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Abstract
Estimation in case of indirect sampling as introduced by Huang (1984) and Ernst (1989) and de-
veloped by Lavalle (1995) Deville and Lavalle (2006) extends the application of sampling theory
for settings when the sampling frame and target population are not identical, but rather connected
through specified links. This approach has found widespread application, particularly through the
generalized weight share method (GWSM), and can be applied generally to sample from networks.
In order to ensure unbiased estimates, all inbound links for any sampled unit in the target population
must however be known. While this is not a problem in many types of link structures (such as family
relationships or household association), it prevents important applications in networks with asym-
metrical link structures, such the world-wide web, lose social relationships, or refreshment samples.
This paper extends the application of the generalized weight share method (GWSM) to produce
design-unbiased estimators even for such situations, where the inbound links for each element are
generally unknown. This is achieved by adequately reflecting the link-structure which is partially
revealed during the sampling process. An empirical evaluation as well as a comparison with other
estimation methods, particularly Monte-Carlo approaches, evaluates the proposed method.
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1. Introduction and Motivation

In survey sampling it often occurs that a sample s ⊂ U is taken from a sampling frame U ,
however the properties of interest lie within a population U ′ which is not sampled directly
but rather assessed through following links ci,i′ that connect the elements i ∈ U with
U ′ ∈ s′. Let i and i′ to be connected if ci = 1 and i and i′ unconnected if ci,i′ = 0. The
sampling of s ⊂ U thus defines a sample s′ ⊂ U ′ which is given by {i′ ∈ U ′ : ∃i ∈
s, ci,i′ = 1}. The reasons for this so-called indirect sampling can be manifold: In many
cases, indirect sampling is carried out, simply because no adequate sampling frame (e.g.,
lists or databases) or established method of approach exists forU ′. Another reason might be
already available information or samples on U which greatly reduce the cost of fieldwork.
And finally, in panel surveys it is often desirable to allow for some sort of linkage between
the initially sampled population U and the current population U ′. The classic example are
newborns that are linked to their initially sampled parents.

Except for the trivial case of a one-on-one linkage between U and U ′, the estimation of
properties in U ′ poses some methodological challenges. This has been addressed by Sirken
(1970) and Huang (1984) who coined the term multiplicity estimates to allow for multiple
links between elements of the sampling frame and target population. A unified approach
based on the works of Ernst (1989) has been developed by Lavalle (1995) and Deville and
Lavalle (2006) under the term Generalized Weight Share Method (GWSM).

Consider the estimation of the population total Ty′ of the variable y′i′ (i′ ∈ U ′). The
general weight share method assigns each element i′ ∈ s′ a new weight wi′ , which can be
used to construct a Horvitz-Thompson type estimator T̂GWSM

y′ =
∑
i′∈s′ y

′
i′wi′ .

In order to arrive at the weights wi′ , the initial design weights di of i ∈ s are ”shared”
according to certain link functions li,i′ in the following way: wi′ :=

∑
i′∈s li,i′di.
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The link function depends on both, the linkage between the elements i ∈ U and i′ ∈
U ′ as well as the desired form of ”weight sharing”. A detailed description can be found
in Lavalle (2007). A commonly used link function is given by the so-called fair share
approach with li,i′ :=

ci,i′∑
j∈s cj,i′

. In the case of only one link from i ∈ U to i′ ∈ U ′, the

link function li,i′ = 1. In the case of 2 inbound links from i, j ∈ U to i′ ∈ U ′, the link
functions are li,i′ = lj,i′ = 0.5.

The classical Horvitz-Thompson type form of the estimator T̂GWSM
y′ and the high flex-

ibility to incorporate any form of linkage and link function make the GWSM very appeal-
ing, particularly in large official or social surveys. As laid out by Lavalle (2007), variance
estimators can be constructed and an extension to several stages of indirect sampling is
straightforward.

