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Abstract
Direct estimates for small areas or subpopulations may not be reliable because of small sample sizes
for such objects. Procedures based on implicit or explicit models have been used to construct better
estimates for given small areas, by exploiting auxiliary information. In this paper we consider binary
responses, and investigate predictors for situations with different amounts of available information.
We use generalized linear mixed models and present bias and mean squared error results for different
prediction methods.
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1. Introduction

Procedures based on models have been used to construct estimates for small areas, by ex-
ploiting auxiliary information. In this paper, we study nested models with a binary response
and random area effects. These models form a subclass of generalized linear mixed models.
We also consider stochastic covariates.

Survey data often contain auxiliary variables with good correlation with the variable of
interest. However, area level auxiliary data may be incomplete. We consider three cases
of auxiliary information, when the covariates have known mean, when the covariates have
unknown distribution, and when the covariates have unknown random mean. For the last
two cases, we describe estimation methods for the area mean of the auxiliary data. Because
the response variable is binary and the auxiliary information is not fixed, estimation and
prediction are not as straight forward as in linear mixed models.

Mixed models with unit level auxiliary data have been used for small area estimation by
a number of authors. Battese, Harter, and Fuller (1988) use a linear mixed model to predict
the area planted with corn and soybeans in Iowa counties. Datta and Ghosh (1991) intro-
duce the hierarchical Bayes predictor for general mixed linear models. Larsen (2003) com-
pared estimators for proportions based on two unit level models, a simple model with no
area level covariates and a model using the area level information. Malec (2005) proposes
Bayesian small area estimates for means of binary responses using a multivariate bino-
mial/multinomial model. Jiang (2007) reviews the classical inferential approach for linear
and generalized linear mixed models and discusses the prediction for a function of fixed and
random effects. Ghosh et al (2009) consider a small area model where covariates have un-
known distribution. They assume the sample has been selected so that weights ωij are avail-
able satisfying

∑ni
j=1 ωij = 1. They consider both hierarchical Bayes and EB estimators

and suggest predictors for the small area proportions of the form
∑ni
j=1 ωij p̃ij(xij), where

p̃ij(xij) is either the hierarchical Bayes or EB predictor. Ghosh and Sinha (2007) propose
EB estimators for the small area means, where the covariates in the super-population are
subject to measurement error. Datta, Rao, and Torabi (2010) study a nested error linear
regression model with area level covariates subject to measurement error. They propose a
pseudo-Bayes predictor and a corresponding pseudo-empirical Bayes predictor of a small
area mean. Montanari, Ranalli, and Vicarelli (2010) consider unit level linear mixed models
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and logistic mixed models, for binary response variable and fully known auxiliary infor-
mation. Vizcaino, Cortina, Morales Gonzalez (2011) derive small area estimators for labor
force indicators in Galicia using a multinomial logit mixed model.

2. Models

Consider a binomial response variable y, with realizations yij for m different areas and
ni different units within each area. That is yij |bi are independent, following a binomial
distribution, with mean pij , where bi are the random area effects. Let xi be independent and
identically distributed stochastic vectors of auxiliary information, following a distribution
Fxi , and let bi be independent and identically distributed, with a density fb with mean 0
and variance σ2b .

Then our unit level model is

yij = h(ηij) + eij , ηij = x′ijβ + bi, h(ηij) =
exp(ηij)

1 + exp(ηij)
(1)

for xij = (1, xij), i = 1, 2, ...,m and j = 1, 2, ...ni, where i is the index for area, and
j is the index for unit within area. We assume that bi and xij are mutually independent.
Note that the mean of yij given (xij , bi) is h(ηij) := pij(xij , bi). Under the assumptions
of model (1), the true small area mean of y is

θi =

∫
pij(xij , bi)dFxi(x), (2)

where Fxi(x) is the distribution of x in area i. Our objective is to construct predictions for
θi.

An example of (1) is the simple unit level mean model for y

pα,ij =
exp(α+ bi)

1 + exp(α+ bi)
, (3)

where α is a location parameter and bi is the random area effect.
We will have use for an area level model for the vector of covariates xij = (1, xij), and

assume
µxi ∼ NI(µx,Σδδ), xi|µxi ∼ NI(µxi,Σεε). (4)

3. Estimation and Prediction

The models (1) and (3) are generalized linear mixed models (GLMMs) and estimates for β,
σ2b , α and σ22b can be computed using R, by maximizing a Laplacian approximation to the
likelihood. Note that the predicted random area effects and the estimated random effects
variance for model (3) differ from the estimated values under model (1), hence we denote
those for model (3) by b̂2 and σ̂22b, respectively.

