 𝜆𝑖𝑗𝐴𝐵 = 0. 
Iterative proportional fitting (IPF) is an algorithm that can be used to decompose the 
matrix of the table in Figure 2 as the outer product  𝐭 = 𝐫⨂𝐜  of two vectors 𝐫 =
(𝑒𝑟1 , … , 𝑒𝑟𝑅)𝑡 and  𝐜 = (𝑒𝑐1 , … , 𝑒𝑐𝐶)𝑡 maintaining the margins fixed (Stephan, 1942). IPF 
is an iterative algorithm and it only requires the computation of sums, multiplication and 
divisions. Although this parameterization provides a better statistical model and a method 
to solve it, it does not tell us much about the distance function being minimized.  
 
Before studying the distance function for this re-parameterization, we generalize the 
optimal solution for any distance function2. In order to minimize a distance function 𝐷(𝐱) 
with the constraints 𝐀𝐱 = 𝐛 , we solve the equation ∇𝐿(𝐱,𝛌) = 0  where  𝐿(𝐱,𝛌) =
𝐷(𝐱) − 𝛌𝑡(𝐀𝐱 − 𝐛), and  𝛌 is the vector with the Lagrange multipliers. This is equivalent 
to solving the equation  𝐝(𝐱) − 𝛌𝑡𝐀 = 𝟎 where 𝐝(𝐱) = ∇𝐷(𝐱). The general solution is 
𝐱 = 𝐝−1(𝛌𝑡𝐀) . One nonlinear distant function of interest is the Kullback–Leibler 
distance defined as 𝐷𝐾𝐿(𝐱) = ∑ (𝑥𝑖 ln(𝑥𝑖) − 𝑥𝑖)𝑖 . The distance 𝐷𝐾𝐿(𝐱)  has desirable 
properties, such as 𝑑𝐾𝐿(𝑥𝑖) = ln(𝑥𝑖) and the inverse is 𝑑𝐾𝐿−1(𝑥𝑖) = 𝑒𝑥𝑖 that matches our 
parameterization. The distance 𝐷𝐾𝐿(𝐱) guarantees positive counts but finding the optimal 
solution is numerically intensive and requires computing Lagrange multipliers and 
numerically solving a nonlinear system of equations using Newton’s Method or any other 
similar algorithm. 
                                                 
2 We consider only those distance functions that are twice differentiable and defined at 0. 
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A close look at the similarities between this approach for generating cells totals in the 
contingency tables and those used in generalized raking procedures or calibration 
(Deville and Särndal, 1992; and Deville, Särndal, and Satutory, 1993) provides a key 
finding that simplifies the computation of the optimal solution3. In calibration, there is 
also an optimization problem where a distance function which involves sampling weights 
is minimized subject to a set of constrains represented by the calibration equation (1). If 
we adjust our problem so it resembles a calibration problem, then we can use the same 
methodology to find the optimal solution. 
 
These authors recognized that the optimal solution for the distance for Case 2 (also called 
multiplicative method or raking ratio method) in Table 1 in the 1992 paper can be also 
found using Iterative Proportional Fitting (IPF) instead of the minimization approach4. 
Since Case 2 uses the same distance function 𝐷𝐾𝐿(𝐱) (except for the scaling factors), we 
can treat our problem as a raking problem and apply the same methods used in raking to 
find a solution. Notice that although the mathematical methods to generate totals 
contingency tables and raking sampling weights are the same, the theoretical motivation 
is different. We also need to bear in mind the implicit assumptions from using the 
distance function 𝐷𝐾𝐿(𝐱). As long as these assumptions hold, we can use raking methods 
to generate these totals.  
 
In our case, since the contingency tables do not have values similar to sampling weights, 
we can create seeds with any arbitrary value greater than 0 and treat them as weights.5 
We also need to convert the auxiliary tables as control totals files for the raking 
procedure. There is also available software for raking weights which includes the 
command rake in package survey in R (Lumley, 2012), the SAS macro CALMAR6 from 
the Institut National de la Statistique et des Études Économiques, (Statutory, 1993), and 
SAS macro rake_and_trim from Abt Associates (Izrael, Hoaglin, and Battaglia, 2000). 
For the CHIS problem, we used Westat proprietary SAS macro FS_RAKE. However, the 
raking implementation based on the IPF algorithm is very easy to implement in any 
language.  
 
