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Abstract 
Previous research on the use of M-estimation methodology for detecting and treating verified 
influential values in economic surveys found that initial parameter settings affected its 
effectiveness. The study relied on simulated data designed to reflect the population properties for 
two industries in the Monthly Retail Trade Survey (MRTS), but the approach to determining 
settings for the initial parameters used an empirical analysis that does not generalize well. The 
need to expand the application of the M-estimation methodology to all the industries in the 
MRTS and the Monthly Wholesale Trade Survey stimulated the development of a more general 
methodology that uses historical data to determine the initial parameter settings. This paper 
discusses the effectiveness of several methods for setting initial parameters, including the 
important initial value of the tuning constant. 
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1. Introduction 
 

Recent research demonstrated that M-estimation (Beaumont 2004, Beaumont and Alavi 2007) is 
effective in identifying influential values, and its algorithm has a flexibility that makes it suitable 
for application in the Census Bureau economic surveys (Mulry, Oliver, and Kaputa 2012a, 2012b, 
2013). An observation is considered influential if its value is correct but its weighted contribution 
has an excessive effect on the estimated total or period-to-period change. Failure to “treat” such 
verified influential observations may lead to substantial over- or under-estimation of survey 
totals, which in turn may lead to overly large increases or exceedingly small decreases in 
estimates of change. This paper compliments other work on performance measures for M-
estimation and extends previous work on the effect of the parameter settings (Mulry, Oliver, and 
Kaputa 2012a, 2012b, 2013).  
 
In general, business populations are highly skewed. Sample designs are consequently highly 
stratified, and the sampling rates tend to be higher in the strata with the larger units than in the 
strata with the smaller units. Typically, economic surveys have a stratified sample design based 
on major industry with further stratification based on a unit-level size measure such as annual 
sales, annual payroll, or total assets.  
  
Economic surveys publish totals and period-to-period change estimates. Influential values are 
examined with respect to their weighted impact on the total. If the total levels vary greatly by 
period, the change estimates are affected accordingly. When an influential value is detected, the 
current mitigation strategies depend on whether the subject matter experts believe the observation 
is a one-time phenomenon or a permanent shift. If the influential value appears to be an atypical 
occurrence for the business, then the influential observation is replaced with an imputed value. If 

                                                 
1 This report is released to inform interested parties and encourage discussion of work in progress. The 
views expressed on statistical, methodological, and operational issues are those of the authors and not 
necessarily those of the U.S. Census Bureau. 
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the influential value persists, indicating a permanent change, then methodologists make 
adjustments to its sampling weight to reflect the change.  
 
Research by Mulry, Oliver, and Kaputa (2012a, 2012b, 2013) found M-estimation appeared 
suitable for an automated statistical procedure for detecting and treating influential values in a 
monthly economic survey. The studies found the method retains identified observations in the 
estimates while assuring their contribution does not have an excessive effect on the monthly totals 
or an adverse effect on the estimates of month-to-month change. The research used a simulation 
methodology that generates realistic stable time-series data for the population, enabling the 
evaluation of the M-estimation method over repeated samples. The findings were that it 
performed well regarding measures such as relative bias, relative root mean squared error, and 
number of false detections. 
 
However, the studies highlighted the importance and sensitivity of the M-estimation algorithm to 
parameter settings, particularly in the event of a single influential value. One aspect of particular 
interest is the range of values that the methods designate as influential, called the detection 
region. Values located within this detection region are modified (“treated”) to minimize the mean 
squared error (MSE) of the estimate of the total. M-estimation requires a data model that has few 
assumptions, but determines the influential value detection region using a highly parameterized 
algorithm. Consequently, the effectiveness of M-estimation for finding a data-appropriate 
detection region is highly dependent on the input parameters. The M-estimation procedure can be 
used to replace a subjective procedure performed by analysts. However, valid initial parameter 
settings or guidelines for determining such settings must be provided.  
 
This paper proposes methods for setting initial parameters for the M-estimation algorithm and 
explores their effectiveness via a simulation study with data generated to be a realistic 
representation of two industries in the MRTS. Also included is a discussion of how the parameter 
settings relate to the effectiveness of M-estimation in several scenarios for influential values. The 
paper concludes with an empirical analysis that applies the methods for setting parameters to 
other industries in the Monthly Retail Trade Survey (MRTS) and expands to consider data from 
industries in the Monthly Wholesale Trade Survey (MWTS).  
 

