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Abstract 
Measurement error modeling approaches have been used extensively in nutrition studies 

to estimate distributions of usual dietary intakes by accounting for and adjusting for day-

to-day variability and measurement errors in observed intakes. Similar procedures have 

recently been developed for studies of physical activity and energy expenditure, but 

applications usually focus on study data obtained from adult populations. In this paper, 

we use measurement error modeling procedures to estimate the distributions of usual 

physical activity and the sources of variation in physical activity data collected via 

accelerometers from a sample of 4th- and 5th-grade U. S. students. The students were 

part of the Randomized Experiment of Playworks study. We found that most of the 

variability in the physical activity data was due to intra-individual (day-to-day) variations 

in measured activity. Conversely, in studies of adult populations, the majority of 

variability in physical activity was inter-individual variability; intra-individual sources of 

variations in activity were fairly minimal. Adjustments for measurement errors and other 

sources of intra-individual variations should be made when estimating usual physical 

activity outcomes, especially in populations of children.  

 

Key Words: Children, physical activity, measurement error model, intra-individual 

variation, Playworks 

 

 

1. Introduction and Review of the Literature 

 
Using measurement error models to account for and adjust for sources of errors and 

biases in dietary intake outcomes, such as energy intake and intake of food and nutrients, 

has become a staple of nutritional epidemiology. In 1986, the U.S. National Research 

Council proposed a simple approach for distinguishing inter-individual and intra-

individual variability in dietary intake data (NRC 1986). Subsequently, more advanced 

statistical adjustment procedures for estimating usual intake outcomes were developed at 

Iowa State University (Nusser, Carriquiry, Dodd, & Fuller et al. 1996; Nusser, Fuller, & 

Guenther 1997; Carriquiry 2003), the National Cancer Institute (Kipnis et al. 2003; Tooze 

et al. 2006; Kipnis et al. 2009; Tooze et al. 2010; Zhang et al. 2011), and elsewhere 

(Spiegelman, Zhao, & Kim 2005; Rosner, Michels, Chen, & Day 2008). Such methods 

are commonly utilized for estimating dietary intake outcomes in large-scale studies of 

foods and nutrients. See, for example, Subar et al. (2003), Thompson et al. (2005), Bailey 

et al. (2010), Marriot, Cole, & Lee (2009), Krebs-Smith, Guenther, Subar, Kirkpatrick, & 

Dodd (2010), and Cogswell et al. (2012). 

JSM 2013 - Survey Research Methods Section

551



 

In Figure 1, which is taken from Carriquiry (2003), we illustrate why it is important to 

adjust for measurement errors and biases in dietary intake data. The solid line in the 

figure is the estimated distribution for usual daily vitamin B6 intake after adjusting for 

measurement error. The dashed line is the estimated distribution based on one day of 

observed measurements. The vertical EAR (estimated average requirement) at 1.1 

parallel to the y-axis represents the EAR of vitamin B6 intake. By adjusting for 

measurement errors, a more accurate assessment of the distribution of vitamin B6 can be 

made. In this particular example, the adjusted distribution differs from the unadjusted 

distribution in terms of scale and shape, which leads to different inferences. According to 

the adjusted distribution, 20 percent of the sample is below the EAR, whereas, according 

to the unadjusted distribution, 37 percent is estimated to be below the EAR. 

 

 
Figure 1: Plot of Adjusted and Unadjusted Vitamin B6 Intakes from Carriquiry (2003) 

 

Recently, measurement error modeling procedures have been proposed for studies of 

physical activity (Ferrari, Friedenreich, & Matthews 2007; Nusser et al. 2012; Tooze, 

Troiano, Carroll, Moshfegh, & Freedman 2013). Ferrari and colleagues developed a 

three-equation measurement error model to estimate validity coefficients and attenuation 

factors for three instruments used to measure physical activity: accelerometers (which are 

monitoring devices that measure intensity of activity), physical activity logs, and physical 

activity questionnaires. The models were fit to physical activity data from a sample of 

154 adults from the Alberta Cancer Board Validation Study (Friedenreich et al. 2006). 

The validity coefficient was highest for the accelerometers (0.81) and smallest for the 

questionnaires (0.26). The estimated attenuation factor for the questionnaires was also 

relatively low (0.13), which suggests that associations between physical activity, as 
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measured by questionnaire, and health outcomes would be attenuated by measurement 

errors. That is, the true associations between physical activity and health outcomes would 

not be very observable without proper measurement error adjustments. 