3.2 More Than Two Contingency Tables 
In this section we expand the problem to generate consistent totals in more than one 
contingency table using multiple auxiliary tables where the categorical variables in the 
auxiliary tables do not necessarily overlap. As an example, consider the contingency 
Table S2 containing the totals to generate represented by 𝑦 = (𝑦1,𝑦2,𝑦3,𝑦4,𝑦5)𝑡  and 
auxiliary tables D, E and F shown in Figure 1b.  We are interested in control totals that 
exclude the population in group quarters by race by age group 2. That is, we need to 
                                                 
3 There are other similarities not discussed here. For example, Case 1 or linear method matches the 

least norm solution or the Chi-squared distance with the appropriate scaling factors. As a result, 
the same software used to create calibrated weights based on the linear model can be used to 
generate the totals based on linear distance functions. 

4  The formal proof that these procedures are equivalent requires to show that the iterative 

processes 𝑒𝑥𝑖𝑗
𝑛+1

= 𝑒𝑥𝑖𝑗
𝑛
�∑ 𝑏𝑖𝑅 ∑ 𝑒𝑥𝑖𝑗

𝑛
𝑅⁄ �  and 𝑒�𝐱𝑛+1,𝛌𝑛+1� = 𝑒(𝐱𝑛 ,𝛌𝑛)𝑒−𝑘�∇

2𝐿(𝐱𝑛,𝛌𝑛)−1∇𝐿(𝐱𝑛 ,𝛌𝑛)� 
converge to the same minimum 𝐱𝟎. 

5 The distance function 𝐷𝐾𝐿(𝐱) involves ln(𝑥𝑖) which is only defined for 𝑥𝑖 > 0. 
6 CALMAR also produces other calibrated weights with different distance functions that can be 

used to generate totals in contingency tables with other distance functions. 
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create a contingency Table S2 with totals by race by age group 2 and by group quarters 
using the auxiliary tables D (race by age group 2), E (race by group quarters) and F (age 
group 2, by group quarters). At the same time, we also want to produce the totals in table 
S1 from Figure 1a in such a way that the totals in the cells are both consistent between 
Tables S1 and S2 (i.e., appropriate combinations of 𝑥1,𝑥2, and 𝑥3  are consistent with 
appropriate combinations of 𝑦1,𝑦2,𝑦3,𝑦4,  and 𝑦5 ) and consistent across all auxiliary 
tables (e.g., Tables A, B, C, D, and E). This situation can be extended to include more 
contingency tables, for example, Table S3 with totals by age by sex by ethnicity and by 
group quarters, Table S4 with totals by a specific group such as White non-Hispanic by 
age by group quarters, and so on with their corresponding auxiliary tables (e.g., Tables F, 
G, etc.). The goal is still the same, which is to generate contingency tables with consistent 
totals across all tables. Notice that the categorical variable for age (age group 2) in the 
contingency Table S1 in Figure 1b does not match the levels of age (age group 1) in 
Table S1 in Figure 1a (otherwise, this example becomes the  same described in the 
previous section). Furthermore, additional auxiliary tables can contain totals that are 
nested within other variables (i.e., totals at the state level, totals at the county level, or 
totals at any sub-county area level). The number of contingency tables with consistent 
totals to generate depends on the number of auxiliary tables available and the raking 
dimensions we want to create. 
 
The method to produce consistent totals across multiple contingency tables requires 
“interweaving” all the levels of the categorical levels so the cell totals are generated at the 
same time. The levels are interleaved in a pseudo-population file with all possible 
combinations of these levels. Since we are using raking software, we also need convert 
the auxiliary tables to files containing control totals and rake a sampling weight in the 
pseudo-population file. The following steps describe the details of this process:7 
 

A. Determine the raking dimensions to be used in raking the sampling weights. The 
raking dimensions used in weighting determine the totals to estimate. For 
example, if any of the raking dimensions does not use race, then there is no need 
to compute totals by race. There is also no need to process any auxiliary table by 
race. Notice that different raking dimensions may have common variables but 
different number of levels. This situation arises frequently with a categorical 
variable such as age that has many levels. For example, one raking dimension at 
the state level may have age groups with 12 levels while another raking 
dimension defined at the county level may have age groups with 3 levels. Notice 
when creating raking dimensions, it is not necessary for these levels to be nested. 