2. Method 
 
Before a description of the M-estimation method, which follows Mulry, Oliver, and Kaputa 
(2012a, 2012b), we first introduce the notation. For the ith business in a survey sample of size n 
for the month of observation t, Yti is the collected characteristic (e.g., revenue), wti is its survey 
weight (which may or may not be equivalent to the inverse probability of selection), and Xti is a 
variable highly correlated with Yti, such as previous month’s revenue. The monthly total Yt is 

estimated by tŶ  defined by ti

n

i
tit YwY 




1

ˆ . 

For ease of notation, we suppress the index for the month of observation t in the remainder of this 
section. In many economic surveys such as the MRTS and the MWTS, the survey weight wti is 
the design weight with a few individual units’ weight adjusted because they are births, deaths, or 
for item subsampling. No weight adjustments are performed for missing data treatment because 
imputation is used instead. However, in economic census years, weights may be adjusted to 
improve coverage.  
 
M-estimators (Huber 1964) are robust estimators that come from a generalization of maximum 
likelihood estimation. The application of M-estimation examined in this investigation is 
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regression estimation. The M-estimation technique proposed by Beaumont and Alavi (2004) uses 
the Schweppe version of the weighted generalized technique (Hampel et al. 1986, p. 315 – 316). 
The estimator of the total using this approach is consistent for a finite population since it equals 
the finite population total when a census is conducted (Sarndal et al. 1992, p. 168).  
 
Briefly, the method estimates MB̂ , which is implicitly defined by 
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The variable xi may be a vector, but in our application, it is the previous month’s value.  
The regression model that we employ does not include an intercept because with retail and 
wholesale trade, the regression of current month’s sales on the previous month’s sales tends to go 
through the origin. Section 4 contains a discussion of the settings for the other parameters used in 
this investigation. 
 
The role of the Huber function  is to reduce the influence of units with a large weighted residual

)ˆ( MBri . We use the Type II Huber function  , which ensures that all adjusted units are at least 

fully represented in the estimate. The one-sided Type II Huber function is 
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where  is a positive tuning constant. Detection of observation i as an influential value by M-

estimation with the Huber II function occurs when ݎ௜൫ܤ෠ெ൯ ൐ ߮.   
 
Solving for MB̂ requires the Iteratively Reweighted Least-Squares algorithm in many 
circumstances. For certain choices of the weights and variables, the solution is the standard least-
squares regression estimator. 
 
In implementing M-estimation, the user has a choice of adjusting the weight of the influential 
value or adjusting its value. The weight adjustment for the Type II Huber function above has the 
appealing feature of always being greater than one and is given by 
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For an adjustment to the influential value, Beaumont and Alavi (2004) use a weighted average of 
the robust prediction MBxi

ˆ  and the observed value yi of the form         
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Using numerical analysis, Beaumont (2004) finds an optimal value of the tuning constant φ by 
deriving and then minimizing a design-based estimator of the mean-square error. The 
minimization does not require a generating data model that holds for all observations (including 
the influential value).  
  

3. Setting algorithm parameters 
 
The M-estimation algorithm discussed in Section 2 requires settings for Q, hi, vi, the function ψ, 
and an initial value of the tuning constant φ. In this section, we propose methods for setting the 
parameters for the M-estimation algorithm discussed in Section 2.  We motivate the methods by 
summarizing our results that illustrate the impact of the parameter settings on the effectiveness of 
the M-estimation algorithm’s ability to detect and adjust an influential value. The observation’s 
survey weight also affects whether the algorithm designates it as an influential value. In our 
simulations to explore the characteristics of the M-estimation algorithm, we used SAS software 
developed by Jean-Francois Beaumont (2007). We suggest using the default settings for the 
parameters Q=1 and ݄௜ ൌ ሺݓ௜ െ 1ሻඥݔ௜  but explore the potential impact different settings for the 
other viandφ. Table 1 summarizes the parameters for the M-estimation algorithm.  
 
Table 1. M-estimation algorithm parameters 
 

Parameter Parameter Function Values 
Q Constant =1 (default) 
hi Unit weight ൌ ሺݓ௜ െ 1ሻඥݔ௜ (default)  
vi Model error underlying regression estimator  = 1 or xi 
 Huber function Huber I or Huber II 
 Tuning constant (determines starting point for 

detection region)  
User provides initial value and 
program calculates optimal value 

 
3.1 Impact of survey weight wi 
The size of an observation’s weight as well as its weighted value both affect whether it will be 
designated as influential by M-estimation. Typically, the sampling rate for small businesses is 
lower than for larger businesses because there are more small businesses than larger businesses.  
Therefore, the smaller businesses typically have higher weights. If two observations have the 
same unusually high amount of weighted month-to-month change, the M-estimation method is 
less likely to designate the one with the lower weight as an influential value. Comparably, the 
weight has a similar effect on the designation of influential if two observations have the same 
unusually low amount of weighted month-to-month change but different weights. The low 
observation with the higher weighted is more likely to be designation as influential (Mulry, 
Oliver, and Kaputa 2012a). 
 
