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1. Introduction

For applied work with generalized variance function (GVF) models for sample survey data,

one generally seeks to develop a model that produces variance estimators that are approx-

imately unbiased and relatively stable. Through simulation, we evaluate the bias and vari-

ance of model coefficients, and the bias and variance of the GVF estimator. In addition, we

compare and contrast confidence interval coverage rates and widths of the GVF estimator

to design-based estimators. We study these properties with varying degrees of freedom for

the GVF estimators and a refined bias adjustment factor for nonlinear transformations in

the lognormal model. Our simulation study is based on the data from the U.S. Current

Employment Statistics (CES) survey.

2. Variance Function Model

Define θ̂jt a point estimator of θjt, a finite population mean or total where j is the domain

index at time t. For example, in CES survey, domains are the combinations of industries

and areas. Define Vpjt= Vp(θ̂jt) as the design variance of θ̂jt, and V̂pjt = V̂p(θ̂jt) as

an estimator of Vpjt. The subscript “p” denotes the method to obtain an expectation or

variance evaluated with respect to the sample design.

The generalized variance function method models the variance of a survey estimator,

Vpjt, as a function of the estimate and possibly other variables (Wolter, 2007). The common

specification is

Vpjt = f(Xjt, γ) + qjt (1)

where Xjt is a vector of predictor variables potentially relevant to estimators of Vpjt, qjt

is a univariate “equation error” with the mean 0, and γ is a vector of variance function

parameters which we need to estimate. Note especially that qjt represents the deviation of

Vpjt from its modeled value f(Xjt, γ). Furthermore, one needs to supplement model (1)

with the decomposition

V̂pjt = Vpjt + εjt, (2)

where εjt is a random term that reflects sampling error in the estimator V̂pjt. Under the

assumption that V̂pjt is design unbiased for Vpjt, the error term εjt has design expectation

equal to zero.
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We will use a special form of model (1) on the logarithmic scale in our CES applica-

tions,

ln (Vpjt) = Xjt γ + q∗jt, (3)

where q∗jt is a general error term with mean equal to zero. As Johnson and King (1987)

demonstrated in the Young Adult Literacy Survey, prediction can be improved by trans-

forming to the logarithmic scale. The advantages of log transformation are that it converts

multiplicative relationships to linear relationships, and reduces the impact of extreme val-

ues.

3. CES Data and Model Fitting

The CES survey collects data on employment, hours, and earnings from nonfarm establish-

ments monthly. Employment is the total number of persons employed full or part time in

a nonfarm establishment during a specified payroll period. An establishment, which is an

economic unit, is generally located at a single location, and is engaged predominantly in

one type of economic activity (BLS Handbook, 2011). This paper will focus only on total

employment in the reporting establishment.

Using the benchmark data, xj0, at the benchmark month 0 from Quarterly Census of

Employment and Wages (QCEW) data, the CES program obtains weighted link relative

estimator, ŷjt, to estimate the total employment, xjt, within the domain j and month t,

ŷjt = xj0R̂jt

where R̂jt is the growth ratio estimate from benchmark month 0 to current month t.

We used the direct variance estimators V̂pjt from the survey as the dependent vari-

ables in GVF models. We assume that V̂pjt is a design unbiased estimator for Vpjt, i.e.,

Ep(V̂pjt) = Vpjt. Our sample consists of Unemployment Insurance (UI) accounts, which

report nonzero employment for previous and current months. Let njt be a number of re-

sponding UI accounts within the domain j and month t. In fact, t can be considered as the

month distance between the reference month t and the benchmark month 0. In this paper,

we consider only domains with at least 12 reporting UI accounts. There are 430 domains

(industry-area combinations) in our CES data. Each domain has data from January to De-

cember of the year 2000. Hence we have 5160 industry-area-time combinations. For the

current analysis, we considered data from the following six industries: Mining, Construc-

tion and Mining, Construction, Manufacturing Durable Goods, Manufacturing Nondurable

Goods, Wholesale Trade. Consider the GVF model

ln(V̂jt) = γ0 + γ1 ln(xj0) + γ2 ln(njt) + γ3 ln(t) + e. (4)

In this model, we assume that both intercepts and slopes are constant across the industries

and areas.

