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Abstract 

Non-response in surveys is usually addressed using imputation or weighting adjustments, 
given that no follow-up sample has been selected. These procedures are reasonable if the 
respondents and non-respondents are similar. If they are not, these procedures may lead 
to serious biases. A follow-up sample of the non-respondents will eliminate (attenuate) 
any such bias. However, since not all units selected in the non-response sample will 
respond, this leads to a three-phase sampling design. In this paper we provide weighting 
procedures that properly account for this, as well as the associated population and 
estimated variances that reflect the weighting. Also, given that a sample of the non-
respondents will be followed up, we provide the allocation between the initial sample and 
follow-up sample size given cost constraints. 
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1. Introduction 

 
The quality of surveys is affected by several types of errors. One of the most important 
ones is nonresponse. Nonresponse may introduce biases into the estimates that the 
surveyor may not even be aware of. Response rates may us an idea of the extent of the 
bias (upper bound): generally speaking the higher the response rates the more likely that 
the bias is not important. However, one can never be sure as it is easy to construct 
scenarios where the bias is actually smaller for lower response rates. 
 
There are two approaches for attenuating the potential bias associated with nonresponse. 
The first one is applied at the design stage by ensuring that a subsample of the 
nonrespondents is followed up: Hansen and Hurwitz (1946) published the first paper on 
this procedure. The second approach is to incorporate auxiliary information that is related 
to the variable of interest in the estimation of the parameters. This auxiliary information 
may be in the form of estimating the probability of response for each unit included in the 
sample as in Fuller et al. (1994), or as direct auxiliary data incorporated in the estimation 
as in Lundström and Särndal. (1999), or as combination of both as in Kott and 
Chang (2010). It should be noted that the dual use of a follow-up sample and auxiliary 
data is not addressed in the literature. 
 
In this paper, we recognize that nonresponse will also occur in a follow-up. Given 
expected response rates for the respondents and the followed up sample of 
nonrespondents, we develop in section 2 an optimum allocation scheme that addresses 
the allocation of the sample ignoring auxiliary data. As suggested by Little (1986) we 
split the nonresponding sample into response homogeneity groups (based on past 
knowledge) so as minimize as much as possible nonresponse bias in the follow-up 
sample. We apply a simplified version of the procedure to the data set of Hansen and 
Hurwitz (1946). Given that we may not always be able to split the sample into response 
homogeneity groups, we study the impact of also using auxiliary data to reduce the bias 
in section 4. We summarize our findings in section 5. 
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2. Sampling and Estimation with a follow-up sample 

 
A sample s of size n is selected by simple random sampling without replacement from a 

population U of size �. Suppose that 1n n<  units respond to the survey, while the 

remaining ones do not. Hansen and Hurwitz (1946) were the first to suggest sub-sampling 
the nonrespondents. They assumed that all followed-up units would respond. This 
assumption ensures that the resulting estimate will be unbiased. However, as this is often 
not the case, the resulting estimate may be biased. 
 
One way to attenuate this bias is to split the set of nonresponding units in the sample into 
response homogeneity groups (strata) that reflect similar propensity for response. 
Suppose that the nonresponding set is split into such 1L −  strata. We can then view the 

sample s as having been stratified into L strata with each stratum being of size h� . That 

is 
1

L
hh

s s== ∪  with hn  units sampled in stratum h ( 1,...,h L= ): note that 1

L
hh

n n==∑  . 

The first stratum 1U  corresponds to the subset of the sampled units that have responded, 

and the remaining 1L −  strata  , ( 2, , )hU h L= …  represent homogeneous groups of 

nonrespondents. The portion of the sample s that responds is denoted as 1s , while 

2 22

L
hh

s s==∪  corresponds to the set that does not respond. 

Stratified second-phase samples 3hs , of hm  units, 2, ,h L= … are selected with 

SRSWOR from the hn  nonrespondents in each of the ( 1L − ) nonresponding samples 

2hs . Assume that hb  units, 0 h hb m< ≤ , respond to the follow-up. We denote the 

responding subsets of 3hs  as 4hs . The sample selection process is shown below in Figure 

1. 
 
 

 
 

Figure 1: The respondents and nonrespondents are shown for h = 1 and the 
general stratum h. The respondents are represented by blue dots, while 
the nonrespondents are shown as circles (with no colour). 
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Proceeding as in Rao (1973), we assume that: 
 

• n �ν=  where ν is the first-phase sampling fraction such that 0 1ν< ≤ , 

• h h hm nν= , where hν  are the second-phase sampling fractions, with 1hν =  for 

1h =  and 0 1hν< ≤  for 2,...,h L= . 