3.2 Parameter vi 
Ideally, the choice of the setting for vishould be a data-driven decision because vi  essentially 
specifies the variance of the model errors underlying the regression estimator for M-estimation, 

denoted by MM BxyBe iii
ˆ)ˆ(   in Section 2. The selection of vican be the determining factor the 

effectiveness of the algorithm. We have encountered situations where the M-estimation algorithm 
produced results for one setting of vibut not for another, as illustrated in Figure 1.  When vi xi, 
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the MSE was a concave function of φ so a minimum MSE is achieved and an adjustment 
produced for the influential value. However, when vi =1 is applied to the same sample data, the 
MSE was a strictly decreasing function of φ so the minimum MSE occurs at the influential value; 
no adjustment is made because the algorithm fails to detect the influential value. For some insight 
for the difference in outcome, note that with the defaults Q =1 and ݄ ൌ ሺݓ௜ െ 1ሻඥݔ௜, setting vi 
=1 tends to give the residuals for large weighted values of xi more influence in fitting the M-
estimation regression line than when vi = xi.  
 
Figure 1. M-estimation MSE vs. φ for Industry 1 Month 4 of one sample using Huber II. 
 

 
 
To determine of viwe suggest fitting regression models for several possible selections and then 
determining which model gives the best fit for the data through analyses of the residuals. In 
general, economic surveys have stratified sample designs and units are not selected with equal 
probability although the selection within strata often is equal probability. Therefore, regression 
models fit with unweighted economic data usually exhibit heteroscedasticity (unequal error 
variances).  
 
To illustrate this approach, we focus on MRTS data and the options vi =xi and vi =1. To 
incorporate the unequal probability selection in parameter computation using sample data, we 

examine two models the two models below where iii ywy ˆ and iii xwx ˆ . 

 

Model 1: ),0(~,ˆˆ 2 iiiii wxy        

Model 2: ),0(~,ˆˆ 2 iiiiii xwxy   

 
Model 1 corresponds to vi=1 in the M-estimation algorithm, and Model 2 corresponds to vi=xi.  
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Model 1 can be fit using SAS Procedure SURVEYREG. Note that Model 2 is equivalent to

),0(~,ˆˆ/ˆ 2 iiiiii wxxy  , which also can be fit using SAS Procedure 

SURVEYREG. 
 
We attempted to fit Models 1 and 2 with two consecutive months of data from four industries in 
the MRTS that did not have influential values.  When we examined the residuals, we found that 
the residual plots for both Models 1and 2 indicated remaining heteroscedasticity, so that neither 
provided a good model of the data for industries in MRTS.  
 
To learn more, we fit Models 1 and 2 within each stratum. At the stratum level, we found no 
evidence of heteroscedasticity in the residual plots. Each of the models fit the data well within 
stratum, as would be expected with the stratified simple random sample design (which assumes 
equal means and variances within strata). However, the estimate of the coefficient β differed by 
stratum and the stratum means differed. This analysis validated the sample design fairly well. 
Unfortunately, a consequence of this sample design validation is that it refutes the assumption of 
an industry-level data model.  
 
Since neither vi= xi nor vi=1 provided a good model of the MRTS data, we turned our attention to 
the performance of the algorithm with the two settings. With simulated data modeled from the 
MRTS (Mulry, Oliver, and Kaputa 2012b), we investigated the number of failures to detect an 
induced influential value (Type I error) and the number of incorrect detections of observations 
that were not influential (Type II error). Our investigation found that there is some Type II error 
when vi = 1 and none when vi =xi, and the two settings produce about the same results regarding 
Type I error. We concluded that vi= xi was a better choice for our industries. 
 
3.3 Function  
The first decision regarding the function  whether to use Huber I or Huber II as described in 
Section 2.  After that choice is made, the second decision is whether to use the one-sided version 
or the two-sided version.  The one-sided version by design detects only unusually high influential 
values while the two-sided version is able to detect both unusually high and unusually low 
influential values. In previous studies with two MRTS industries, our results were comparable for 
our Huber I and Huber II when vi = xi and when vi = 1.  
 