4. “Degrees of Freedom” Measures for Estimation and Prediction Errors Under

Variance Function Models

Let A be a positive random variable with finite positive mean and variance. Then under a

standard approach, (e.g., Satterthwaite (1941) and Kendall and Stuart (1968, p. 83)), the

random variable {E(A)}−1 d A has the same first and second moments as those of a χ2
d

random variable, where we define “degrees of freedom” term

d = {V (A)}−1 2 {E(A)}2 . (5)
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Specifically, for the random variables Vpjt and V̂pjt defined in expressions (1) and (2),

{f(Xjt, γ)}−1 dqjt
Vpjt has the same first and second moments as a χ2

dpjt
random variable,

where

dqjt
= {V (qjt)}

−1 2 {f(Xjt, γ)}2 . (6)

Similarly, conditional on Vpjt, (Vpjt)
−1 dεjt

V̂pjt has the same first and second moments as

a χ2
dpjt

random variable, where

dεjt
= {V (εjt|Xjt)}

−1 2 (Vpjt)
2 . (7)

5. Equation Error and Estimation Error under Lognormal Models

Under the model defined by expressions (2) and (3), define ε∗jt = ln (V̂jt) − ln (Vjt) and

assume that

ε∗jt ∼ N (0, σ2
ε∗) (8)

and

q∗jt ∼ N (0, σ2
q∗). (9)

Under additional regularity conditions, σ̂2
e is a consistent estimator for the sum σ2

q∗ + σ2
ε∗ .

If one does not have satisfactory information about the estimation-error variance term

σ2
ε∗ , then one may consider use of the predictor

V ∗

pjt = exp
(

Xjtγ̂ + 2−1σ̂2
e

)

. (10)

The term dεjt
is usually known (up to a reasonable level of approximation) and equals

the constant dε for all j and t. Additional calculations for the moments of the lognormal

distribution then show that

σ2
ε∗ = Ψ

(

1, 2−1dε

)

(11)

where Ψ(a, b) is the Ψ function with arguments a and b (Abramowitz and Stegun 1972,

p.258). Similarly, under the lognormal model (9), define dq = {V (qjt)}
−1 2 {E(Vjt}

2
,

then

σ2
q∗ = Ψ

(

1, 2−1dq

)

. (12)

Finally, based on substitution of σ̂2
q∗ for σ2

e in expression (10), define the predictor

V ∗∗

pjt = exp
(

Xjtγ̂ + 2−1σ̂2
q∗

)

. (13)

6. Simulation Study

6.1 Design of the Study

To evaluate the properties of γ̂ and V ∗∗

pjt, we carried out a simulation study based on the

following variables produced for each of R = 1000 replicates.
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First, based on the 5160 vectors
(

V̂pjt(r), Xjt

)

, where Xjt = (1, ln(xj0), ln(njt), ln(t)),

we carried out ordinary least squares regression of ln(V̂pjt(r)) on Xjt to produce the coef-

ficient vector estimate γ̂(r). Table 1 shows coefficient estimates (γ̂). We then computed the

fixed values of fjt.

fjt = γ0 + γ1 ln(xj0) + γ2 ln(njt) + γ3 ln(t) (14)

based on the numerical values of the coefficient vector γ for model (f ) presented in the

Table 1, for all 5160 combinations of domain j and month t considered in Section 3.

Second, we generated the normal (0, σ2
q∗) random variables q∗jt(r) for the 5160 cases,

and then generated

Vpjt(r) = exp(fjt + q∗jt(r)).

In addition, we generated θ̂jt(r) as independent normal (xj0, Vpjt) independent random

variables; generated ε∗jt(r) as independent normal (0, σ2
ε∗) random variables; and generated

V̂pjt(r) = Vpjt(r) exp(ε∗jt(r)).

The term σ̂2
(r) equal to the regression mean squared error; the term σ̂2

q∗(r) defined by

expression (12); and the predicted variances V ∗∗

pjt(r) defined by expression (13). In addition,

we computed the confidence intervals for θjt based on the direct variance estimates V̂pjt(r)

θ̂jt(r) ± tdε,1−α/2

(

V̂pjt(r)

)1/2
(15)

and based on the GVF predictors V ∗∗

pjt(r)

θ̂jt(r) ± tdq,1−α/2

(

V ∗∗

pjt(r)

)1/2
(16)

where td,1−α/2 is the upper 1 − α/2 quantile of a t distribution on d degrees of freedom.

Finally, taking averages over the R replicates, we computed estimates of the biases of the

coefficient estimates

R−1
R

∑

r=1

(

γ̂(r) − γ
)

(17)

and the average domain-specific relative bias of V ∗∗

pjt is



n−1R−1
R

∑

r=1

12
∑

t=1

430
∑

j=1

V −1
pjt ∆pjt(r)



 (18)

where ∆pjt(r) = V ∗∗

pjt(r) − Vpjt and n = J × T = 430 × 12 = 5160. In addition, we

computed the coverage rates and mean widths for the confidence intervals of V̂pjt and V ∗∗

pjt,

and compared those properties of the GVF estimator to design-based estimators.