We consider two methods for constructing predictions for θi. In the first method, the
minimum mean squared error (MMSE) prediction method, we use the conditional distribu-
tion f(bi|yij) to compute the unit means of y and then we integrate over the distribution
of x to compute the predictions for θi. In the second method, the ‘plug-in’ method, we di-
rectly substitute the predicted random area effects vector b̂ in pij . As with the first method,
we integrate estimated pij over the estimated distribution of x to compute the predictions
for θi. We compare these two methods using a simulation study.
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3.1 MMSE Prediction

If the parameters of the distributions are known, the MMSE predictor of bi as

b̂i =

∫ ∫
bi
∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni
t=1 f(yit|bi)fb(bi)dbi

dFxi(x). (5)

Let µxi be the area mean of xi. We present predictions for θi, for different cases of auxiliary
information, when µxi is known, when the distribution of x is unknown, and when µxi is
unknown random. For the first case we assume x is normally distributed with unknown
variance. For the second case, we estimate the distribution of xi following Ghosh et al
(2009). For the third case, we estimate the area mean of xi using an area level model for
the vector of covariates xij = (1, xij), given in (4).

3.1.1 Covariate Mean Known

Consider the case when the mean of x is known for area i and the form of the distribution
is specified. Then, the MMSE predictor of the small area mean of y is

θ̂i =

∫ ∫
pij(xij , bi)

∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni

t=1 f(yit|bi)fb(bi)dbi
dFxi(x). (6)

In some finite population situations, the entire finite population of x values may be known
and the integral in (6) is the sum over the population. In practice it is often necessary to
estimate the parameters of the distribution Fxi .

3.1.2 Unspecified distribution for x

If µxi is unknown and treated as fixed, we estimate the distribution of x at point c using the
sample cumulative distribution function (CDF),

∑ni
j=1 ωijI(xij , c), where I(xij , c) is the

indicator function. For known parameters, the predicted small area mean of y is

p̄i =
ni∑
j=1

ωij

∫
pij(xij , bi)

∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni

t=1 f(yit|bi)fb(bi)dbi
. (7)

See Ghosh et al (2009) for an example of the approach.

3.1.3 No Auxiliary Information Used

Under model (3), for known parameters, the MMSE predictor of the small area mean of y
is

p̂i =

∫
pα,ij

∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni

t=1 f(yit|bi)fb(bi)dbi
, (8)

where pα,ij is defined in (3).

3.1.4 Unknown Random Covariate Mean

Consider the model (1) for y and the linear mixed model for xij given in (4):

xij = µx + δi + εij , δi ∼ N(0, σ2δ ), εij |δi ∼ N(0, σ2ε ) (9)

A small area predictor of the mean of xi is

µ̂xi = µ̂x + γ̂xi(x̄i − µ̂x), (10)
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where

µ̂x =
m∑
i=1

(σ̂2δ + n−1i σ̂2ε )
−1x̄i, γ̂xi = (σ̂2δ + n−1i σ̂2ε )

−1σ̂2δ

and

σ̂2ε =

(
m∑
i=1

(ni − 1)

)−1 m∑
i=1

ni∑
j=1

(xij − x̄i)2.

In (10), x̄i = n−1i
∑ni
j=1 xij denotes the sample area mean of xi, and the variance of the

random area effects δi is estimated by σ̂2δ , the REML estimate constructed as described in
Rao (2003, page 119).

Then a predictor of the small area mean of y is

θ̃i =

∫ ∫
pij(xij , bi)

∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni

t=1 f(yit|bi)fb(bi)dbi
dF̃xi(x), (11)

where F̃x(x) is the estimator of Fx(x) with parameter µx predicted on the basis of model
(4).

