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Abstract 

A set of unweighted normal equations for a least squares solution assumes that the 

response variable of each equation is equally reliable and should be treated equally. 

When there is a reason to expect higher reliability in the response variable in some 

equations, we use weighted least squares (WLS) to give more weight to those equations. 

For an analysis of survey data, sampling weights, as relatively important variables, 

should be used for unbiased and efficient estimates. We will briefly go over the least 

squares theory and related issues and propose a specific form of “weight” variable when 

we apply the sampling weights to the weighted equations. Data from the National Health 

and Nutrition Examination Survey (NHANES), a periodic survey conducted by the 

National Center for Health Statistics (NCHS), Centers for Disease Control and 

Prevention (CDC) will be analyzed to demonstrate the proposed approach.  

Key Words: Projection, Regression, Weights, Least Squares, Weighted Least 

Squares. 

1. Introduction 

Ever since the seminal publications of Legendre (1805) and Gauss (1809), the method of 

least squares (LS) has been a main tool or approach of modern statistical analysis 

(Celmins, 1998; Kalman, 1960; Plackett, 1949; Plackett, 1950; Seal, 1967; Sprott, 1978; 

Stigler, 1981; Young, 1974). In the following, we will briefly review LS and weighted 

least squares (WLS) methods, and review two types of weights for WLS solutions: 1) 

inverse of variances, and 2) sampling weights. We will consider specific forms of the 

“weight” variable when we apply the sampling weights to the weighted equations. We 

will examine the effects of using various functional forms of the two weight types in 

WLS estimation by analyzing data from the National Health and Nutrition Examination 

Survey (NHANES), a periodic survey conducted by the National Center for Health 

Statistics (NCHS), Centers for Disease Control and Prevention (CDC).    

Consider a survey of a single response/dependent variable and   explanatory variables 

for a sample of   eligible individuals/elements. There will be   equations that express the 

dependent variable as a function of   explanatory variables. In matrix form, they are 

      

where   is (   ) column vector of dependent variable and   is (   ) matrix of 

explanatory variables. Our objective is to find the unknown  (   ) vector of  . With a 
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non-singular and square  , the solution is simply 

        

where     is the inverse of  . As Simpson demonstrated in his letter to the President of 

the Royal Society (Simpson, 1755; Plackett, 1958), it has been confirmed since mid-18
th

 

century that “the more observations or experiments there are made, the less will the 

conclusion be liable to err, provided they admit of being repeated under the same 

circumstances.” In usual statistical applications, accordingly,   is much larger than   

(i.e.,    ). In such a case, usually there is no exact solution for the set of equations 

          is not in a column space of  . We need to project   onto a column space of   

at a right angle to find the best approximate solution for estimate  ̂ of   (Strang, 2009). 

Utilizing orthogonality between   and the error vector   (    ̂), we have the 

following normal equations for a least squares (LS) solution  ̂ 

    ̂       

where    is the transpose of  . And the LS solution is 

 ̂  (   )
  

     

Assuming non-stochastic  , independent   and a known variance      for each 

component of  , the variance of  ̂ is 

   ( ̂)  (   )
  

    

 

2. Weighted Least Squares 

A set of unweighted normal equations assumes that the response variables in the 

equations are equally reliable and should be treated equally. When there is a reason to 

expect higher reliability in the response variable in some equations, we use weighted least 

squares (WLS) to give more weight to those equations.  

Now let   be a (   ) diagonal matrix with weights . A set of weighted equations can 

be expressed as 

         

where    is the exact solution vector if a solution exists. And the normal equations from 

the weighted equations are  

(  )    ̂  (  )     

Rearranging terms, the weighted normal equations without parentheses are 

       ̂          

And the WLS solution is 

 ̂  (      )
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If we assume non-stochastic   and  , independent  , and a known variance      for each 

component of  , the variance of  ̂  would be 

   ( ̂ )  (      )
  

    

 

3. Choice of the Weights 

How should we choose the weights? Gauss considered differences in precision of   

assuming a known variance   
  (        ) and generalized his method of least 

squares with weights as inverses of the square root of variances (Plackett, 1949). 