 
B. Determine the categorical variables and levels needed to create the raking 

dimensions. Once the raking dimensions have been decided, the next step is to 
select the categorical variables and levels needed to create these raking 
dimensions. We also need to verify there are auxiliary tables with the same 
categorical variables and levels. Auxiliary tables with more detailed levels are 
acceptable because they can be summarized by combining the levels. If there are 
no auxiliary tables with at least the level of detail required by the raking 
dimension, then the raking dimension need to be redefined or dropped from the 
adjustment. Special care is needed for the following situations: 

 
                                                 
7 These steps should be modified depending on the raking software. 
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• Different definitions. Make sure that the variables have the same definition in 
the survey and auxiliary tables. If they do not match these totals should not 
be used in this process. 

• Same variables with different levels. Variables such as age groups that are 
defined grouping several age ranges should be identified as separate 
variables; for example, age group 1 and age group 2 in Figures 1a and 1b are 
not the same categorical variables.  

• Irrelevant levels: It is recommended to only use the levels that appear in the 
raking dimensions. For categorical variables with many levels such as age, it 
is not recommended to generate totals at a detailed level such as single years, 
presuming that they can be combined and summarized after generating the 
contingency table. The raking algorithm is not likely to converge with 
variables with too many levels.  

 
C. Convert the auxiliary tables from a row-column format to files with the tables in 

a list format. Each record in the file represents one combination of the cross-
tabulation of the row and columns in the table. For example, the file with the list 
format of Table A in Figure 1a should look like this 

 
AGE_GRP_1 GRP_Q TOTAL 
1 1 50 
1 2 250 
2 1 150 
2 2 720 

 
Create variables and assign a numeric level for each of the categorical variables 
identified in Step B. The variable names and levels should be the same across all 
tables that have the same variables. In this example the variables are 
AGE_GRP_1 GRP_Q with values 1 and 2. Special care is needed for the 
following cases: 

 
• Incomplete auxiliary tables. The auxiliary table should be complete before it 

can be used to estimate the total. However, some auxiliary tables contain 
totals for one portion of the population. In this case, use the information of 
the other auxiliary tables to obtain the complement of the population. In most 
cases, it is derived by subtraction between a complete and the incomplete 
tables. For example, there is an auxiliary table that includes the population in 
group quarters by age group. Using the auxiliary table with the total 
population by age group, compute the total population not in group quarters. 
Append these totals to create a complete table.  

 
In another example, suppose there is a raking variable that is defined at the 
county level and it includes only some counties. In this situation, auxiliary 
tables for all counties can be appended to create the file. However, the 
geographic variable that indicates the county, GEO_COUNTY should take a 
common value such as 0 for all counties that are not used in the raking 
dimensions. Another approach is to create an incomplete file that includes 
the totals for all the counties of interest. Then we obtain the totals for the 
missing counties by subtraction from the auxiliary table that contains the 
totals at the state level. In this case, the totals for the missing counties should 
also have the variable GEO_COUNTY. 
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• Inconsistent auxiliary tables. Sometimes the auxiliary tables will not add to 

the same total despite representing the whole population. This may be the 
result of rounding errors or deliberate suppression implemented to reduce 
disclosure risk. In other cases, the auxiliary tables come from different 
sources. In this case, adjust the tables (i.e., use poststratification) to the total 
population. If the table has total by categories, then adjust these separately. 
Verify that totals from auxiliary variables are consistent for the whole 
population and for any categorical variables common across the tables. 
Inconsistent totals are the main reason why the raking process fails. 
Inconsistent totals for nested common variables and with different levels are 
very difficult to spot.  

 
D. Summarize the files to create files with margins. Before summarizing the files 

created in Step C, create the combined variable with values that represent the 
combination of the categorical levels. For example, for Table B in Figure 1a, the 
combined variable AGE_GRP_1_GRP_Q  should look like this 

 
AGE_GRP_1_GRP_Q AGE_GRP_1 GRP_Q TOTAL 
11 1 1 50 
12 1 2 250 
21 2 1 150 
22 2 2 720 

 
It is recommended to name the combined variables in a way that reflects the 
names of the categorical variable being combined. In this example, the combined 
variable is created as AGE_GRP_1_GRP_Q= AGE_GRP1|| GRP_Q where || is 
the append operation in SAS. 
 