One thing to consider in choosing the one-sided or two-sided function  is that the M-estimation 
algorithm using a two-sided function  may experience some problems with convergence for 
some scenarios where the second value was too low. The combination of a high influential value 
and a low influential value causes the algorithm to be less likely to converge. Beaumont (2004) 
also noted some problems with convergence in his simulations in this situation.  
 
In our previous research (Mulry, Oliver, and Kaputa 2012a), we found that when a sample 
contains both unusually high and unusually low influential values and the M-estimation algorithm 
does not converge, no adjustment is probably the best choice. The reason is that the unusual 
values counterbalance each other in a manner that introduces minimal bias. Therefore, the failure 
of the algorithm to identify the influential values is not necessarily a handicap. However, if the 
researcher is not interested in detecting and adjusting unusually low influential values, one-sided 
version of the function  tends to avoid problems with convergence of the algorithm. 
 
3.4 Tuning constant φ 
The effectiveness of the M-estimation algorithm is sensitive to the choice of the initial tuning 
constant φ. The initial φ determines the lower boundary of the detection region, particularly when 
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there is only one influential value in a sample. In simulations of samples with two high influential 
values, we found that when we held one influential value fixed and let the second one vary, the 
detection region for the second one did not appear sensitive to the initial φ. 
 
The goal when setting the initial tuning constant φ is to select a value that is high enough to avoid 
falsely detecting natural variation as influential, but low enough to detect truly influential values. 
This is a very delicate balancing act because setting the initial φ too high may result in the 
algorithm failing to detect influential values that are lower than the initial φ.  When none of the 
values in the sample is larger than the initial φ, the algorithm runs for one iteration and then stops.  
In this circumstance, the MSE is a constant function in a neighborhood of the initial φ, and the 
algorithm continues to run only when it detects a change in the MSE in the proximity of the initial 
φ (Mulry, Oliver, and Kaputa 2013). 
 
On the other hand, setting the initial φ is too low causes the algorithm to give the influential 
designation to observations not considered influential. This occurs because the algorithm achieves 
a minimum MSE when there is no influential value by trimming about 0.05 percent of the 
observations for a very small reduction in the MSE. In an ongoing survey, an initial φ that is too 
low may also cause convergence problems in a month following an adjustment because the unit 
returns to its level two months earlier and now appears unusually low.  In some cases, both one-
sided and two-sided functions  have convergence problems (Mulry, Oliver, and Kaputa 2012a).  
 
We explore methods for setting the initial φ in two steps.  First, we conduct a simulation study 
with data generated as a stationary time series so that the evaluation of the performance of the 
proposed methods is not confounded with seasonal effects. Next, we examine the better methods 
identified in the first study through an empirical study with data from the MWTS. 
 

4. Simulation study 
 
Our simulations explore three methods for choosing a setting the initial tuning constant φ when 
an unusually high influential value is present. The proposed options have the potential to avoid 
detecting natural variation as influential values. In each option, the data used to calculate the 
initial φ come from the preceding measurement period.  Calculating the options requires fitting a 
regression line where the independent variable is the previous month and the dependent variables 
is the current month. We explore whether using weighted least squares or weighted robust 
regression produces better performance.  We use the least median of squares (LMS) robust 
regression method. 
 
The three options are: 

 Standard Deviation Method. Set initial φ equal to the product of a factor k and the robust 
standard error of the residuals, e.g. initial φ = k × (standard error of robust regression 
residuals). Use normal distribution to determine two options for the value of k, set k1 = 
Z1/1,000,000 = 4.753424 (low) and k2= Z1/10,000,000,000 = 6.361341 (high). We chose the values 
of k through trial and error. 

 Resistant Fences Method. Set initial φ e by using resistant fences. Use percentiles of 
residuals to set initial φ where initial φ = quartile(75) +k(quartile(75) –median).  To be 
comparable to the Standard Deviation Method, use ௝݇ 			= ೥ഀ	ష೥బ.మఱ

೥బ.మఱ
 with α = 1/1,000,000 

resulting in k1 = 6.047437 (low), and α = 1/10,000,000,000 resulting in k2 = 8.431338 
(high). When setting k for resistant fences, the relevant measure is the some-outside rate 
per sample, the probability that a sample has an observation is flagged as outlying by 
chance.  Hoaglin and Iglewicz (1987) found that the some-outside rate per sample for 
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normally-distributed data with a sample size of  ݊ ൒ 200 was approximately 10% for k = 
2.2 and 5% for k = 2.4. Extrapolating that an increase in k of 0.2 reduces the some-
outside rate per sample by half, an estimate of the some-outside rate is 3/1,000,000 for k1  
= 6.361341 (low) and 8/10,000,000,000 for k2 = 8.431338 (high).  