 

The parameter of interest is the population total k
k U

Y y
∈

= ∑ . An estimator of Y is 

 
1 4

3
2

1 1 4
2

ˆ

h

L
h h

k k
k s h k sh h

L

h h
h

n m�
Y y y

n m b

� w y w y

∈ = ∈

=

 
= + 

 

 
= + 

 

∑ ∑ ∑

∑
 (1) 

 

where /h hw n n= , 1y  and 4  ( 2,..., )hy h L= are the means of the responding sets. 

 

If we assume that the non-responding units in 3hs  are missing completely at random 

(MCAR), then 4hs  is an SRS sample of size hb  from  ( 2, , )hU h L= … , given hn  and 

hb . It can be shown that 3Ŷ  is an unbiased estimator of Y using the conditional 

expectation ( ) ( )3 1 2 3
ˆ ˆE Y E E Y= . Noting that ( )2 4h hE y Y= , we have that 

 

 ( )2 3 1 1 1 1
2 2

ˆ
L L

h h h h
h h

�
E Y n Y n Y � w Y w Y

n = =

   
= + = +   

   
∑ ∑  (2) 

 

where hY  are the population means of the sets hU . Hence, 

( )3 1 1
2

ˆ
L

h h
h

E Y � W Y W Y �Y Y
=

 
= + = = 

 
∑  noting that ( )1 h hE w W=  where /h hW � �= . 

 

The population variance of 3Ŷ  is obtained using  

 

 ( ) ( ) ( )3 1 2 3 1 2 3
ˆ ˆ ˆV Y V E Y E V Y= +  (3) 

 

The first term of (3) is given by  ( ) 2
1 2 3

1

ˆ
L

h h
h

V E Y � w Y
=

 
=  

 
∑ . The second term of (3) is 

derived as follows. Noting that  

 

( ) 2 2 2 2 2
2 3 1 1

21 1

1 1 1 1ˆ
L

h h
h h h

V Y � w S w S
n � n �=

    = − + −    
    

∑
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we have 

 

( )
( )

2 22
2 2 21 1

1 2 3 1 1 1 1 1
21 1 3

ˆ
L

h h
h

h h h

w ww w
E V Y � E E S E E S

n � E b �=

            ≈  − + −                         
∑

 

where  ( ) * *
3 h h h h h hE b m r n rν= =  is the expectation over hb  given hn ( or hm ), and 

*
hr  

are the anticipated response rates within stratum h. The resulting variance ( )3
ˆV Y  is 

given by 
 

 ( ) 2 2
3 *

2

1 1 1ˆ 1 1
L

h h
h h h

V Y � S W S
rν ν ν=

     = − + −        
∑  (4) 

 

where ( ) ( )22 / 1k U
k U

S y y �
∈

= − −∑  with   / U k
k U

y y �
∈

= ∑ , 

( ) ( )22 / 1
h

h

h k U h
k U

S y y �
∈

= − −∑  with /
h

h

U k h
k U

y y �
∈

= ∑  and /h hW � �=  for 

1, ,h L= … . 

 

Note that if complete response occurs in the follow-up sample (
* 1hr =  for 2, ,h L= … ), 

then formula (4) reduces to formula (2) given in Rao (1973). 
 
There are costs associated with contacting and processing the initial sample and the 

follow-up sample. Let 0c  be the contact cost for each of the initial n  units and 1c  be the 

unit cost of processing the 1n  respondents from this sample. Similarly, for the follow-up 

sample in strata 2, ,h L= … , we let 2hc  represent the unit contact cost of the hm  units 

and 3hc  the cost of processing each of the hb  respondents. This means that the overall 

cost of taking the sample is 
 

 0 1 1 2 3
2

( )
L

h h h h
h

C nc n c m c b c
=

= + + +∑  (5) 

 

However, this cost expression is a random quantity because 1n , h h hm n ν=  and hb  

( 2, , )h L= …  are random variables. We therefore need to work with the expected cost 

( )C E C∗ = , where 

 

 *
0 1 1 2 3

2

( )
L

h h h h h
h

C � v c W c W c r cν∗

=

 
= + + + 

 
∑  (6) 

 

JSM 2013 - Survey Research Methods Section

1481



 

This has the same form as the expected cost formula h h hn c n W cν′ ′ ′+ ∑  in Rao (1973). 

