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Abstract

This research concerns the adaptation to the Current Population Survey (CPS)
of single-stage weight adjustment techniques developed in a 2010 Census research re-
port by Slud and Thibaudeau. Those techniques involved weight optimization with
respect to a loss function in the spirit of Deville and Särndal (1992, JASA), subject
to population-control constraints, with additive penalty terms for discrepancies be-
tween weight-adjusted survey totals and corresponding known or base-weighted esti-
mated totals for certain survey attributes, and with an additional nonlinear penalty
term designed to force weights not to be too different from the design weights
scaled to the population total. The novel elements of the current research include:
defining several appropriate additive quadratic penalty terms corresponding to the
current multistage CPS nonresponse adjustment; developing a methodology to de-
fine penalty multipliers by tracking properties of the current CPS weights across
weighting stages; enforcing weight compression by a penalty term in place of the
current CPS approach based on cell collapsing; and implementing the method on
CPS data for detailed comparison with the weights as currently adjusted in CPS.

Key Words: calibration equations, optimization, linearized variance, loss function,
population controls, quadratic programming, weight tracking.
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1. Introduction

1.1 Notation and Assumptions

Consider a sample survey with a frame U from which a probability sample S
is drawn according to a plan with known single and double inclusion probabilities
πi, πij , for i, j ∈ U . Assume that the total Y = ty =

∑
i∈U yi of a scalar attribute

is of primary interest, and that (yi, xi, zi i ∈ S) is (potentially) observable, i.e., the
sample data include the auxiliary q-dimensional vector zi and p-vector xi. This
setting corresponds to the InfoS sampling framework of Särndal and Lundström
(2005), with auxiliary data available at sample but not frame level.

In the present context, the vector of attributes xi is composed of pk dimen-
sional subvectors x(k)

i which are assumed to be used in adjusting survey weights
through a succession of stages, with the subvector x(k)

i used in the k’th stage,
k = 1, 2, . . . , K, where

∑K
k=1 pk = p. The vector zi = (z1i, . . . , zqi) of survey

variables defined for each unit i ∈ U is used in final-stage population calibration.
These vectors are generally observable only for survey responders, with the excep-
tion of the vector x(1)

i observed for all sample units which is used in first-stage
nonresponse adjustment.

Assume that each sampled individual in the survey decides independently whether
or not to respond. Without loss of generality, denote by ri for all i ∈ U the indi-
cator which is 1 or 0 respectively if the i’th individual would or would not have
responded if sampled, and assume that these random variables are independent of
each other and of the sample selection mechanism. (This is the Oh and Scheuren
(1983) quasi-randomization model. In some surveys this assumption could be
applied only with ‘individuals’ replaced by households.) The observable data are
now taken to be(

yi · ri, ri, x(1)
i , ri · zi, (ri · x(k)

i , 2 ≤ k ≤ K), i ∈ S
)

No restriction other than positivity is placed on the probabilities

P (ri = 1) = Eri ≡ ρi

with which individual units respond.
At the data-collection stage, individuals i ∈ S are sampled with design weights

wo
i = 1/πi = 1/P (i ∈ S). These weights are altered to a final set of weights

wi, often in an elaborate series of stages. The premise of the present research is
that in major surveys like the CPS there are three different ways in which weights
are adjusted, which can all be viewed as constraints, either exact or approximate,
on weighted survey totals. The first, which we call hard constraints, is typically
imposed at the end of the weight-adjustment cycle as precise population controls
in order to enforce conformity of published survey totals with those known and
published from the best known source. That is, the final weights must exactly
satisfy ∑

i∈S
ri wi zi = t∗z (1)

where the totals t∗z are obtained from an external source like a (possibly updated)
census and are assumed known. As a second form of adjustment, a series of balance
equations

1
N

( ∑
i∈S

ri wi x
(k)
i − t∗

x(k)