Proceed to summarize the files by the combined variables and compute new 
totals by adding the population counts for all records with unique values of the 
combined variable. Then remove any records in the summarized files where the 
new total is 0. Although the algorithm can handle 0 margins, the solution requires 
large negative values of 𝑥𝑖 for 𝑒𝑥𝑖 to become very small (it never reaches 0). As a 
check, compute the sums of the new totals in the summarized files. This should 
match the total population from the auxiliary tables. These files contain the 
margins for the raking software. 

 
E. Create a pseudo population file. The pseudo population file will contain one 

record per level from the cross-tabulation of all the categorical levels in all 
auxiliary tables selected in Step B. Each record should also have the variable 
name and level. Using the variables and levels create the same combined 
variables created in Step D. Create an ID variable that enumerates all levels. For 
example for the tables in Figures 1 and 3, the pseudo population file should look 
like this (only some combinations are listed here): 
ID AGE_GRP_1 AGE_GRP_2 SEX RACE GRP_Q AGE_GRP_1_SEX 
1 1 1 1 1 1 11 
2 1 1 1 2 2 11 
3 2 2 2 2 1 22 
4 2 3 2 1 2 22 
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ID AGE_GRP_1_GRP_Q SEX_GRP_Q RACE_AGE_GRP_2 RACE_GRP_Q AGE_GRP_2_GR_Q 
1 11 11 11 11 11 
2 12 12 21 22 12 
3 21 21 22 21 21 
4 22 22 13 12 32 

 
In this file, the combined variables are AGE_GRP_1_SEX (Table A), 
AGE_GRP_1_GRP_Q (Table B), SEX_GRP_Q (Table C), RACE_AGE_GRP_2 
(Table D), RACE_GRP_Q (Table E) and AGE_GRP_2_GR_Q (Table F). 
 
Remove the records in the pseudo population file for levels of the combined 
variables without margins in the summarized files in Step D. In this process we 
do not rake records to zero margins.  
 
Special care is needed for the nested categorical variables. For example, consider 
the levels of AGE_GRP_1 from Figure 1 and AGE_GRP_2 in Figure 3. The 
levels of AGE_GRP_1 are 1 (0-17), and 2 (18 year or older). The levels of 
AGE_GRP_2 are 1 (0-17), 2 (17 to 64 years old), and 3 (65 years or older). The 
only valid combinations of (AGE_GRP_1, AGE_GRP_2) are (1, 1), (2, 2), and 
(2, 3). As a check, produce frequency tables for each of these variables to make 
sure that all levels represented are the only valid combinations of nested tables. 

F. Assign a seed for all records in the pseudo population file. Any values different 
than 0 will do it. This variable plays the role of the sampling weight in the raking 
software. 

G. Use any available software and rake the seed using the combined variables as the 
raking dimensions and the files created in Step D as the margins. In some cases, 
it may converge to a solution very slowly. If the procedure does not converge, 
rake a limited number of dimensions to identify the problematic dimension. 
Possible solutions are to redefine the raking dimension by reducing the number 
of levels and repeat the previous steps incorporating the reduced dimension. An 
alternative is to separate the raking dimensions in two or more groups and derive 
them separately. This was done in CHIS for the control totals that include Asian 
groups which were created separately from the control totals defined by age, sex, 
race, and ethnicity. 

 
Once the seeds have been raked, remove the population in group quarters by excluding 
the records where GRP_Q=2. Then produce totals by summarizing this file by the 
appropriate categorical variables. Notice that in this case, the file created in Step G 
contains an artificial or synthetic population. This synthetic population can be 
summarized using the “raked seed” by any of the categorical variables to compute totals. 
Since these total come from a single file, these totals are consistent. Notice that this 
methodology can be used to create complex synthetic populations for applications other 
than control totals for raking. 
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3.3 Removing the Independence Requirement in the Contingency Tables 
As described in previous sections, when the totals in the contingency tables cells are 
created using any of these optimization methods, there are implicit assumptions and 
statistical models induced in these totals. Specifically, when constant cells are raked to 
the margins, the generated totals follow a model where there are row and column 
multiplicative effects without interactions. In other words, the cross-classified variables 
are independent. This assumption may not hold for some populations.  
 