In order to provide unbiased estimates, it can be shown that for all i′ ∈ U ′ the sum of
the inbound links

∑
i∈U li,i′ must be equal to 1. This requires in particular that all links

ci,i′ must be known for all i′ ∈ s′ ⊂ U ′. While this is not a challenge with so-called
symmetrical links such as family or household association, there also exist many situations
of so-called asymmetrical links, where the inbound links from all elements in the sampling
frame are generally not known. Important cases include

• Refreshment samples: It is often unknown, if the refreshment sampling frame would
generally lead to re-sampling of already sampled persons.

• Web sampling on the internet: Where by definition only outbound links from web-
sites are known

• Sampling in social networks: Such as snowball sampling or by following asymmet-
rical links such as friendship

2. Existing research

The classical approach do deal with asymmetrical link functions is to obtain estimates
of the number of inbound links. This can be either done by Markov-Chain Monte-Carlo
Methods (MCMC), see Thompson (2006), or by using capture-recapture methods such as
the so-called respondent-driven sampling (RDS) proposed by Heckathorn (1987).

In the simplest form of the MCMC approach, the links in the network are followed
repeatedly and, following a certain ”burn-in phase”, the frequency of visits of i′ ∈ U ′

converges to a factor that is proportional to the number of inbound links to i′. There are
some challenges associated with this approach, mainly that it basically requires following
a large proportion of nodes (which makes it impractical for large population surveys) and
that it has limitations in the case of unconnected parts of the graph defined by the links.
In the classical case of 2-stage indirect sampling, following the link structure from U to
U ′ terminates after 1 step at the target population U ′. This requires probabilistic jumps
back to the sampling frame U , which in essence would mean substantial over-sampling of
U (and thus of U ′). While the efficiency of the MCMC approach decreases substantially
in the above described classical case of 2-stage indirect sampling with no outbound links
at the second stage, it has gained popularity particularly for sampling in large, very well
connected networks.

The other main approach to estimate the number of inbound links via Respondent
driven Sampling (RDS) has also been applied successfully in practice. A challenge here
might be the administration of the capture-recapture approach through identification cards.
However this corresponds largely to the challenge of tracking the link function in the clas-
sical GWSM. Generally, however the classical theory to of the GWSM cannot be used in
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RDS sampling which would also make it necessary to use different tools/software under
this approach.

As a summary on the existing research. it can be said, that working and tested ap-
proaches exist for dealing with asymmetrical link functions. However, these approaches are
not straightforward extensions of the GWSM and thus generally require a ”system change”
for the user.

3. The Estimated Generalised Weight Share Method (EGWSM)

In order to extend the weight share approach for the above-mentioned settings where the
inbound links are unknown, we propose a modified weight share approach that estimates
the link function li,i′ based on the link structure that is revealed in the sample. Similarly
to the general principle in sampling, this is achieved by reweighting the observed links in
order to achieve unbiased estimates even for those situation that were not observed.

Given an estimator l̃i,i′ for li,i′ , the proposed estimator for the population total of y′ of
U ′ would be

T̂EGWSM
y′ =

∑
i′∈s′

y′i′
∑
i∈s

l̃i,i′di

Where EGWSM stands for Expected Generalized Weight Share Method. Due to the linear
form, it is sufficient ot show for the unbiasedness, that E[l̃i,i′ ] = li,i′ .

Let mi′ be the set of elements i ∈ U with links to i′ (thus ci,i′ = 1). In the case
of asymmetrical link structures, given a sample s ⊂ U , we can generally only observe a
subset of links to i′ ∈ U , namely those from the sampled elements i ∈ m̃i′ := mi′ ∩ s. The
estimator for l̃i,i′ must thus be based on the set m̃i′ rather than the unknown mi′ .

The construction principle for l̃i,i′ can be best described on an example: Consider the
elements i, j, k linking to i′ and assume a fair share approach is used. Thus we have mi′ =
{i, j, k}, and the true (but unknown) li,i′ = 1/3.