 

Nusser et al. (2012) developed a method for estimating distributions of usual daily energy 

expenditure and illustrated its utility from a sample of 171 women who were part of the 

Physical Activity Measurement Survey. The women were measured for energy 

expenditure using 24-hour self-report recalls and SenseWear Pro 3 armband monitors. A 

two-equation measurement error model was developed to account for and adjust for the 

measurement errors and other day-to-day variations in energy expenditure measured from 

these instruments. Estimated distributions functions of usual daily energy expenditure 

were then compared to distributions based on the observed measurements (without any 

adjustments). The findings, although illustrative in nature, showed considerable error 

variation in the 24-hour recall data, and, as with the findings from Ferrari and colleagues, 

stress the need for statistical adjustments to avoid potential biases in estimated physical 

activity outcomes. In terms of the objectively measured activity, based on the armband 

monitors, there was much more inter-individual variability in physical activity than there 

was intra-individual variability, which is contrary to what is typically observed in 

nutritional studies, where estimates of intra-individual variability are typically larger than 

estimates of inter-individual variability.  

 

Like Ferrari and colleagues, Tooze et al. (2013) developed a measurement error model to 

evaluate physical activity self-report instruments, namely the physical activity 

questionnaire used in the National Health and Nutrition Examination Survey (NHANES). 

The authors used data from NHANES and the Observing Protein and Energy Nutrition 

(OPEN) Study to conduct their analyses. They found modest correlations between 

questionnaire-based physical activity measurements and true physical activity levels:  

estimated correlation coefficients ranged from 0.32 to 0.42. They also estimated 

attenuation factors of 0.43 and 0.73 for women and men, respectively, which were larger 

than the attenuation factor of 0.13 estimated by Ferrari and colleagues. Just as Nusser et 

al. (2012) observed, Tooze and colleagues found that most of the variability in the 

measurements of physical activity was due to inter-individual variation and not intra-

individual variations.  

 

The limited literature available on measurement error modeling of physical activity 

suggests that (a) systematic and random measurement errors do exist, especially in data 

obtained from self-report instruments; and (b) the majority of variation in physical 

activity data may be attributed to inter-individual variation in activity, and not so much to 

intra-individual variations, which include instrument measurement errors and day-to-day 

deviations in physical activity. These findings, however, are based on data collected from 

U.S. adult populations. To the best of our knowledge, no study to date has used a 

measurement error model framework to estimate sources of errors and biases in physical 

activity data or to estimate usual physical activity distributions from physical activity data 

measured from populations of U.S. children and adolescents.  

 

In this paper, we use a measurement error modeling approach to estimate sources of 

errors and variation in physical activity data obtained using accelerometers from a sample 

of 4th- and 5th-grade students from six U.S. cities who participated in a randomized 

evaluation study of Playworks. We also use the estimated model parameters to simulate 

distributions of usual physical activity and compare the distributions to those based on 

the observed physical activity data. In what follows, we first present the measurement 

JSM 2013 - Survey Research Methods Section

553



error model for physical activity and describe how we will estimate parameters from the 

model. We also give a summary of the steps used for estimating usual physical activity 

distributions (more technical details about the approach are presented in Beyler [2010]). 

Second, we describe the Playworks study design and provide descriptive statistics of the 

accelerometer sample used for analyses. Third, we present the key findings based on our 

measurement error modeling approach. We end with a brief discussion of the findings 

and how they differ from those of adult samples. 

 

 

2. A Measurement Error Model for Physical Activity 

 
To estimate sources of measurement error and variations we consider the following 

measurement error model: 

 

          . 

 

In the model,     is the observed measurement of physical activity for student i on day j, 

where j is either 1 or 2 (each child has two days of measurements). The term    represents 

the true, unobserved usual daily physical activity for student i. The term     is the 

unobserved measurement error for child i on day j. This term accounts for any sources of 

error or variation that would result in the observed measurement (   ) being different 

than the usual daily physical activity level (  ). Differences could exist because of day-to-

day variation in physical activity because students are often more (or less) active on some 

days than others, and because of instrument measurement error. In our analyses, we 

assume that the    terms are independent and normally distributed with a common mean 

   and common variance   
 . We also assume that the     terms are independent and 

normally distributed with mean 0 and variance   
 . Finally, we assume that the 

covariance between    and     is 0 for all i and j. 

 

To estimate the model parameters   ,   
 , and   

  we consider method of moments 

estimation. Let 

 

    
    

       
 , 

 

where      is the average of     and    , and let 

 

    
    

    
  

 

and 

 

    
          

          
  

 

be the sample mean and variance of the    terms, respectively. Based on the model 

assumptions described above, it follows that 
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and 

 

       
  
       

  

    
  . 

 

By equating the sample moments to their expectations, we obtain the method of moments 

estimators for   ,   
 , and   

 : 

 

        , 

 

   
                  

 

and 

 

   
          , 

 

respectively. To estimate the variances for these estimators, we use a Taylor series 

approximation described in Beyler (2010).  