)
≈ 0 (2)
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is generally imposed not on the final weights but as an equality on an earlier,
intermediate set of adjusted weights, but which in effect result only in approximate
equalities on the final weights. (Here N = |U| is the population size, assumed
known.) The farther removed that stage k is from the final stage, the less one may
regard exact equality in (2) as being important to the survey analysts. Therefore
we refer to (2) as soft constraints on the final weights. The totals t∗

x(k) that appear
in (2) for k ≥ 2 generally arise externally, either from a survey or updated census
which is believed to be more accurate than the current survey, and the corresponding
attributes x(k)

i are generally observable only for responders to the survey (i.e., for
indices i ∈ S for which ri = 1. However, at a first nonresponse adjustment stage
k = 1 the x(1)

i variables are sometimes assumed known for all sampled units, and
the totals t∗

x(1) obtained as an estimate
∑

i∈S ri w
o
i x(1)

i using design weights
and data from the current survey. In the terminology of Särndal and Lundström
(2005), the external census source of the x(k)

i totals for k ≥ 2 is called the infoU
setting, while the internal estimated source of totals t∗

x(1) is called infoS . Thus, we
distinguish the k = 1 case of (2) as a third type of weight adjustment. From now
on, we index the approximate balance equations as needed by the subscript k, e.g.,
(2k).

To clarify an important element of the notation, in succeeding formulas we use
the index i for units within the frame U or sample S, k for the stage index
for the soft controls, and j for components of one of the control-subsets, i.e. for
components of vectors x(k)

i or zi.

1.2 Single-stage Weight-Adjustment via Optimization

The exact constraints (1) and approximate constraints (2) fall far short of deter-
mining the set of final weights wi. In large government surveys such as CPS or
Survey of Income and Program Participation (SIPP), the sample size n = |S| is
of the order 105 while the numbers q of controls are of the order 100–200 while the
intermediate constraints or soft controls p number up to 1000–2000. Moreover, the
survey design is put in place with the idea that final weights should be maintained
as similar as possible to the design weights. Starting from the seminal paper of
Deville and Särndal (1992), it has been known that ratio adjustment, raking and
linear calibration can all be viewed as weight adjustment methods in which (hard)
constraints are met while the weight vector (wi, i ∈ S) are determined as close as
possible to (wo

i , i ∈ S) subject to a loss function
∑

i∈S ri w
o
i G(wi/wo

i − 1).
As described in Kott (2006) and Slud and Thibaudeau (2010), there is a stream

of papers from 1992 to the present in which final-stage survey weights wi are de-
termined by optimizing a loss function, possibly including a penalty term enforcing
that the weight ratios wi/wo

i never or rarely depart from a bounded interval (a, b)
containing 1, subject to constraints (1). Many of these papers, from Deville and
Särndal (1992) up through Slud and Thibaudeau (2010), show that under some
superpopulation regularity conditions guaranteeing that the response propensities
ρi can be consistently estimated and that the great majority of changes from wo

i

to wi are quite small, the survey estimators

t̂y/N = N−1
∑
i∈S

ri wi yi (3)

are design-consistent for ty/N . Many of these same papers establish asymptotic
normality of (

√
n/N) (t̂y − ty) and provide asymptotic variance formulas based
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on joint inclusion probabilities based on Taylor linearization, i.e., based on a proof
that (

√
n/N)(t̂y−ty) differs asymptotically negligibly from a sum of linear weighted

(Horvitz-Thompson) estimators.
A key feature of the stream of survey methodology papers cited by Slud and

Thibaudeau (2010) and Kott (2006) is that any two of the three goals of nonresponse
adjustment, population controls, and weight compression (i.e., keeping weight-ratios
wi/wo

i to a prescribed bounded interval) had already been seen to be achievable
simultaneously in a single optimization step, and Slud and Thibaudeau showed
that one can actually accomplish all three. The method of Slud and Thibaudeau
did allow the choice of a tuning parameter to control how closely the balance relation
used in nonresponse adjustment would be satisfied by the final adjusted weights.
However, their method did not allow the possibility contemplated here that there
might be a series of approximate equalities (2k) to be satisfied simultaneously to
differing degrees which might be chosen by the survey analyst or survey client.