In this correspondence, it is clear that � v n′=  and 0 1 1c W c c′+ = . Our term 

*
2 3( )h h hc r c+  is similar to the hc  term in Rao’s expected cost formula but our sum only 

extends from 2h =  to h L= . 

 
We can state the allocation problem as follows. 
 

 

2 2

*
2

* *
0 1 1 2 3

2

1 1 1
Minimize   1 1

with respect to ,  and ( 2, ... )

subject to    ( )

and              0 1,   0 1

L

h h
h h h

h

L

h h h h h
h

h

� S W S
r

h L

� c W c W c r c C

ν ν ν

ν ν

ν ν

ν ν

=

=

     − + −        
=

 
+ + + = 

 

< ≤ < ≤

∑

∑

 (7) 

 

To solve this problem we need to know or estimate the proportions hW , the response 

rates *
hr  and the population variances 2S  and 

2
hS . If h�  is not known, we estimate the 

proportions h hW � �=  based on administrative data. Similarly, the anticipated response 

rates *
hr  can be estimated from previous surveys. Jeyaratnam et al. (1984) provide a 

methodology, due to Frayer (1979) to estimate 2S  and 
2
hS . This is a multiphase analogue 

to the multistage variance estimation methodology in Rao (1975). The following 
conditions are required to apply for the procedure: 
 

1. The first-phase sample is SRSWOR, 
2. There exists an estimator, y, based on the second and subsequent phases of 

sampling which given the units selected in the first-phase, α, is an unbiased 

estimate of the total of these units, i.e., 1 ny y+ +… , 

3. As in (2) there exists an estimator, z, which is an unbiased estimator of 
2 2
1 ny y+ +… , 

4. There exists an unbiased estimator of the variance of y given α, i.e., ( )V̂ y α  is 

unbiased for ( )V y α . 

Conditions (1) to (4) are sufficient to establish that ( )
2

2 1 1ˆ ˆ
1

y
S z V y

n n n
α

 
= − + 

−  
 is 

unbiased for 2 .S  In the context of a three-phase sample, this means that  

 

 

2

2

1 1 1

1 1 1ˆ ˆ |
( 1 )

L L L
h h h

h h h
h h hh h h

n n n
S z y V y

n m n m n m
α

= = =

    
 = − +       −     
∑ ∑ ∑  (8) 
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2
2 2 2

3

1 1 1 1ˆ ˆ
( 1 )

h

h h h h
h h h h h

y
S z m S

m m m b m

  
= − + −   −    

 (9) 

where  

 

4 4

4 4

2

2
2 2

3

2 2
3

    and    

( ) ( 1 ) 1 1 ˆˆ |
( 1 ) ( 1 )

1 1ˆ ( )   with  .
( 1 )

h h

h h

h h

h k h k
k s k sh h

h h h h h hh
h h h h

h h h h h h h h

h k h h k
k s k sh h

m m
y y z y

b b

n n n m n ny
V y z m S

m m m m m m b m

S y y y y
b b

α

∈ ∈

∈ ∈

= =

     − −
= − + −       − −      

= − =
−

∑ ∑

∑ ∑
 

 
The allocation problem defined by (7) is a nonlinear programming problem since the 
function to minimize and the expected cost constraint are both nonlinear functions of the 
unknown sampling fractions. We can attempt a closed form solution by solving the 
problem without the bounds on the sampling fractions. This can be obtained by the 
method of Lagrangian multipliers or by applying the Cauchy-Schwarz inequality on the 
product of the variance and the cost constraint. Either method gives the following result. 
 

 
( )

( )
0 1 1

* * 2 2
2 3

2

h h L

h h h h h h
h

c W c
S

r c r c S W S

ν

=

+
=

 
+ − 

 
∑

 (10) 

 

Equation (10) shows that optimal hν does not depend on *C . This solution is similar to 

result (8) in Rao (1973) if we take * 1hr =  and we match *
2 3h h hc r c+  to the hc  in his 

paper. The optimal value of ν  can be obtained as a function of the optimal hν  but we do 

not present it here since it is more complicated to write down. 
. 

If this solution for ν  and hν  satisfies 0 1ν< ≤  and 0 1hν< ≤  then it is the optimal 

solution to (7). Otherwise, we find the optimal solution with the bound constraints 
through non-linear programming methods such as the Trust region method. 