A way to remove the independence condition is to use different initial seed values. The 
justification is found when we examine a modified version of the Kullback–Leibler 
distance function that incorporates these values. The distance function becomes 
𝐷𝐾𝐿(𝐱, 𝐬) = ∑ (𝑥𝑖 ln(𝑥𝑖 𝑠𝑖⁄ ) − 𝑥𝑖 + 𝑠𝑖)𝑖  where 𝑠𝑖  is the seed associated to the cell with 
total 𝑥𝑖 . Instead of minimizing the distance between vectors 𝐱 = (𝑥1, … , 𝑥𝑛)𝑡  and 
𝟏𝑛 = (1, … ,1)𝑡 (i.e. constant seeds factor out and they become a constant in the distance 
function) the procedure minimizes the distance between and x = (𝑥1, … , 𝑥𝑛)𝑡  and 
𝑠 = (𝑠1, … , 𝑠𝑛)𝑡 . If min{𝐷𝐾𝐿(𝐱, 𝐬)} = 0  then the raked weight matches exactly the 
distribution of the variable seeds (including the relationship and interactions between 
column and rows).  
 
A source of the values for the seeds can be any of the public use micro data files such as 
the American Community Survey’s public use microdata files. The seeds can be 
generated by computing totals using person weights. We need totals for all levels in the 
pseudo population file created in Step E in the previous section. Potential problems are 
empty cells, but they can be avoided by accumulate several public use files (it does not 
matter if the totals do not match the population total because the procedure only needs the 
distribution of the seeds). Another option is to assign a small value such as 1 to those 
cells with positive margins but no seed from the public use files. 
 

4. Dealing Other Issues with Control Totals 
 
4.1 Updating Control Totals 
Raking can be used to update control totals. For example, it is common for agencies to 
release updated population totals during the intra-decennial census years. However, these 
releases are generally are not at the same detailed levels as those population totals 
immediately released after the census. These decennial counts can be updated to reflect 
the more update totals by raking the older counts to the new counts. The raking ratios 
computed as 𝜏𝑐 = ∑ 𝑇𝐼,𝑖𝑐 ∑ 𝑇0,𝑖𝑐⁄  where 𝑇𝐼,𝑖  is the total after raking, and 𝑇0,𝑖 is the total 
before raking can be seen as growth factors between periods 0 to I for the population in 
cell 𝑐.8 The updated raking dimensions are then created summarizing the raked totals. In 
this case, the implicit assumption is that growth of the population in the cells used in 
raking from period 0 to I is constant. This assumption is more likely to hold if the time 
between periods is short. This assumption does not hold when there is differential growth 
within the cell. The same method can be implemented in case the totals 𝑇0 include the 
population in group quarters. That is the totals are first raked to the totals in period I and 
then the population in group quarters are removed from the file after raking. 
 
                                                 
8 A formal definition of this growth function and the description of its properties are beyond the 

scope of this paper. 
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4.2 Changing Definitions in Population Characteristics 
As mentioned in Section 2, external sources of control totals may not use the same 
definitions for population characteristics. For example, data available from the Census 
Bureau produced 2010 totals by 6 race categories that include a race group called “other”. 
In contrast, the California Department of Finance produces population projections based 
on the OMB race definition which excludes the “other” group for years 2010 and later. 
The Census Bureau released the 2010 Modified Race Data Summary File (MR) that 
contained totals based on the OMB race definition (U.S. Census Bureau, 2012). The MR 
file is the used as a bridge between these definitions. First, we rake the totals 𝑇𝑂𝑀𝐵�������,𝑐 from 
the 2010 non-OMB file (which is created using the auxiliary tables and contain the most 
detailed levels of all categorical variables used in raking dimensions) to the 2010 MR file 
totals 𝑇𝑂𝑀𝐵,𝑐 

 
using common cells defined in both files.9 The raking factors are defined as 

𝜏𝑐 =  𝑇𝑂𝑀𝐵,𝑐 𝑇𝑂𝑀𝐵�������,𝑐⁄  can be seen as a set of transformation factors that convert non-
OMB totals to OMB totals.10 Since the raked file or synthetic population contains the 
most detailed levels of all categorical variables of the auxiliary files, then this file can be 
used to create the raking dimensions for a population that reflect the OMB race 
definition. The implicit assumption is that there is a linear relationship between the two 
populations within the cell. This assumption is more likely to hold if the cells are small.  
 