 Bootstrap Method. Set initial φ using a stratified bootstrap. Repeatedly draw bootstrap 
samples (Efron 1981). For each sample, choose the observation corresponding the 99.00th 
percentile for the low value and the observation corresponding to the  99.99th percent for 
the high value. Then average the low values over all replicates and the high values over 
all replicates.  Often both percentiles were equal to the maximum value in the sample. 

 
If the residuals have a normal distribution, then the Standard Deviation and Resistant Fences 
methods produce approximately the same values of the initial φ. However, if the distribution of 
the residuals is not normal, then the values of the initial φ produced by the two methods are 
different.   The value of the initial φ produced by the Bootstrap method will be different from the 
values produced by the Standard Deviation and Resistant Fences methods regardless of whether 
the residuals have a normal distribution. 
 
4.1 Simulated data 
To assess the performance of the three options, we conduct a simulation study similar to the 
method used by Mulry, Oliver, and Kaputa (2012a). The simulated population data presents 
“realistic” monthly sales estimates, modeled from two industries with different natures. One that 
we refer to as SIM-R1 has monthly sales of approximately 46.1 billion and one of the most 
volatile patterns for influential values. The other that we refer to as SIM-R2 has a more stable 
pattern and has monthly sales of approximately 2.5 billion. The sample sizes in our simulations 
are 1,161 for SIM-R1 and 147 for SIM-R2.  
 
The models used to simulate populations for SIM-R1 and SIM-R2 use the MRTS data for these 
industries. Recall that the MRTS is a stratified sample, with strata defined by unit size within 
industry where the measure of size is sales. To obtain realistic level estimates, we apply the 
nonparametric resampling algorithm described in Thompson (2000) by industry-strata to 
empirical MRTS data to obtain Month 1 data, thus ensuring that the strata means are different and 
the industry totals equal the survey estimates. Then, we generate six additional months of the 
population data for each sampling stratum h in the industry using ARMA modeling to form a 

stationary series for that stratum, so that .1),,0(~,ˆˆ 2
1,,   twyy hittihihithihthi   Therefore, 

each of the two populations is a stationary series within strata, but not at the industry level. Since 
the time series is stationary, the strata-level means are approximately the same over time although 
in practice the strata-level means may vary over a similar period.  Using a stationary series avoids 
the possibility of a trend confounding the effects of the influential values.  
 
Once we have constructed the time series for the population for an industry, we select 1000 
samples and induce an unusually high influential value in Month 4 (Mulry, Oliver, and Kaputa 
2012a). For this conditional analysis, we use data from Month 2 to calculate each of the three 
options for the initial φ and use each on in an application of the algorithm in Month 3. Then we 
re-calculate the initial φ for each of the three options using data from Months 3 for application in 
Month 4. We repeat the calculation the initial φ for each month using data from the preceding 
month.  
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4.2 Performance results 
In this section, we examine the simulation results regarding the performance of M-estimation 
with different options for the parameter settings the quality of the estimates they produce.  In 
Table 2, we focus on performance measures for estimates of totals and month-to-month change.  
 
Table 2. Performance of estimates of total for Industry SIM-R2 with high and low options of 
three methods of setting the initial φ when an unusually high influential value is induced in 
Month 4 using weighted robust regression with 1,000 replications and the Huber II function. 