The goal of the present research is to show how a linear-calibration loss-function
can be combined with quadratic penalty terms quantifying inequality in (2k) and
possibly also a penalty term enforcing that L ≤ wi/wo

i ≤ U can be optimized
computably in the context of the CPS. The objective function to be minimized over
w = {wi : i ∈ S, ri = 1} subject to (1) is J(w) ≡

∑
i∈S

ri
(wi − wo

i )
2

2 wo
i

+
K∑

k=1

αk

2

∥∥∥∑
i∈S

ri wi x
(k)
i − t∗k

∥∥∥2
+

∑
i∈S

ri w
o
i Q(

wi

wo
i

) (4)

where the notation t∗k is a shortened form of the vector notation t∗
x(k) = (t∗

x
(k)
j

,

1 ≤ j ≤ pk), and the tuning constants αk ≡ ak/‖t∗k‖1 are to be chosen by the survey
analyst. The norm-square ‖ · ‖2 in the middle term of (4) denotes the Euclidean
norm-square, or sum of squared vector entries. Scaling the αk coefficients down
by the factor ‖t∗k‖1 =

∑pk
j=1 |t∗x(k)

j

| makes the aggregate soft-constraint penalty

terms roughly of the same order as the weight-change loss function value, when
the constraint totals t∗k are properly specified. The nonlinear function Q might be
chosen to take the following form (Deville and Särndal 1992, ‘Case 6’ loss function).
Let L < c1 < 1 < c2 < U and positive constants A1, A2 be fixed. Then Q(x)
is 0 on [c1, c2] and infinite on [0, L] ∪ [U,∞) and is convex throughout (L,U)
from the definition

Q(x) = A1 I[x≤c1]
(c1 − x)2

x− L
+ A2 I[x≥c2]

(x− c2)2

U − x
(5)

Objective functions for weight adjustment with penalty terms like the soft-constraint
terms with coefficients αk in (4) have previously been considered in a simplified
survey calibration setting by Fuller (2009, p. 164) and in the somewhat different
setting of “Bayesian benchmarking” by Datta et al. (2011).

For simplicity of notation, from now on we adopt the convention that adjusted
weights wi = ri wi are nonzero only for responding sampled units, and denote by
R = { i ∈ S : ri = 1 } the set of such units, and (somewhat unusually) let
n = |R| be the number of responding (rather than of sampled) units. In addition,
in order to allow weight-changes from initial (design) weights wo

i to final adjusted
weights wi to be as small as possible, we adopt the (slightly unusual) convention
that the design weights are already calibrated to the known population total N , so
that

∑
i∈S wo

i = N . (This is done by multiplying each design weight by the scalar
ratio N/

∑
i∈S wo

i , which can for some large surveys differ from 1 by 10 − 20%.)
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Finally, some of the same survey variables x
(k)
j,i might arise with more than one

distinct (k, j) combination, and it might make sense to remove such redundancy by
retaining the corresponding balance equation index combinations (k, j) for only the
one with the largest k. However, we do not take this step in the data illustrations
of Sec. 4 below.

1.3 Weight Adjustment and Quadratic Programming

Fuller (2002, 2009 p. 164) remarked that weight compression to satisfy linear in-
equalities L ≤ wi/wo

i ≤ U can be accomplished by quadratic programming with
linear equality and inequality constraints, under any objective function (4) omitting
the Q term. That is, the problem to be solved becomes

min
w

(1
2

w′Hw − d′w
)

subject to Z ′w = t∗z , Lwo ≤ w ≤ Uwo (6)

where Z ′ is the q × n matrix with i’th column zi, w is the vector of n nonzero
weights, the final inequalities in (6) are interpreted componentwise,

H = diag({1/wo
i }n

i=1) +
n∑

k=1

αk Xk X ′
k , d = 1 +

K∑
k=1

αk Xk t∗
x(k)

X ′
k is the pk × n matrix with i’th column x(k)

i , and 1 is the n-vector of 1’s.
For the CPS weight-adjustment application that we have in mind, the total

number n =
∑

i∈S ri of responders is the number of rows of the square quadratic-
form matrix being optimized, and is of the order of 130,000, while the numbers
of hard and soft contraints will be roughly q ≤ 200, p ∈ [1000, 2000]. So these
quadratic programming problems will be very large.