If Fx and fb are continuous distributions, there are many ways to approximate the
integrals in (2,5,6,7,8,11). Algorithms are available in R or one can create a finite discrete
approximation. We consider the normal distribution and let zk, k = 1, 2, ...K be a set of
numbers such that

1

K

K∑
k=1

(zk, z
2
k) = (0, 1) (12)

and the {zk} is an approximation for the normal distribution. For example, zk might be
ξ(k− 0.5K−1), k = 1, 2, ...,K − 1, with zK = ξ(k+ 0.5K−1), where ξ(a) is the ath per-
centile of the normal distribution. The zk are standardized to have mean zero and variance
one. Let x∗ik = (1, x∗ik) and

x∗ik = µxi + zkσε and b∗k = σb ∗ zk. (13)

Then, the approximated random area predictions b̂i are

b̂i =

∑K
k=1 b

∗
k

∏ni
t=1 f(yit|b∗k)∑K

k=1

∏ni
t=1 f(yit|b∗k)

.

Approximations for the integral expressions in (2,6,7,8,11) are:

(i) true small area mean of y

θi = K−1
K∑
j=1

pij(x
∗
ij , bi); (14)

(ii) predicted small area mean of y with µxi known

θ̂i =
1

K

K∑
j=1

∑K
k=1 pik(x

∗
ij , b
∗
k)
∏ni
t=1 f(yit|b∗k)∑K

k=1

∏ni
t=1 f(yit|b∗k)

, (15)

where

x∗ij = µxi+zj σ̂ε, b
∗
k = σ̂b∗zk, f(yit|b∗k) = I[yit = 1]pit(xit, b

∗
k)+I[yit = 0](1−pit(xit, b∗k)),
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and σ2ε is estimated using the pooled within-area mean squared

σ̂2ε = (
m∑
i=1

ni)
−1

m∑
i=1

ni∑
j=1

(xij − µxi)2;

(iii) predicted small area mean of y using area sample CDF for x

p̄i = n−1i

ni∑
j=1

p̄ij = n−1i

ni∑
j=1

∑K
k=1 pik(xij , b

∗
k)
∏ni
t=1 f(yit|b∗k)∑K

k=1

∏ni
t=1 f(yit|b∗k)

, (16)

where

b∗k = σ̂b ∗ zk, f(yij |b∗k) = I[yij = 1]pik(xij , b
∗
k) + I[yij = 0](1− pik(xij , b∗k));

(iv) predicted small area mean of y using simple mean model for y

p̂i =

∑K
k=1 pα,ik(b

∗
2k)
∏ni
t=1 f(yit|b∗2k)∑K

k=1

∏ni
t=1 f(yit|b∗2k)

, (17)

where

b∗2k = σ̂2b ∗ zk, f(yit|b∗2k) = I[yij = 1]pik(b
∗
2k) + I[yij = 0](1− pik(b∗2k));

(v) predicted small area mean of y using predicted small area mean of x

θ̃i =
1

K

K∑
j=1

∑K
k=1 pik(x

∗
ij , b
∗
k)
∏ni
t=1 f(yit|b∗k)∑K

k=1

∏ni
t=1 f(yit|b∗k)

, (18)

where

x∗ij = µ̂xi+zj σ̂
∗
ε , b
∗
k = σ̂b∗zk, f(yit|b∗k) = I[yit = 1]pit(xit, b

∗
k)+I[yit = 0](1−pit(xit, b∗k)),

and

σ̂∗ε
2 = (

m∑
i=1

(ni − 1))−1
m∑
i=1

ni∑
j=1

(xij − x̄i)2.

In application, the parameters must be estimated. That is, pij(xij , bi) is replaced with

p̃ij(xij , bi) =
exp(x′ijβ̂ + bi)

1 + exp(x′ijβ̂ + bi)
,

σ̂2b is estimated, and pα,ij(bi) is replaced with

p̃α,ij(bi) =
exp(α̂+ bi)

1 + exp(α̂+ bi)
.
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3.2 Simulation Results, MMSE Method

We performed a simulation study for m = 36 areas in three groups of 12 areas, with
sizes ni ∈ {2, 10, 40} and unit level observations xij . Each sample, (y,x), is generated
using model (1) with σ2b = 0.25, µx = 0, σ2δ = 0.16, and σ2ε = 0.36. Thus there is a
random set of bi for each MC sample. The vector of coefficients for the fixed effects is
(β0, β1) = (−0.8, 1) and, for each unit, the probability that yij = 1 is

pij =
exp(−0.8 + xij + bi)

1 + exp(−0.8 + xij + bi)
. (19)

One thousand MC samples were generated satisfying the model.
Let the estimation models be

• Model 1: Model (1)-(4), with known auxiliary mean µxi

• Model 2: Model (1), with unknown distribution for xij

• Model 3: Model (3), simple mean model for y

• Model 4: Model (1)-(4), with unknown random auxiliary mean µxi.