method level month 
Average 

number of 
false positives 

RB of 
untreated 

total 

RB of 
treated 

total 

RRMS of 
untreated 

RRMS 
of 

treated 

St. dev. Low 3 0 0.1421 0.1421 2.5660 2.5660 

St. dev. High 3 0 0.1421 0.1421 2.5660 2.5660 

R-Fence Low 3 0.089 0.1421 0.1404 2.5660 2.5661 

R-Fence High 3 0.006 0.1421 0.1419 2.5660 2.5659 

B-strap Low 3 1.872 0.1421 0.1112 2.5660 2.5664 

B-strap  High 3 1.015 0.1421 0.1250 2.5660 2.5682 

St. dev. Low 4 0 18.6411 9.2570 18.8149 9.6018 

St. dev. High 4 0 18.6411 9.2570 18.8149 9.6018 

R-Fence Low 4 0 18.6411 9.2568 18.8149 9.6016 

R-Fence High 4 0 18.6411 9.2570 18.8149 9.6018 

B-strap Low 4 0 18.6411 9.2533 18.8149 9.5984 

B-strap  High 4 0 18.6411 9.2550 18.8149 9.6000 

St. dev. Low 5 0 0.0950 0.0950 2.5565 2.5565 

St. dev. High 5 0 0.0950 0.0950 2.5565 2.5565 

R-Fence Low 5 2.219 0.0950 -0.0101 2.5565 2.6365 

R-Fence High 5 0.249 0.0950 0.0839 2.5565 2.5526 

B-strap Low 5 0 0.0950 0.0950 2.5565 2.5565 

B-strap  High 5 0 0.0950 0.0950 2.5565 2.5565 

St. dev. Low 6 0 0.1698 0.1698 2.5760 2.5760 

St. dev. High 6 0 0.1698 0.1698 2.5760 2.5760 

R-Fence Low 6 0.025 0.1698 0.1692 2.5760 2.5761 

R-Fence High 6 0.004 0.1698 0.1697 2.5760 2.5760 

B-strap Low 6 1.473 0.1698 0.1423 2.5760 2.5726 

B-strap  High 6 0.321 0.1698 0.1620 2.5760 2.5752 

St. dev. Low 7 0 0.1359 0.1359 2.5856 2.5856 

St. dev. High 7 0 0.1359 0.1359 2.5856 2.5856 

R-Fence Low 7 0.096 0.1359 0.1340 2.5856 2.5859 

R-Fence High 7 0.002 0.1359 0.1359 2.5856 2.5856 

B-strap Low 7 1.83 0.1359 0.1095 2.5856 2.5838 

B-strap  High 7 1.112 0.1359 0.1183 2.5856 2.5849 
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For the M-estimation algorithm, we used SAS software developed by Jean-Francois Beaumont 
(2007). Calculating the options for the initial φ requires fitting a regression line. We considered 
two regression methods, weighted least squares and weighted robust regression. 
 
Table 2 shows the performance results when an unusually high influential value is induced in 
Month 4 with data from Industry SIM-R2. We induced the influential value by selecting a unit 
from a small business stratum with a weight of 50 and adding 8 million to its unweighted value.  
The performance measures we examine are the average number of observations detected as 
influential that were not induced influential values (false positives), the relative bias(RB) and the 
relative root mean square error (RRMSE) of the estimate of total with the values designated as 
influential adjusted (treated) and with no adjustments (untreated). 
 
Both the high and low levels of the Bootstrap method did not perform as well as the Standard 
Deviation and Resistant Fences methods under the criteria of lowest false positive detections of 
influential values and lowest RB and RRMSE. Within the Standard Deviation and Resistant 
Fences options, the high level of both produced the best performances on all three criteria as 
shown for Industry SIM-R2 in Table 2. The performance was better when using residuals from 
weighted robust regression than for weighted least squares regression although the results for the 
latter do not appear in this paper. Performance results data for Industry SIM-R1 were similar to 
those for Industry SIM-R2 even though Industry SIM-R1 is smaller with residuals that have a 
more normal distribution while Industry SIM-R1 is larger with residuals that have a heavy-tail 
distribution.  Therefore, we selected the high level of the Standard Deviation and Resistant 
Fences options using robust regression for further study in the empirical analysis. 
 

5. Empirical analysis for initial φ 
 
Now we apply what we have learned in Section 4 about the performance of the different 
approaches for setting the parameters to historic data for four MWTS industries. The historic 
MWTS data is subject to seasonal effects whereas the simulated data was a stationary series. We 
use the results of this analysis to calculate the parameters so that we can run M-estimation in a 
side-by-side experiment with the current method of detecting and treating influential values.  
 
We continue to explore more than one option for setting the initial φ to be sure the best methods 
in the simulation data appear to be the best methods for a wider range of industries. We examine 
the high options of both the Standard Deviation and the Resistant Fences methods, but vary the 
data used in the calculations with the following four alternatives summary statistics:  

1) Calculate the initial φ each month with data from the previous month, as in the 
simulations in Section 4.  

2) Calculate the initial φ at the beginning of each year using data from each of the 12 
months of the previous calendar year and taking the maximum of the 12 values of φ. 

3) Calculate the initial φ at the beginning of each year using data from each of the 12 
months of the previous calendar year and taking the mean of the 12 values of φ. 

4) Calculate the initial φ each month but uses the data from the same month in the previous 
year. 