Now consider the case that of i, j, k, only i is sampled. In this case m̃i′ = {i} and
we clearly need to set l̃i,i′ = 1 since we do not observe any other links and the sum of all
inbound links to i′ must be equal to one in order to ensure unbiasedness. (Note that the true
li,i′ = 1/3 thus l̃i,i′ overestimates li,i′ in this case.)

In the case of 2 observed inbound links to i′, say m̃i′ = {i, j}. We need to compensate
for the the known overweighting in the cases with m̃i′ = {i}. Thus we set for this case
l̃i,i′ = 1 − 1

2
1
πij

where πij is the joint selection probability of i and j. Note that the

compensation factor 1
2 is weighted with the inverse of detecting the two inbound links.

Similarly in the case of m̃i′ = mi′ , that is all units i, j, k are sampled, we have: l̃i,i′ =
1− 1

2
1
πij
− 1

2
1
πik

+ 1
3

1
πijk

where πijk is the joint selection probability of i, j, k.

Under the fair share approach, the general rule for l̃i,i′ is given by:

l̃i,i′ = 1 +
∑

m⊂m̃i′

(−1)|m|−1 1

|m|
1

Pr(m ⊂ s)

An extension for general link functions can be found via the same principle via induc-
tion, but note that not in all cases a closed form of the estimator l̃i,i′ for the link function
might be possible.

As can be seen the link function l̃i,i′ now depends on the sample and thus the variance
of the estimator is expected to increase, compared to the situation of known links that
is typically assumed in indirect sampling. Still, due to the finite size of the population
and sample, the variance remains bounded and the estimator is by construction design-
unbiased, if the sampling is such, that all inbound links can be detected with one sample
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(that is ∀i′ ∈ U ′∃s : mi′ ⊂ s). Note that the estimator is only unbiased for the estimation of
totals not the estimation of population shares as the number of elements in U ′ is generally
unknown.

Due to the construction of our estimator T̂EGWSM
y′ , we assume the variance to increase

compared to the weight share estimator T̂GWSM
y′ . This is due to fact that the fixed link

function li,i′ is replaced by the estimator l̃i,i′ . However note that there might be situations,
where the inbound links li,i′ are generally unknown for elements i not in s and thus the
classical weight-share estimator cannot be constructed. As we can see by the formula for
l̃i,i′ the variance increase stays small either in situations where multiple inbound links are
the exception (e.g., refreshment samples) and/or in situation where the multiple inclusion
probabilities of elements in mi′ are rather large. An example for the latter situation might
be cluster sampling of families and then following links defined by family relationships.

So far, we have only considered single stage indirect sampling. In practice many in-
direct sampling schemes consist of more than one stage. Typical examples include panel
surveys, where follow-up rules are used to follow participants or household through several
panel waves. As already discussed by Lavalle (2007) the generalized weight share method
(GWSM) can easily be extended to incorporate multi-level sampling. As our proposed es-
timator only replaces the known link function li,i′ with an estimator l̃i,i′ , this also applies
to our proposed method.

The most common approach to deal with multi-stage sampling is to consider the stages
sequentially: Based on the first sampling stage from U to U ′ we can consider the weights
wi′ :=

∑
i∈s′ l̃i,i′di as ”design-weights” for the ”sample” s′ ⊂ U ′. Note that the terms

”sample” and ”design-weights” are not strictly correct as sampling only occurs in the se-
lection of s ⊂ U . However s′ with wi′ can be used in the same fashion as a classical direct
sample and the Horvitz-Thompson estimator corresponds to our proposed EGWSM esti-
mator and is unbiased. In a subsequent stage following links from U ′ to U ′′. This sample
s′ and the design weights wi′ are then used in the same fashion in the equivalent way as
s and di in the first stage following U to U ′. Similarly to the GWSM, also the EGWSM
is also unbiased at this second stage, assuming the above mentioned regularity conditions
to be met (most notably that for all elements i′′ ∈ U ′′, the sampling design and follow-up
rules are as such, that the full set of inbound links mi′′ can be detected via sampling (thus
∃s′ ⊂ U ′ : mi′′ ⊂ s).