We fit the estimation models (1) and (3) as generalized linear mixed models (GLMMs),
with the binomial conditional distributions for the response. The model (4) for the covariate
xij is fit as a linear mixed model (LMM).

The true small area mean of y is given by (14) and the predicted area means of y in the
simulations are given in (15-18), with (β0, β1) and σ2b estimated using GLMM in R. The
integrals were approximated with K = 50. The values x∗ik in (15) are constructed using
the known µxi and the estimated σ2ε defined for (15). Similarly, the values x∗ik in (18) are
constructed using the predicted µxi and the estimated σ∗ε

2 defined for (18).
We denote the sample mean of y by ȳ. We computed the bias and the mean squared

error (MSE) for the predictors averaged over the 1000 samples, averaged over areas with
the same sample size, for the three different sample sizes.

Table 1 contains the estimated bias in predicting the small area mean yij as a percent
of the standard error of prediction, under the MMSE method. The results are organized
in three rows, corresponsing to the three different sample sizes considered in this study.
The simulation standard errors are presented in parentheses below the bias values. The
estimator of the bias in the predictor is the simulation mean of the difference between the
model predictor and the true parameter θ.

The mean squared errors for the predictions of the mean of yij and predictions for the
random area effects bi are presented in Table 2. The MSEs are multiplied by one thousand
and are organized in three rows, corresponsing to the three different sample sizes considered
in this study. The simulation MSE standard errors are presented in parentheses below the
MSE values. The estimator of the MSE is the simulation mean of the squared difference
between the model predictor and the true parameter.

Because the estimated biases are small, relative to the standard error of prediction,
the variance of the prediction error is approximatly equal to the MSE. The smallest MSE
corresponds to the prediction error in predicting the mean of yij under Model 1, when the
auxiliary mean is known. Using Model 1 we estimate the sample variance of the auxiliary
variable, and use the known value for the covariate mean to construct the predicted area
mean of yij . On the other hand, for the case when the auxiliary mean is unknown and we
make predictions based on the simple mean model of y, we use no covariate information
in predicting bi in (3).
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Table 1: MC BIAS of prediction error as percent of the standard error of prediction, MC
BIAS of ȳij − θi as percent of the standard error, and MC BIAS of b̂i − bi and MC BIAS
of b̂2i − b2i as percents of the standard errors of predictions

n θ̂ − θ1 p̄− θ2 p̂− θ3 θ̃ − θ4 ȳ − θ b̂− b b̂2 − b2

2 1.44 1.46 0.86 -0.24 -0.17 1.56 2.18
(1.16) (1.06) (1.15) (1.14) (0.93) (0.87) (0.88)

10 -1.62 -1.82 -1.64 -2.48 -1.60 0.69 0.71
(1.11) (1.07) (1.05) (1.08) (0.89) (0.96) (0.95)

40 0.37 0.16 0.12 -0.02 0.50 1.77 2.28
(0.96) (0.95) (0.94) (0.96) (0.90) (1.23) (1.01)

1. Model 1, known µxi
2. Model 2, unknown distribution for xij
3. Model 3, simple mean model for y
4. Model 4, unknown random µxi

For the case when the auxiliary mean is unknown, the smallest MSE comes from us-
ing Model 4. Making predictions based on Model 4 involves making predictions for the
unknown random covariate mean, using the estimated grand mean of x and estimated vari-
ance of x. Using Model 2 gives smaller MSE than that of the simple mean model for large
sample sizes, but the simple mean model predictor is superior to that based on Model 4 for
small sample sizes.

Table 2: MC MSE (x1000) of prediction errors for the mean of yij , MC MSE (x1000) of
ȳij − θi, MC MSE (x1000) of b̂i − bi and MC MSE (x1000) of b̂2i − b2i

n θ̂ − θ1 p̄− θ2 p̂− θ3 θ̃ − θ4 ȳ − θ b̂− b b̂2 − b2

2 9.31 16.17 14.21 12.46 101.91 228.88 236.13
(0.12) (0.22) (0.18) (0.16) (1.09) (3.04) (3.15)

10 7.24 8.63 9.83 8.37 20.66 184.79 210.32
(0.10) (0.12) (0.13) (0.12) (0.27) (2.50) (3.01)