 
The empirical analysis uses 25 consecutive months of observed data from each of two MWTS 
industries, which we call OBS-W1 and OBS-W2. Industries OBS-W1 and OBS-W2 are not 
related to the industries that provided the basis for generated the simulated data, SIM-R1 and 
SIM-R2, used in the previous analysis. Industry OBS-W1 tends to be more volatile than Industry 
OBS-W2. The first 13 months of data provided the data to calculate the initial φ using the 
different methods for application in the last 12 months. The sample size for Industry OBS-W1 
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was 164, and the average of its estimated total sales during the last 12 months was about 2.5 
billion. The sample size for Industry OBS-W2 was 86, and the average of its estimated total sales 
was about 38 billion. Because of space limitations, we show results for only Industry OBS-W1, 
but the results for Industry OBS-W2 are similar.  
 
The performance measures for evaluating the combinations of the two methods and four 
alternatives are the number of observations designated as influential and the reduction in 
estimated MSE obtained by the adjustments. Remember that since we are using real data instead 
of simulated data, we do not have a true population total to use in the calculation of the true MSE 
and must settle for an estimated MSE. 
 
Figure 2 shows the initial φ for each of the four options for Months 14 to 25 when using the 
Standard Deviation and Resistant Fences methods with data from Industry OBS-W1. The values 
of the initial φ from the Standard Deviation method tended to be higher than the initial φ from the 
Resistant Fences method across all 12 months and all four alternatives.  
 
Figure 2. Value of initial φ (in millions) for MWTS Industry OBS-W1 for four options for the 
Standard Deviation and Resistant Fences methods by month 
 
 Standard deviation method   Resistant fences method 

 
 
The effects of lower values of the initial φ from the Resistant Fences method are present in Tables 
3 and 4. Table 3 shows the performance results of the application of the four alternatives using 
the Standard Deviation high option to data from Industry OBS-W1. Table 4 is analogous to Table 
3 except the Resistant Fences high option method is used. Within the Standard Deviation and the 
Resistant Fences methods, the alternative that uses data from the same month in the previous year 
to calculate the initial φ results in the lowest number of observations designated as influential. 
When both methods make adjustment in Month 19, the Standard Deviation method adjusts one 
unit while the Resistant Fences method adjusts four units. Interestingly, the reduction in the 
estimated MSE is somewhat higher for the Standard Deviation method at 14.7% than the 
Resistant Fences method at 13.6%.  
 
Figures 3 and 4 aid in assessing the performance of the alternative that uses data from the same 
month in the previous year. Both figures show the weighted sample observations not included 
with certainty for all 25 months in gray [Note: certainty observations are not considered in outlier 
detection and treatment in M-estimation. See equations 2.2 and 2.3]. Keep in mind that the scale 
of the graphs is determined by the weighted observations (receipts value) while consideration for 
an influential value designation depends on a comparison between the weighted regression 
residuals and the initial φ. The algorithm focuses on weighted month-to-month change for a unit 
rather than the level of the weighted observation.  
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Table 3. Empirical analysis performance measures for four options of setting the initial φ using 
the Standard Deviation high option in Industry OBS-W1 

   Method for initial φ 

   Previous month  Previous year max  Previous year mean  Previous year month 

Month 

Number 
adjusted 

Reduction 
in MSE 
(%) 

Number 
adjusted 

Reduction 
in MSE  
( %) 

Number 
adjusted 

Reduction 
in MSE 
(%) 

Number 
adjusted 

Reduction 
in MSE 
(%) 

14 0 0.0 0 0.0 0 0.0 0 0.0

15 0 0.0 0 0.0 0 0.0 0 0.0

16 0 0.0 0 0.0 0 0.0 0 0.0

17 0 0.0 0 0.0 0 0.0 0 0.0

18 0 0.0 0 0.0 0 0.0 0 0.0

19 1 14.7 1 14.7 1 14.7 1 14.7

20 0 0.0 0 0.0 0 0.0 0 0.0

21 0 0.0 0 0.0 0 0.0 0 0.0

22 0 0.0 0 0.0 0 0.0 0 0.0

23 0 0.0 0 0.0 0 0.0 0 0.0

24 0 0.0 0 0.0 0 0.0 0 0.0

25 5 43.7 0 0.0 0 0.0 0 0.0
 
 
Table 4. Empirical analysis performance measures for four options of setting the initial φ using 
the Resistant Fences high option in Industry OBS-W1 

   Method for initial φ 

   Previous month  Previous year max  Previous year mean  Previous year month 

Month 

Number 
adjusted 

Reduction 
in MSE 
(%) 