A great deal is known about the solution of quadratic programming problems
with linear equality and inequality constraints. The topic is admirably treated in
the book of Nocedal and Wright (1999, Ch. 16). However, not all methods are
suitable for extremely large problems, in which the best methods are determined by
the special structure of the problem. Two distinguishing features of the problems
generally arising in survey weight adjustment are the following:

(i) The matrix H is the sum of a diagonal matrix of reciprocal design-weights
and a small finite linear combination of matrices XkX

′
k such that for all k,

each row of the n× pk matrix Xk contains only one nonzero element.

(ii) Problem (6) with all matrices Xk replaced by 0 has a pure-calibration solution
for which all of the inequality constraints hold with strict inequality.

Property (i) reflects the fact that nonresponse ratio adjustment or raking, at
each of the one or more adjustment stages of large surveys, is generally based on
one or two partitions of the population into cells. Because of this property, the
matrix H may be somewhat sparse. (In the CPS example below, a little less than
10% of the n2 entries of H are positive.) Property (ii) is a reflection of the guidance
– given in Fuller (2009) and other expositions of calibration in surveys – that the
set of columns (of the matrix Z) used in calibration not be allowed to be large
enough for weight ratios wi/wo

i to vary by large factors, since such variation leads
to undesirably large variances for weighted survey totals.

Several methods of calibration-based weight adjustment in the survey literature
can be viewed as approximate quadratic-programming solution methods.
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(a) The default method of weight adjustment in surveys (cf. Särndal and
Lundström 2005) is to perform a cell-based ratio or raking adjustment, provid-
ing an intermediate set of weights to which a separate stage of calibration to
population controls is applied. This corresponds to the case K = 1 in (6), but
without an explicit penalty term with α1 > 0 in H. Thus, the nonresponse-
adjustment balance relations are not assumed to hold for the final weights
w.

(b) Many large national surveys, such as the CPS, SIPP, and American Com-
munity Survey (ACS) in the US, adjust weights in a series of nonresponse
adjustment stages, each of which is based on cells defined through partitions
of the frame population, before a final step of calibration to population con-
trols. Here also, only the balance equation (1) for the last calibration step
is treated as an exact constraint for the final weights, and the balance equa-
tions for earlier nonresponse adjustments do not hold exactly for the final
weights, and so correspond to our soft constraints. Nevertheless, when per-
formed in successive stages by ratio adjustment and raking, the calibrated
adjusted weights can be viewed as approximate solujtions to the quadratic
programming problem (6).

(c) With the quadratic-programming reformulation (6) given above, in surveys
with n not too large, it will often be possible to solve directly for the ad-
justed and calibrated weights using standard quadratic programming soft-
ware like the function quadprog in R. However, problems with large n re-
quire a different strategy. One approach, which has apparently been imple-
mented successfully in large (n > 104) problems at the A.C. Nielsen company
(Daehmen 2013), is to remove the first loss-function term

∑
i∈R (wi−wo

i )
2/wo

i

from the objective function and constrain it to lie between fixed bounds
(b1, b2) chosen by the analyst. Then the remaining soft-penalty quadratic
form H̃ =

∑K
k=1 αk w′ XkX

′
kw can be re-expressed as a p × p quadratic

form in the new variables ωj ≡
∑

i∈R wix
(k)
i,j together with an additional set

of n − p variables wi appearing in the weight-ratio constraints. The smaller
quadratic programming problem so obtained can be solved by off-the-shelf, or
slightly modified, versions of quadratic programming codes like ipop in R.