      {
 

  
 
 

  
   

 

  
 }  

Without any covariates,   would be a vector of 1’s.  

 ̂  
∑   

   
     

∑   
   

   

  

   ( ̂ )     

In practice, the weights are typically unknown and need to be estimated. In special 

circumstances, as in laboratory settings, each   
  could be estimated, based on    

measurements or observations (Cochran & Carroll, 1953). 

 

4. Sampling Weights 

Now consider a survey of a single response/dependent variable and   explanatory 

variables for a sample of   eligible individuals/elements with a column of sampling 

weight variables. Let    (       ) be the normalized sampling weights for the i
th
 

element, i.e., ∑   
 
     . For simplicity, the term “normalized” will be omitted 

hereafter when referring to sampling weights. For estimation purposes in an actual 

survey, the sampling weights would be transformed into survey weights by adjustments 

for non-response and coverage errors.  However, we assume that    is a fixed and non-

random variable. Frequently we are interested in estimating unbiased means, proportions, 

totals, and their variances. For  , for example, a desired mean and its variances are 

 ̅  
∑     

 
   

∑   
 
   

 

   ( ̅ )  
 ̂ 

 
  

where  ̂  is an estimated variance of the variable  . Let   be     {           }. 
Without any covariates,   would be a vector of 1’s. The least square solution  ̂  is 

simply 
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 ̂  
∑   

  
     

∑   
  

   

  

which is another weighted mean of  . However, notice that each    in this mean is 

weighted by the square of the sampling weights, i.e.,    
  (         ). To produce 

 ̂   ̅ (the unweighted sample mean of  ) with  ̂  formulated this way, one should use 

the positive square roots of the sampling weights (√   ) for the diagonal entries of  : 

      {√   √     √  }  

 

5. Effects of Functional Form of “Weights” on WLS estimation 

To evaluate the effects of specific functional forms of the “weights”, we investigated 

body weights of the U.S. population by analyzing data collected in the National Health 

and Nutrition Examination Survey (NHANES). Specifically, we analyzed the 2009-2010 

NHANES public use file (PUF).  

  
 

Figure 1 shows unweighted and weighted density functions of body weights in the U.S. 

Figure 2 shows the corresponding distribution functions. The weighted functions are 

shown in solid lines and dashed lines are for unweighted functions. Figures 1 and 2 show 

differences between weighted and unweighted distributions, and indicate an 

oversampling of children or individuals with less than 40 kg of body weights. It 

emphasizes a necessity of weighting for unbiased estimates of body weights. Table 1 

shows differences between weighted and unweighted arithmetic means (70.86 Kg vs. 

63.26 Kg), weighted by the sampling weights (  ). Table 2 shows solutions of weighted 

least squares with two different functional forms of sampling weights: 1) the sampling 

weights (  ), and 2) the positive square root of the sampling weights (√  ). As 

expected, the correct answer (70.86 Kg) shown in Table 1 is obtained by applying the 

square root of the sampling weights to the normal equations. Applying sampling weights 
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(  ) to the normal equations generated a biased estimate (75.78 Kg) for the average body 

weight for the U.S. population.  

To consider the impact of differing functional forms of weights on the WLS solutions, 

the following five forms or methods were considered: (1) 1 (constant); (2)    (sampling 

weights); (3) √   (positive square root of the sampling weights); (4)   ̂ 
 ⁄  (inverse of 

the estimated variance); and (5)   ̂ ⁄ (square root of the inverse of the estimated 

variance). 

Table 1. Unweighted and weighted summary statistics of body weight (Kg) 

 Sample 

Size 

Mean Standard 

Deviation 

Median Standard 

Error 

Unweighted 10,162 63.29 32.36 66.80 .3210 

Weighted 10,162 70.86 29.19 72.10 .2896 

 

Table 2. Estimated means and standard errors of the body weights: Solutions to weighted 

normal equations        , where   is a vector of 1’s. 