Number 
adjusted 

Reduction 
in MSE 
(%) 

Number 
adjusted 

Reduction 
in MSE 
(%) 

Number 
adjusted 

Reduction 
in MSE 
(%) 

14  4  37.0  4  37.0  4  37.0  4  37.0

15  3  1.5  0  0.0  3  1.5  0  0.0

16  3  0.1  0  0.0  3  0.1  0  0.0

17  0  0.0  0  0.0  0  0.0  0  0.0

18  0  0.0  0  0.0  0  0.0  0  0.0

19  4  13.6  4  13.6  4  13.6  4  13.6

20  0  0.0  0  0.0  0  0.0  0  0.0

21  0  0.0  0  0.0  0  0.0  0  0.0

22  0  0.0  0  0.0  0  0.0  0  0.0

23  0  0.0  0  0.0  0  0.0  0  0.0

24  0  0.0  0  0.0  2  2.1  2  2.1

25  5  43.7  5  43.7  5  44.2  5  44.2
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Figure 3. Standard Deviation method using the same month previous year option with data from 
Industry OBS-W1 

 
 
Figure 4. Resistant Fences method using the same month previous year option with data from 
Industry OBS-W1

Obs  Adj  

Obs          Adj   
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In the figures, if the weighted observation for a sample unit is adjusted in one month, its values 
for all months are shown in black and connected by black lines. The adjusted values are in green 
with green lines connecting them to their values in the previous and subsequent months.  
 
In Figure 3, we see that the M-estimation algorithm with the initial φ set using the Standard 
Deviation method designates one weighted observation in Month 19 as influential. The 
observations for the designated unit across the 25 months are very variable. However, its 
weighted observation in Month 19 is unusually high when compared to all the other months and 
particularly when compared to the previous month. In addition, it is one of the highest weighted 
observations over the 25 months. This adjustment has the effect of reducing the bias in the 
estimate of total sales to where the estimated bias squared is 8.5% of the estimated MSE. 
 
Now we turn our attention to Figure 4 and see that when the algorithm uses the Resistant Fences 
method, weighted observations in Months 14, 19, 24, and 25. Many of the adjustments do not 
appear to make large changes. This is an indication that the algorithm is achieving a minimum 
estimated MSE by trimming a few observations to achieve a reduction in the variance of the 
estimated total sales while the estimated squared bias is 24.1% of the estimated MSE. 
 
 

6. Summary 
 
Using M-estimation to identify and treat influential values in a survey setting is appealing from 
both methodological and statistical perspectives. The flexibility of weighted M-estimation makes 
it useful for a wide variety of data models, and our empirical results appear to support the 
algorithm’s robustness to model misspecification. On the other hand, this same flexibility has the 
disadvantage of introducing some complexity in implementation. First, there are situations when 
the algorithm has convergence issues, but careful setting of the parameters for the algorithm 
appears to reduce this problem and sometimes avoids it all together. These convergence issues 
tend to be more difficult to avoid when the algorithm uses a two-sided function ψ implementation 
than with a one-sided function. If the lack of convergence is caused by the occurrence of both an 
unusually high and an unusually low influential value in the same month, then an estimate with 
no adjustments is justified because the two influential values offset to result in the bias being 
approximately zero. 
 
In this paper, we explore the basic question of how to develop initial settings for the M-estimation 
parameters, focusing primarily on economic data applications. The populations that we studied 
are highly skewed and are consequently highly stratified. Because of this, the assumed data model 
that we use in our M-estimation application -- a weighted regression model that uses survey 
weights and the predictor variable as regression weights – is misspecified when applied to 
population data. Even so, we found several advantages of using this data model over the simpler 
ordinary least squares (equal variances) model.  
 
Developing an “automatic” method for setting the initial value of the tuning constant φ posed a 
more challenging problem, especially given the seasonality in our monthly estimates. Since this 
parameter has the most impact on the performance of the detection of influential values, it is 
important to provide simple-to-use and data-based methods that are robust. Of all the methods 
that we considered, the Standard Deviation high option method applied using data for the same 
month in the previous year yielded the best performance. This combination creates adjustments 
that reduced bias and achieved the lowest estimated MSE. 
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The next step is to apply the method in a side-by-side test. We will provide guidelines to the 
subject matter experts who have the responsibility of reviewing an adjustment proposed by the 
M-estimation algorithm and deciding on whether to incorporate it in the estimation each month.  
The dialog with subject matter experts during the test and the application of the algorithm in more 
industries may lead to refinements, but the basic approach appears very effective. 
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