 

3. Example 

 
We now apply the results in section 2 to the example of a survey of 40,000 retail stores 
given in Hansen and Hurwitz (1946). The initial contact was via mail questionnaire and 
the follow-up was via face to face interviews. They assumed 100% response in the face to 
face interviews. The initial sample for mail out and the subsequent sample for follow-up 
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of the nonrespondents were both obtained using simple random sampling without 
replacement. 
 
Table 1 summarizes the information on the unit costs for the initial contact and the 
follow-up. Using this information, Hansen and Hurwitz determined the optimal sizes for 
the initial and follow-up samples to minimize total cost while achieving the same 
reliability as a sample design of 1000 units where all units respond without follow-up. 
Although this problem is the reverse of (8), the resulting solutions are identical. This is 
because minimizing cost subject to a fixed variance results in the same solution as 
minimizing variance subject to fixed costs. 
 
Table 1: Data on the unit costs for computing sample sizes in Hansen and Hurwitz 
(1946). 
 

Mail out cost per questionnaire 10 cents 

Follow-up cost with filed follow-up $4.10 

Processing costs for either contact method 40 cents 

 

Their setup used 40,000� = , 2h = , 2 0.5W =  and 
*
2 1r = . Their problem was stated in 

terms of the unknown sample sizes. It can be expressed in the following equivalent form 
for comparison with our results which are based on the sampling fractions. 
 

 

0 1 1 2 2 2

2

2 2
2 2

2

Minimize   ( )

with respect to ,  and 

1 1 1
Subject to    1 ( 1)

� c � c W � c W

S W S V

ν ν ν

ν ν

ν ν ν

+ +

 − + − = 
 

 (11) 

 

where 
2V S n=  is the estimated variance assuming complete response (no follow-up) 

for a sample with 1000n = . Their cost values were 0 0.1c = , 1 0.4c =  and 2 4.5c = . 

Assuming 
2 2
2S S= , they obtained the following optimal solution: 2 0.36515ν =  and 

0.04675ν = . 

 

These optimal sampling fractions result in 1870n �ν= =  and 2 2 2( ) 341E n n W ν= =  

with a total minimum cost of $2095. We now look at the reverse problem (8) with 
* 2095C =  and the same cost values and assumptions. 
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2
2

2

*
0 1 1 2 2 2

1 1 1
Minimize   1 ( 1)

with respect to ,  and 

Subject to    ( )

W

� c � c W � c W C

ν ν ν

ν ν

ν ν ν

 − + − 
 

+ + =

 (12) 

 

We removed the constants �  and 
2 2
2

ˆ ˆS S=  in the variance formula of (8) because they 

are present in each term. For this problem specification, we obtain the same optimal 
sampling fractions shown in (10), showing that minimizing variance subject to fixed cost 
gives the same solution as minimizing cost subject to fixed variance. Note that the 
optimal fractions satisfy the bound constraints. We can remove the bound constraints 
when they do not affect the solution to the problem. We can expand our analysis by 

removing the assumption 
*
2 1r =  so we can compare the optimal allocations for different 

values of 
*
2r  and *C . In the following problem definition, we have also chosen to remove 

the bound constraints. 
 

 

2 2 *
2 2 2

2

* *
0 1 1 2 2 3 2 2

1 1 1 1 1 1
Minimize   1 ( 1 ) ( 1 )

                with respect to ,  and 

Subject to    ( ) ( )

W W
r

� c � c W � c r c W C

ν ν ν ν ν

ν ν

ν ν ν

 − + − + − 
 

+ + + =

 (13) 

 

Our cost values are: 0 0.1c = , 1 0.4c = , 2 4.1c =  and 3 0.4c = , so that when 
*
2 1r =  we 

obtain the cost of 4.5 as in Hansen and Hurwitz.  
 

Table 2 shows the optimal values of ν  and 2ν  for different values of *C  with 
*
2 1r =  

(complete response follow-up) and 
*
2 0.5r =  (one-half of the follow-up sample responds). 