Weights Sample 

Size 

Mean Standard 

Error 

   10,162 75.78 .3440 

√   10,162 70.86 .2896 

 

 

Estimation of variance (  
 ). As stated, in practice, the variance is not known and needs 

to be estimated. Figure 3 shows the relationship between body weights (Kg) and height 

(Cm). We see non-homogeneous variances by height level. We estimated the variance in 

the following way (Eicker, 1963; White, 1980). First, we model the body weights as a 

linear function of standing heights, and obtained absolute values of residuals. Second, we 

model the absolute values of the residuals as a function of heights. Our estimated 

variance ( ̂ 
 ) is the square of the predicted residuals in the second step. When used as the 
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weights for WLS estimation, the values of   ̂ 
 ⁄  and   ̂ ⁄  were normalized so that their 

sums were equal to the sample size. 

Table 3 shows WLS solutions for 5 methods for each of 4 models. Model I is a WLS 

model with an intercept. Given the distribution of body weights by heights shown in 

Figure 3, Model I is improper – it predicts unreasonably large negative weights for 

shorter persons. Model II is a no-intercept model and does not predict a negative weight. 

All the solutions or coefficients from Model II are statistically different from each other. 

For example, the WLS solution for       {√   √     √  } is .46 and .47 for 

      {          }. With       {   
⁄     

⁄       
⁄ }, WLS solution is 

.40. 

Model III was obtained by adding gender to Model II. With sampling weights (   or 

√  ) in the equations,  the estimated coefficients for men are positive (5.79 and 2.52) so 

that expected body weights of the males were greater than those of the females at a given 

height. With the inverse of estimated variances (  ̂ 
 ⁄  or   ̂ ⁄ ), however, the estimated 

coefficients for men are negative (-9.26 and -6.40) so that expected body weights of the 

male were lower than those of the female at a given height.  

 

Table 3. Effects of height (Cm), sex, and race/ethnicity on body weights (Kg): Solutions (coefficients) to 

weighted normal equations. 

Model Variable 

Functional Form of Weights for Normal Equations 

1    √     ̂ 
 ⁄    ̂ ⁄  

Coeffi-
cent 

Standard 
Error 

Coeffi
-cent 

Standard 
Error 

Coeffi-
cent 

Standard 
Error 

Coeffi-
cent 

Standard 
Error 

Coeffi-
cent 

Standard 
Error 

I 
Intercept -90.14 1.253 -96.8 1.617 -93.41 1.279 -66.7 0.999 -77.8 1.087 
Height (cm) 1.01 0.008 1.04 0.010 1.03 0.008 0.85 0.006 0.93 0.007 

II Height (cm) 0.44 0.002 0.47 0.002 0.46 0.001 0.32 0.002 0.40 0.002 

III 
Height (cm) 0.45 0.002 0.45 0.002 0.45 0.002 0.36 0.002 0.42 0.002 
Men -0.94 0.471 5.79 0.548 2.52 0.455 -9.26 0.505 -6.40 0.471 

IV 

Height (cm) 0.47 0.003 0.45 0.003 0.46 0.003 0.40 0.003 0.46 0.003 
Men -0.83 0.462 5.80 0.542 2.60 0.449 -8.26 0.483 -5.72 0.455 
Race/Ethnicity a)          
  Hispanic -8.26 0.511 -4.11 0.599 -5.79 0.496 -11.46 0.534 -11.59 0.503 
  NH Black -1.64 0.621 4.55 0.728 2.07 0.603 -7.94 0.649 -5.88 0.611 
  NH Other -13.06 0.966 -9.69 1.133 -10.51 0.939 -14.65 1.010 -15.77 0.952 

Notes: 
a)
 Reference category is non-Hispanic (NH) White. 