4.3 Example 
The control totals for CHIS 2011-2012 were derived using the methods described in 
previous sections. Figure 3 shows the flow chart of how these methods were used and the 
files created after each step. The labels in the files in the figure describe the year of the 
data (2010 or 2012), the race definition used in the totals (OBM or non-OBM), and if the 
file includes the population in group quarters (GQ and non-GQ).   
 

 
 
Figure 3: Separating the population in group quarters using tables D, E, and F. 
                                                 
9 The raking process is more complex than what is described here because the totals that include 
the race category “Other” do not exist in the file with the OMB definition. That is, they would be 
raked to a zero total. Although raking can sometimes handle this situation, it is not recommended 
because the algorithm may not converge. In practice these cells are set to and then remove from 
file before raking. 

10A formal definition of the transformation function is beyond the scope of this paper. 
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There are 6 steps in creation of the control totals: 
 

A. Using the auxiliary tables with data from the 2010 Decennial Census (SF1 files) 
and the method described in Section 2.2 we create a synthetic population file 
with the 2010 totals based on the non-OMB definition. This file includes the 
population living in households and in group quarters (GQ and non-GQ). 

B. Using the 2010 Modified Race File and the method described in Section 3.2, 
transform the synthetic population in Step A to a file with totals based on the 
OMB definition. 

C. Using the 2012 California DOF population projections (California Department of 
Finance, 2013a) and method described in Section 3.1, update the synthetic 
population file from Step B to reflect the 2012 population. Notice that the file 
created in Step B and the MR files have the same OMB definitions, so these 
raking factors are population growth factors for the period 2010 to 2012. 

D. Using the 2012 California DOF population estimates update the synthetic 
population file from Step C. The California DOF releases more accurate 
population totals than those from the population projections. These are called 
population estimates (California Department of Finance, 2013b). These estimates 
are only available at the county level, and they are used to adjust the synthetic 
population file from D using poststratification (using raking software with one 
dimension).  In this way, the synthetic population file reflects the latest 
population counts from the DOF. 

E. Subset the synthetic population from Step D to remove the population group 
quarters. The final synthetic population file contains the 2012 population total, is 
based on an OMB race definition and excludes the population in group quarters. 

 
The synthetic population file from Step E can be summarized by any of the categorical 
variables form the auxiliary tables in order to create the raking dimensions. Additional for 
information and the description of control total for Asian ethnic subgroups in CHIS 2011-
2012 will be described in the CHIS 2011-2010 methodology reports located at the CHIS 
website at http://healthpolicy.ucla.edu/chis/design/Pages/methodology.aspx. It is 
recommended to verify that the assumptions made when these methods are applied hold 
before these totals are used. 
 

5. Summary 
 
This paper describes several issues that arise in the creation of totals before they can be 
used as benchmarks in weighting adjustments. The main problems are limited utility of 
data, outdated data, use of inconsistent definitions, and difficulties in incorporating more 
up-to-date releases. We presented several methods to address these problems. The 
preferred method is based on iterative proportional fitting which is the same procedure 
used to rake sampling weights in calibration. This approach is simple to implement and 
does not require specialized software. The implicit model for the produced totals is 
known, and has good statistical properties. The method can be modified so more than one 
contingency table is created, and it expands the current methodology limited to 2x2 
tables. This is done by interleaving the categorical levels in one single file. The method 
produces a synthetic population file with totals for many auxiliary tables. Since the 
control totals are produced summarizing a single file, these control totals are consistent. 
As in any other statistical procedure, these totals reflect implicit and explicit assumptions 
made during the estimation process. These assumptions should be examined to ensure 
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sure they are reasonable before the totals are used. Further research is needed to address 
problems arising from departures from the assumptions. The same methodology can be 
used to generate complex synthetic populations for other applications. 
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