 

Table 2: Optimal sampling fractions for different values of *C  comparing 
*
2 1r =  with

*
2 0.5r =  

 

 *
2 1r =  

*
2 0.5r =  

*C  ν  
2ν  Min Variance ν  

2ν  Min Variance 

1500 0.033 0.365 54.9 0.026 0.528 90.6 

2000 0.045 0.365 40.9 0.035 0.528 67.7 

2500 0.056 0.365 32.5 0.044 0.528 54.0 

3000 0.067 0.365 27.0 0.052 0.528 44.8 

3500 0.078 0.365 23.0 0.061 0.528 38.3 

4000 0.089 0.365 20.0 0.070 0.528 33.4 

4500 0.100 0.365 17.6 0.078 0.528 29.5 

5000 0.111 0.365 15.8 0.087 0.528 26.5 
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Note: (14) agrees with equation (14) given in Rao (1973) when
*
2 1r = . 

 

For the special case that
2 2
2S S= , 2ν  is constant for each value of 

*
2r . This value can be 

obtained by putting 2L =  in (10), which leads to the following expression. 
 

 
0 1 1

2 * *
2 1 2 2 3( )

c c W

r W c r c
ν

+
=

+
 (14) 

 

The results are as follows. For a given 
*
2r , increasing *C  implies that we only need to 

increase ν . On the other hand, for a given *C , decreasing 
*
2r  implies that we should 

decrease ν  and increase 2ν . 

 

4. Bias considerations 

 
Bethlehem (1988) observes that there are two different approaches for handling 
nonresponse. The first approach is to follow-up intensively a sample of the 
nonrespondents, and the second one is to reweight the data. We have discussed the first 
one in section 2. To discuss the second approach, we assume that the sample has been 
selected with simple random sampling without replacement. The extension to an arbitrary 
design is straightforward. Given that n units have been selected from a population of � 

units, assume that only 1n n<  units respond to the survey. An estimator of the total 

k
k U

Y y
∈

= ∑  that strictly uses the responding units is 

 
1

1
1

ˆ
k

k s

�
Y y

n ∈
= ∑  (15) 

The bias associated with estimator (15) can be evaluated in one of two ways: the fixed 
response approach, (Cochran 1977); and the random response approach (Hartley 1946). 

In the fixed response approach, the population is split into a responding stratum 1U with 

mean 1Y  and a nonresponding stratum 2U with mean 2Y . The bias of estimator (15) 

depends on the difference between the means of those two strata, that is 

( ) ( )1 2 1 2
ˆB Y � Y Y= − . Note that we can establish this result via a model-based approach. 

We suppose that the following model holds: 11
 if k k

y k Ueµ= ∈+  and 2 2 if ke k Uµ + ∈ , 

where ( ) 0
k

E eζ =  and ( ) 2
k

V eζ σ= . The model expectation of Y is 

( ) ( )1 1 2 2E Y � �ζ µ µ= + . The expectation of Ŷ  is ( )1 1 1
ˆ

dE E Y �ζ µ=  where ( )
dE •  is the 

expectation under the model. Hence the bias associated with 1Ŷ  is ( )2 1 2 .� µ µ−  

 
In the random approach, each unit in the population has a response probability (unknown) 

kθ , where 0kθ >  that are independent between units. Each unit in the population is 

assigned a value kr  which is equal to 1 if it responds and 0 otherwise: the expectation of 
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kr  given the response probability mechanism (say ξ ) is given by ( )kE rξ . The 

approximate bias of 1Ŷ  is given by  

 

 ( )1
ˆ k kU

kU

y
B Y � Y

θ
θ

−
∑
∑

≐  (16) 

 
Note that the fixed approach can be viewed as an extreme case of the random approach. 

Units in the responding stratum 1U  respond with probability 1kθ =  while those in the 

non responding stratum 2U ”respond” with probability 0kθ = . 

 

If auxiliary data ( kx ) are available, Lundström and Särndal (1999) suggested the 

following estimators (as applied to SRSWOR): 
1

1
ˆ ( / )U kU k

k s

Y � n g y
∈

= ∑  or 

1

1
ˆ ( / )s ks k

k s

Y � n g y
∈

= ∑ . The kUg  and ksg  terms given by 

1 1

1

1 T
k k k k k

k U k s k s

� �

n n

−

∈ ∈ ∈

  + −  
  
∑ ∑ ∑x x x x x  and 

1 1

1

1 T
k k k k k

k s k s k s

� �

n n

−

∈ ∈ ∈

  + −  
  
∑ ∑ ∑x x x x x  are derived respectively from the constraints 

1

kU k k
k s k U

g
∈ ∈

=∑ ∑x x  and 
1

ks k k
k s k s

g
∈ ∈

=∑ ∑x x . Note that 1
ˆ

UY  requires the knowledge of 

kU
=∑X x whereas 1

ˆ
sY only assumes that x is not missing in the sample (e.g. poorer 

data). 