 

If the estimated inter-individual variance parameter,    
 , is larger than the estimated intra-

individual variance parameter,    
 , that would suggest there is more inter-individual 

variation in the physical activity data than there is intra-individual variation. This was 

true in the studies conducted on adult samples (Nusser et al. 2012; Tooze et al. 2013). If, 

instead,    
     

 , that would suggest there is more intra-individual variation, which is 

typically the case in dietary intake studies (Carriquiry 2003). 

 

Using the estimated measurement error model parameters, we can also simulate 

distributions of usual daily physical activity. In the normal scale, we assume that usual 

daily physical activity values are independently distributed as           
  . To estimate 

a distribution of usual daily physical activity, in the original scale (assuming a 

transformation was made to approximate normality for model fitting), we can simply 

simulate    values from a normal distribution with mean     and variance    
 . Then we 

can back-transform the simulated value into the original scale to obtain the estimated 

distribution function in the original scale. More technical details about such an approach 

are discussed in Beyler (2010) and also in Nusser et al. (1996) and Dodd et al. (2006). 

 

Before fitting the measurement error model to physical activity data (which are described 

in the next section), we took additional steps to ensure that the modeling assumptions 

would be met. First, we checked for “nuisance effects” in data to make sure that variation 

in the data was not a function of the study design. We checked to make sure that the 

observation day (day 1 or 2) and the amount of time the student wore the accelerometer 

were not related to their physical activity levels. Simple regression modeling results 

suggested that neither nuisance effect was correlated with students’ physical activity. 

Second, we determined, based on preliminary model fittings, that we should fit the 

measurement error model separately to four subgroups of the student sample based on 

gender and treatment status (that is, whether the student was in a Playworks school or 

control school). Preliminary analyses suggested that the model error variances were 

constant within these four subgroups, which is appropriate because we assume that the 

    terms all have a constant error variance,   
  within these subgroups. Third, we 
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transformed the data to approximate normality because the physical activity data, in the 

original scale, were not normally distributed. A power transformation of 0.62 was used to 

approximate normality. In other studies, a log transformation is typically used to 

approximate normality (Nusser et al. 2012; Ferrari et al. 2007), but in this case a power 

transformation was more appropriate. 

 

 

3. Study Design and Characteristics of the Student Accelerometer Sample 
 

Twenty-nine schools from low-income areas across the U.S. were recruited for the 

Randomized Experiment of Playworks study, which was conducted by Mathematica 

Policy Research and John W. Gardner Center at Stanford University. Schools were 

randomly assigned to implement Playworks or to be part of a control condition. In each 

school, classrooms were randomly selected to participate in both student and teacher data 

collection activities. Students from selected 4th- and 5th-grade classrooms (ages 9 to 11) 

wore accelerometers during recess periods. A sample of 365 students wore 

accelerometers during recess on two days for at least 10 minutes each day. This sample 

serves as the basis of our measurement error modeling analyses.  

 

Approximately 51 percent of the 365 students were in treatment schools; the other 49 

percent were in control schools. The sample was split evenly across gender (50 percent 

girls and 50 percent boys). There were more 4th-grade students (58 percent) than 5th-

grade students (42 percent). The sample was racially and ethnically diverse. Of the 365 

students, about 41 percent identified themselves as Hispanic, 30 percent identified 

themselves as black, and 22 percent identified themselves as white. 

 

The accelerometers worn by students during recess measured the intensity of the 

students’ movement second by second. The intensity counts were then used to determine 

the percentage of time students spent in moderate to vigorous activity (MVPA) during 

recess. Cut points used to distinguish moderate to vigorous activity from all other activity 

(sedentary and light-intensity activity) came from Edwardson and Gorely (2010). The 

outcome—the percentage of time spent in MVPA during recess—is the physical activity 

outcome used in the measurement error modeling analyses. 

 

 

4. Results 
 

The methods described in Section 2 were used to estimate sources of measurement errors 

and variations in the accelerometer data. The estimated model parameters for the four 

sample subgroups are presented in the first section of Table 1. The estimated usual 

MVPA means (in the transformed scale) vary across subgroups. MVPA tends to be larger 

in treatment students, compared to control students, and boys, compared to girls. The 

estimated inter-individual variance components range from 1.46 to 2.96. The estimated 

intra-individual variance components are much larger, ranging from 5.51 to 10.43. In the 

bottom portion of Table 1, we estimate the percentage of the total variance that is 

attributed to inter-individual variation and intra-individual variation based on the 

estimated variance components. In all subgroups except one (control group girls), 80 

percent or more of the total variability is due to intra-individual variations. For control 

group girls, the percentage of total variability due to intra-individual variations was still 

well more than 50 percent. 
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Table 1: Measurement Error Model Parameter Estimates 