 

    

 

Model IV includes race/ethnicity as explanatory variables in addition to the ones in 

Model III. With sampling weights (   or   
 ) in the equations, the estimated coefficients 

for non-Hispanic blacks are positive (4.55 and 2.07). Expected body weights of non-

Hispanic blacks were higher than those of non-Hispanic whites after controlling for the 

effects of height and gender, as indicated by positive coefficients. With the inverse of 

estimated variances (  ̂ 
 ⁄  or   ̂ ⁄ ), however, the expected body weights of non-

Hispanic blacks were lower than those of non-Hispanic whites after controlling for the 

effects of height and gender, as indicated by negative coefficients (-7.94 and -5.88).   
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The differing solutions shown in Table 3 indicate that choosing a correct form of weights 

is important in solving linear equations and in measuring the effects of explanatory 

variables.  

6. Concluding Remarks 

We showed that the positive square root of sampling weights should be used as weights 

in the normal equations for weighted least squares solutions with sampling weights. We 

showed that applying sampling weights to normal equations resulted in biased estimates 

(75.78 vs. 70.86 in Table 2).  We also demonstrated the importance of choosing a correct 

functional form of weights for WLS estimation with sampling weights by analyzing 

2009-2010 NHANES data. Estimates resulting from WLS solutions with incorrect 

functional weight forms are significantly different from those with correct functional 

weight forms, and led to erroneous research findings. 

 

7. Acknowledgements 

 

We thank Don Malec and Iris Shimizu for helpful comments and suggestions. 

 

References 

Celmins, A. (1998). The method of Gauss in 1799. Statistical Science, 13(2), 123-135. 

Cochran, W. G., & Carroll, S. P. (1953). A Sampling Investigation of the Efficiency of 

Weighting Inversely as the Estimated Variance. Biometrics, 9(4), 447-459. 

Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators 

for families of linear regressions. The Annals of Mathematical Statistics, 34(2), 

447-456. 

Gauss, C. F. (1809). Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem 

Ambientium (1857 ed.). (C. H. Davis, Trans.) Boston: Little, Brown & Co. 

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. 

Transactions of the ASME-Journal of Basic Engineering, 82 (Series D), 35-45. 

Legendre, A. M. (1805). Nouvelles Methodes pour la Determination des Orbites des 

Cometes. Paris: Courcier. 

Plackett, R. L. (1949). A historical note on the method of least squares. Biometrika, 

36(3/4), 458-460. 

Plackett, R. L. (1950). Some Theorems in Least Squares. Biometrika, 1/2, 149-157. 

Plackett, R. L. (1958). Studies in the History of Probability and Statistics: VII. The 

Principle of the Arithmetic Mean. Biometrika, 45(1/2), 130-135. 

Seal, H. L. (1967). Studies in the History of Probability and Statistics. XV: The Historical 

Development of the Gauss Linear Model. Biometrika, 54, 1-24. 

JSM 2013 - Survey Research Methods Section

1529



 
 

 

Simpson, T. (1755). A letter to the right honorable George Earl of Macclesfield, 

President of the Royal Society, on the advantage of taking the mean of a number 

of observations, in practical astronomy. Philosophical Transactions, 49(Part 1), 

82-93. 

Sprott, D. A. (1978). Gauss's contributions to statistics. Historia Mathematica, 5, 183-

203. 

Stigler, S. M. (1981). Gauss and the invention of Least Squares. The Annals of Statistics, 

9(3), 465-474. 

Strang, G. (2009). Introduction to Linear Algebra (4th ed.). Wellesley, MA: Wellesley-

Cambridge Press. 

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a 

direct test for heteroskedasticity. Econometrica, 48(4), 817-838. 

Young, P. (1974). Recursive Approaches to Time Series Analysis. Bulletin / Institute of 

Mathematics and its Applications, 10(May/June), 209-224. 

 

JSM 2013 - Survey Research Methods Section

1530