4. Empirical Application

In order to empirically assess the performance of our proposed EGWSM estimator, par-
ticularly against the GWSM estimator but also other alternatives, a small simulation study
was carried out with the following settings:

• Population: The populations U and U ′ are given by the sets U = {1, 2, . . . , 10} and
U ′ = {1, 2, . . . , 17}. The variable of interest y′ was given by y′i′ = i′. Thus Ty′ =
153

• Link function: We assumed a links c between U and U ′ as given by figure 1. For the
link function, we used the fair share approach with li,i′ =

ci,i′∑
i∈U ci,i′

• Sampling design: We used SI sampling with n = 4 in U . Note that, given the link
structure with a maximum of 4 inbound links in U ′, this sampling scheme automati-
cally fulfills our requirement, that for any i′ ∈ U ′, the full set of inbound links from
mi′ from U to U ′ can be detected in a single sample.
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Figure 1: Simulation population solid lines describe existing link

Figure 2: Cumulative convergence of estimators for 2000 simulation runs

In our study the following 3 estimators were considered:

• Classical fair share estimator: Given by T̂GWSM
y′ =

∑
i′∈s′ y

′
i′
∑
i∈s li,i′di where the

link function reflects the above-described fair-share method.

• Proposed estimator: Given by T̂GWSM
y′ =

∑
i′∈s′ y

′
i′
∑
i∈s l̃i,i′di. Thus the link func-

tion li,i′ is estimated based on the available information

• Naive estimator: T̂NAIVE
y′ which is similar to the above estimators, except that the

link-function is estimated naively by the inverse of the observed (!) inbound links.
This estimator is generally biased and corresponds to the Monte-Carlo estimator with
no burn-in phase. In our case, as the elements in U ′ with larger values y′i′ tend to have
more inbound links, we expect the naive estimator to have a positive bias as the it by
construction underestimates the number of inbound links.

We carried out 2000 simulation runs of the above mentioned design. The cumulative
convergence of the proposed estimators is shown in figure 2.

As expected, the naive estimator exhibits a positive bias. Both our proposed estimator
as well as the classical fair share estimator show are unbiased by construction. Also the
effect of the increased variance of our proposed estimator over the classical fair share ap-
proach can be clearly seen. Again note that this increased variance comes from estimating
the link function. This might be required in situation where the inbound links are not fully
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Table 1: Results of simulation study

Estimator rel. bias variance MSE
GWSM 0.002 4271 4269
EGSM 0.002 62409 62378
NAIVE 0.635 4358 13799

known, as described in the beginning of this paper. The empirical relative bias, empirical
variance and empirical MSE are given in the table 1. From there we can also see that the
variance inflation from the need to estimate the link function is substantial with a variance
increase by factor 14. This might by reduced by capping extreme resulting weights at the
price of a small bias.

5. Conclusion and Outlook

In this paper, an extension of the generalized weight share method (GWSM) has been
proposed which extends the application of the GWSM to settings where not all inbound
links to a unit in the target population are known. Applications of the Expected Generalized
Weight Share Method (EGWSM) range from refreshment samples, through sampling of
hyperlinks on the internet to following asymmetrical links in social networks. An appealing
feature of the EGWSM is, that the sole change compared to the GWSM is the replacement
of the unknown link function with a design-unbiased estimator, which in turn leads to
design-unbiased estimates of the proposed estimator and allows for the use of same or
slightly modified analytical tools.

The proposed EGWSM approach might be an alternative to existing MCMC methods
or respondent driven sampling, particular for statistical agencies or researchers that are fa-
miliar with the the GWSM. While the proposed estimator is design-unbiased, the challenge
of increased variance (over the situation of known links) exists. Thus all efforts should be
made to find out the link structure before using this approach.

On the outlook, several further research the question on the EGWSM remain open.
Most notably, practitioners might likely consider to cut-off extreme resulting weights in
order to reduce variance of the price of a negligible bias. In addition, the evaluation of
this approach in a real survey as well as an analysis of the performance of the variance
estimator. In addition
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