We repeated these steps for the 8 values of dq = 4, 6, 30 and 400. Results are displayed

in Table 1.
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6.2 Numerical Results

Table 2 presents the relative bias of the coefficient estimates as given in the expression

(17), with the corresponding simulated standard deviations placed in parentheses. Note

that the bias terms are all small relative to the coefficient values in Table 1 and relative

to their reported standard deviations. Table 3 presents the selected values of dq, and the

corresponding values of σ2
q∗ based on the expression (12); and the the average domain-

specific relative bias values given by the expression (18). Note that the relative bias terms

are fairly large for dq = 4, but decline to values close to zero as dq increases. Table 4

reports the quantiles of the widths of the confidence intervals regarding expressions (15)

and (16), respectively. As dq increases, interquartile range (IQR) value of V ∗∗

pjt decreases.

This reflects the increasing efficiency of V ∗∗

pjt relative to V̂pjt as dq increases with dε held

equal to 6.

We explored possible time trends and employment size effects in the bias and confi-

dence interval values. Since all results were very similar across different dq values, we

arbitrarily selected dq = 30 case. Hence all figures from 1 to 5 are from dq = 30 case.

Figure 1 plots relative bias against month-distance: month = 1 means one month

away from the benchmark month 0. We didn’t identify any substantial time effects for the

relative-bias results. Figure 2 plots relative bias against log of employment size at bench-

mark month 0 with loess (locally weighted scatter plot smooth) line of span=0.3 inserted.

Again, we did not observe any substantial employment-size effects for the relative-bias re-

sults. Figure 3 shows coverage rates of both V ∗∗

pjt and V̂pjt against month-distance. Note

that all coverage rates exceeded the nominal value of 0.95; coverage rates of V̂pjt is slightly

higher and values from V ∗∗

pjt is slightly lower than than 0.96. This is due to the fact that V̂pjt

has wider confidence width as shown in Figure 4. We didn’t identify any substantial time

effects in coverage rates of both V ∗∗

pjt and V̂pjt.

As one would expect from the positive coefficient γ1 and γ3 in Table 1, the widths of

the intervals (15) and (16) did increase over month-distance and employment size as shown

in Figures 4 and 5.

7. Summary

In this paper, we presented simple methods to simulate GVF estimator. Through simulation,

we evaluate the bias and variance of model coefficients, and the bias and variance of the

GVF estimator. The bias terms of coefficients were small relative to true coefficient values

and to their standard deviations. Relative bias of GVF estimator declined as dq increased

and no substantial time effects were observed. Coverage rates for both simulated V̂ and V ∗

exceeded the nominal value of 0.95 and showed no time effects.

Table 1: Coefficient Estimates of Model (f )

intercept ln (xj0) ln (njt) ln (t)

γ0 γ1 γ2 γ3

EST. -1.43 1.16 0.22 1.17

s.e. 0.66 0.09 0.12 0.07

tγ -2.17 12.77 1.78 16.72
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Table 2: Bias of Coefficient Estimates of Model (f )

dq Coefficient Bias (Standard Deviation)

γ̂0 γ̂1 γ̂2 γ̂3

4 0.0010 -0.0001 0.0009 -0.0010

(0.247) (0.026) (0.034) (0.061)

6 0.0009 -0.0000 0.0006 -0.0008

(0.215) (0.022) (0.030) (0.054)

30 0.0007 -0.0000 0.0002 0.0008

(0.164) (0.017) (0.023) (0.042)

400 0.0006 0.0000 0.0000 -0.0001

(0.152) (0.016) (0.021) (0.038)

Table 3: Relative Bias of GVF estimator V ∗∗

pjt

dq σ2
q rel bias

4 0.645 0.906

6 0.395 0.484

30 0.069 0.072

400 0.005 0.006

Table 4: Quantiles of CI (f )

dq 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99 IQR

4 V̂pjt 0.20 0.31 0.37 0.50 0.74 1.13 1.64 2.10 3.63 0.63

V ∗∗

pjt 0.23 0.36 0.43 0.58 0.87 1.32 1.92 2.46 4.25 0.74

6 V̂pjt 0.19 0.30 0.36 0.48 0.72 1.09 1.58 2.03 3.50 0.61

V ∗∗

pjt 0.19 0.30 0.36 0.48 0.72 1.09 1.59 2.04 3.52 0.50

30 V̂pjt 0.18 0.29 0.34 0.46 0.69 1.05 1.52 1.96 3.36 0.59

V ∗∗

pjt 0.15 0.23 0.27 0.37 0.55 0.84 1.22 1.57 2.71 0.47

400 V̂pjt 0.18 0.28 0.34 0.46 0.69 1.04 1.51 1.94 3.35 0.58

V ∗∗

pjt 0.14 0.22 0.26 0.35 0.53 0.80 1.16 1.48 2.57 0.45
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