Status  Control Treatment Control Treatment 

Gender Girls Girls Boys Boys 

   Est (SE) 7.72 (0.25) 8.71 (0.25) 8.12 (0.28) 9.28 (0.27) 

  
  Est (SE) 2.96 (0.94) 1.46 (1.02) 2.14 (1.21) 1.62 (1.25) 

  
  Est (SE) 5.51 (0.81) 8.12 (1.21) 8.78 (1.35) 10.43 (1.51) 

Inter-Individual 

Variation 

35% 15% 20% 13% 

Intra-Individual 

Variation 

65% 85% 80% 87% 

 

A series of estimated distribution functions for MVPA are presented in Figures 2–4. In 

each figure, the x-axis represents the percentage of time spent in MVPA at recess, and the 

y-axis gives the probability densities of the distributions. In Figure 2, we present the 

estimated usual MVPA distributions (after accounting for measurement errors) for the 

girls in the treatment group and the girls in the control group. The estimated distribution 

for treatment group girls is shifted to the right, relative to the distribution for control 

group girls, and there is also less variability in the distribution for treatment group girls. 

In Figure 3, we present the estimated usual MVPA distributions for the two other 

subgroups—boys in the treatment and control groups. The distribution functions are 

similar in terms of their variability, but the treatment group distribution is shifted to the 

right, relative to the control group distribution, which is expected, given the estimated 

model parameters in Table 1 where we see that the mean MVPA is larger for treatment 

group boys than for control group boys.  

 

 
Figure 2: Estimated Usual MVPA Distributions for Girls 
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Figure 3: Estimated Usual MVPA Distributions for Boys 

 

In Figure 4, we compare the estimated usual MVPA distribution for treatment group girls 

to the distribution based on observed (unadjusted) MVPA values for the treatment group 

girls. The distributions are strikingly different. The vast majority of the density for the 

usual MVPA distribution, which is adjusted for measurement error, lies between 20 and 

50 percent, which would suggest that the vast majority of treatment group girls spend 

between 20 and 50 percent of their time during recess engaged in moderate to vigorous 

activity. However, the unadjusted distribution, based on the observed MVPA values, is 

much more variable and would suggest that the vast majority of treatment group girls 

spend 0 to 70 percent of their recess time engaged in moderate to vigorous activity.  

 

 
Figure 4: Estimated Distributions for Treatment Group Girls (Adjusted and Unadjusted) 
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5. Discussion of Findings 
 

The findings presented in Section 4 collectively show how using measurement error 

modeling can impact estimates of MVPA in an accelerometer sample of 4th- and 5th-

grade students (ages 9 to 11). In summary, the results show there is considerably more 

intra-individual variability—due to day-to-day variations in MVPA and instrument 

measurement errors—than there is inter-individual variability. This was reflected in the 

model parameter estimates in Table 1 and Figure 4, which compared a distribution 

adjusted for intra-individual variations to one that was not. To the best of our knowledge, 

this is the first set of published findings that uses measurement error modeling 

approaches to investigate sources of errors and biases in objective physical activity 

measured from U.S. children and estimate distribution functions for usual physical 

activity in U.S. children. More research is needed to understand the error and variance 

properties of physical activity measurement in children so accurate and reliable 

inferences can be made. 

 

A key finding from this research is that there is considerable intra-individual variability 

in objective measurements of physical activity in children. This was consistent across 

subgroups based on gender and treatment status. Similar measurement error modeling 

approaches that focus on adult samples measured for physical activity found that the 

majority of variability was inter-individual variability (Nusser et al. 2012; Tooze et al. 

2013). There could be a number of potential explanations for this finding. It could imply 

that children tend to be more sporadic in their physical activity engagement on a day-to-

day basis. It could imply that there is more instrument measurement error involved with 

measuring activity in children than there is with adults. The discrepancies could also just 

be due, largely, to the fact that the accelerometer data from this study focused on physical 

activity during recess, and in other studies, the focus is on adult engagement in physical 

activity over 24-hour periods. 

 

Studies of dietary intake that use measurement error modeling often report considerable 

intra-individual variability in the dietary intake outcomes (Carriquiry 2003; Tooze et al. 

2013). More intra-individual variation often increases the necessity to account for and 

adjust for such variations in order to avoid inaccurate and unreliable inferences. As with 

dietary intake studies, we found evidence of considerable intra-individual variations in 

accelerometer data collected from 4th- and 5th-grade students. These findings should be a 

clear indication to researchers that it is necessary to account and adjust for measurement 

errors and intra-individual variability in physical activity data, especially when 

considering child populations. 
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