Lundström and Särndal (1999) work out the bias of 1
ˆ

sY and 1
ˆ

UY  as 

( )( )1 T
k k k UU

y θθ− − −∑ x B , where ( ) ( )
1

T
U k k k k k kU U

yθ θ θ
−

= ∑ ∑B x x x  is the regression 

vector. Lundström and Särndal (1999) showed that 1
ˆ

sY  and 1
ˆ

UY  would be approximately 

unbiased, provided that
1 1 T

k kθ − = + λ x , where λ  is a vector of constants. If kx  is a vector 

of indicator variables, referring to weighting classes, then one does not need to estimate 

kθ  provided that MCAR holds within each class. 

 
 

Note that if we use the fixed response approach 1
ˆ

UY  is potentially biased (and so is 1
ˆ

sY ). 

To see this, we suppose that 1 1 if T
k k k

y k Ue= ∈+x β  and 2 2  if T
k k k

y k Ue= ∈+x β , 

where ( ) 0
k

E eζ =  and ( ) 2
k

V eζ σ= . Under this model, the model expectation of Y  is

( ) ( )
1 2

1 2
T T
k kU U

E Yζ = +∑ ∑x β x β . The expectation of 1
ˆ

UY  is 

 ( )1 1
ˆ T

U k
k U

E Yζ
∈

= ∑ x β  (17) 
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The model bias of ˆ
wUY is therefore 

 ( ) ( )
2

1 2 1
ˆ T

U kU
B Yζ = −∑ x β β  (18) 

 

In practice, the kθ ’s are unknown so they need to be estimated (see Kott and Chang 2010 

for more details on how they are estimated). Denoting ˆ
kθ  as the estimate value of kθ , an 

estimator that incorporates these estimated response probabilities as well as auxiliary data 
is  
 

1

ˆ1
ˆˆ ( / ) / .k k kU

k s

Y � n g yθθ θ
∈

= ∑       (19) 

ˆ1
ˆ

U
Y θ  can be viewed as a calibration estimator respecting the following constraint (in the 

case of SRSWOR)
1

/k k k kk s k U
g θ θ∈ ∈=∑ ∑x x . This estimator is reasonable as it has no 

bias; the variance estimator for this case is available in Kim and Kim (2007). Note that 
Lundström and Särndal (1999) mentioned this estimator but did not include it in their 
simulation. 
 
The above results use auxiliary data when there is no follow-up. If there is a follow-up 
and the nonresponding stratum cannot be partitioned into groups (as it was in section 2), 

we can only draw a sub-sample 3s  of size 2m is selected from 2s . 

 
 
Two estimators that do not use auxiliary information for calibration purposes are 

possible. One uses the estimated response probabilities ˆ
kθ  and the other partitions 3s  

into J response groups, ( )3  1,...,js j J= : the corresponding responding subsamples are 

denoted as ( )4  1,...,js j J= .The estimator that uses the estimated response probabilities 

is 

 
1 4

2
ˆ3

2

ˆ
ˆ
k

k
k s k s k

yn�
Y y

n mθ θ∈ ∈

 
= + 

 
∑ ∑  (20) 

while the one that uses response groups is 
 

 
1 4

22
3
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= +  

 
∑ ∑ ∑  (21) 

Variance estimators for (20) can be obtained by extending the one-phase solution given 
by Kim and Kim (2007) to two-phase sampling. The variance for (21) is obtained 
following the development given in section 2. Auxiliary data can be built into these 
estimators as well. 
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5. Conclusion 

 
In this paper, we have provided the methodology for optimally following-up a sample of 
nonrespondents given a fixed budget. This budget incorporates the assumption that there 
will also be nonresponse for the follow-up sample of the nonrespondents. Given the fixed 
budget, the allocation assumed that response rates are available from previous experience 
for the initial contact with the sampled units, as well as for the propensity groups that for 
the nonresponding units in the sample. A numerical solution to this problem can be 
obtained through nonlinear programming methods. That is, we minimized a variance 
function subject to expected cost constraints that are both nonlinear functions of the 
unknown first–phase and second-phase sampling fractions. The algorithm was applied to 
the retail data example of Hansen and Hurvitz (1946) to check that it was correct. 
 
In the event that the nonresponse portion of the sample could not be broken out into 
homogeneous propensity groups, we studied the bias properties of a number of possible 
estimators.  
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