40 3.54 3.93 4.15 3.90 5.17 105.09 176.08
(0.05) (0.06) (0.06) (0.05) (0.07) (1.53) (2.48)

1. Model 1, known µxi
2. Model 2, unknown distribution for xij
3. Model 3, simple mean model for y
4. Model 4, unknown random µxi

3.3 Plug-in Method for bi

Because computer programs are available that give predictions of bi, one may be tempted
to ‘plug-in’ the predicted value of bi into equation (14) to construct the predictor of θi. Let
the estimated coefficients for the fixed effects be β̂, α̂, and let the predicted values for the
random area effects be b̂, b̂2, for models (1) and (3), respectively. We construct the plug-in
small area mean prediction for the four methods by:
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θ̂i,plugin = K−1
K∑
j=1

p̃ij(x
∗
ij , b̂i), where x∗ij = µxi + zj σ̂ε;

p̄i,plugin = n−1i

ni∑
j=1

p̃ij(xij , b̂i);

p̂i,plugin =
exp(α̂+ b̂i2)

1 + exp(α̂+ b̂i2)
;

and

θ̃i,plugin = K−1
K∑
j=1

p̃ij(x
∗
ij , b̂i), where x∗ij = µ̂xi + zj σ̂

∗
ε . (20)

3.4 Simulation Results, Plug-in Method for bi

We use the simulation setup of Section 3.2 and construct predictions of θi as defined in
Section 3.3. Table 3 contains the estimated biases of the prediction error as percent of the
standard error of prediction for the corresponding model. Some of the biases in the first
four columns of Table 3 are significantly different from zero and arise because pij(xij , bi)
of (19) is a nonlinear function of (xij , bi). The absolute values of the relative bias for
the prediction errors for the mean of yij decrease with the increase in sample size, corre-
sponding to a decrease in the variance of bi. The smallest absolute values for the relative
prediction bias are for estimation Model 1 and estimation Model 2. The absolute biases for
Model 1 and Model 2 are comparable because the variance for Model 1 is smaller than the
variance for Model 2. Model 1, Model 2 and Model 3 have the same variance of b̂ − b.
The b̂2 associated with Model 3 estimation has a larger variance.

Table 3: MC BIAS of prediction error as percent of the standard error of prediction, ‘plug-
in method’

n θ̂plugin − θ1 p̄plugin − θ2 p̂plugin − θ3 θ̃plugin − θ4

2 -3.49 -2.28 -5.88 -4.68
(1.18) (1.06) (1.16) (1.15)

10 -4.69 -4.65 -5.30 -5.39
(1.12) (1.08) (1.06) (1.09)

40 -1.02 -1.18 -1.24 -1.35
(0.97) (0.96) (0.95) (0.96)

1. Model 1, known µxi
2. Model 2, unknown distribution for xij
3. Model 3, simple mean model for y
4. Model 4, unknown random µxi

The MC MSE of prediction errors for the mean of yij constructed using the ‘plug-in’
method are slightly larger than, but very close to, the values presented in Table 2. The
procedure using estimated conditional mean is less biased and slightly more efficient than
the ‘plug-in method.’
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Table 4: MC MSE (x1000) of prediction errors for the mean of yij , ‘plug-in method’

n θ̂plugin − θ1 p̄plugin − θ2 p̂plugin − θ3 θ̃plugin − θ4

2 9.38 16.60 14.36 12.56
(0.13) (0.22) (0.19) (0.17)

10 7.29 8.72 9.89 8.43
(0.10) (0.12) (0.14) (0.12)

40 3.54 3.94 4.15 3.91
(0.05) (0.06) (0.06) (0.05)

1. Model 1, known µxi
2. Model 2, unknown distribution for xij
3. Model 3, simple mean model for y
4. Model 4, unknown random µxi

4. Conclusions

This work was motivated by real survey situations, in particular those where there is in-
complete auxiliary information. In this paper we presented a unit level model for binomial
response variables, a specific case of a generalized linear mixed model, and constructed
predictors for the area means for different cases of auxiliary information. We showed that
using the ‘plug-in’ method can lead to the sizeable bias in predictions.

We presented results for a simulation study, generating data from the unit level model.
The bias in the prediction errors was small, relative to the standard errors of the predictions
for the mean of yij . The results indicate that, generally, it is better to include auxiliary
information in the model and estimate the distribution, rather than to ignore the auxiliary
information.
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