(d) We have begun experimenting with gradient-projection quadratic program-
ming codes to solve (6) in survey settings with large n where the special
conditions (i)–(ii) above hold, as in CPS. The gradient projection algorithm
for quadratic programming with some linear equality constraints and purely
upper- and lower-bound inequality constraints on the variables wi, is beauti-
fully explained in Section 16.6 of the book of Nocedal and Wright (1999), and
we are implementing it in R code. In doing this, we can benefit in two ways
from the very special form of the soft-calibration matrices Xk. First, the fact
that H differs from a diagonal matrix by a matrix of the relatively low rank
p allows inversion of H even though n is large. Moreover, dramatic computa-
tional speedups stem from the fact that the rows of Xk are dummy-variables
labeling which element j(i) ∈ {1, . . . , pk} of the population partition-cells the
sampled units i fall into. For example, right-multiplication by vectors v ∈ Rpk

is simply expressed in the form (Xkv)i = h
(k)
i vj(i), where generally h

(k)
i = 1,

but in the CPS setting as described below in Sec. 4.1, the h
(1)
i value is the

reciprocal of the number of persons in the household of person i).
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In our present research, we experimented also with a simpler algorithm for mini-
mization of the original objective function (4). A resubstitution-algorithm described
in Section 3 converts this convex optimization problem to a tractable iterative search
(for the Lagrange multiplier λ of the hard constraints) in a q-dimensional space, and
was implemented in some of our computational illustrations in Section 4.

2. Weight Tracking and Penalty Factors αk

One observation motivating the present research is that the balance equations∑
i∈S wi ri x

(k)
i = t∗k which are imposed on weights wi at the k’th stage of a

multi-stage adjustment procedure are often found to hold only very imprecisely at
the final stage of weight-adjustment. There have been some published studies track-
ing the changes of weights across stages of adjustment, such as Dufour et al. (2001).

The idea of tracking weight-changes by the mean-square discrepancy between
the left-hand sides of such balance equations as weights wi change from stage to
stage, provides us with an approach to defining the soft-control penalty coeffi-
cients αk in (4) . Indeed, we choose the coefficients αk so that, in terms
of a final set of weights wF

i generated by multistage adjustment, the quantities
αk · ‖

∑
i∈S ri w

F
i x(k)

i t∗k‖2 are roughly equated across k. That is, based on the
final weights wF

i obtained by multi-stage adjustment in current practice, the penalty
coefficients αk used to define a new objective-function (4) are chosen proportional
to ‖t∗k‖1 / ‖

∑
i∈S ri w

F
i x(k)

i − t∗k‖2.
In Section 4.2 below, we illustrate this choice using so-called second-stage weights

defined (CPS documentation 2006) for CPS monthly survey data. In that section on
CPS numerical results, we will also discuss the choice of the overall tuning constant
α of proportionality, for which the rough guideline is that the weight-change loss
function (the first summation in (4)) should be of the order of 10 times as large as
the total soft-control penalty terms (the middle summations involving αk in (4)).

3. Resubstitution Approach to Optimizing (4)

The objective function (4) is to be minimized over w = {wi}i∈R subject to (1).
This variable set is generally large for a survey like CPS, but as we will see, a
Lagrange-multiplier form of the optimization, i.e. a minimization of the Lagragian,
defined as the objective function minus λ′ (

∑
i∈R wi zi − t∗z), in which the unknown

q-vector λ is determined from the constraint equation (1), can be performed as an
iterative search over the q-dimensional Lagrange multiplier vector λ. That is, the
number q of hard constraints is much more important than the number p = p1 +
· · ·+ pK of soft constraints in determining the convergence and numerical stability
of the optimization method. The specific algorithmic approach to optimization is
as follows.

First, for all i ∈ R, the partial derivative of the Lagrangian with respect to wi

is set to 0 in the equation

wi − wo
i

wo
i

+
K∑

k=1

αk

pk∑
j=1

x
(k)
j,i (

∑
l∈R

wl x
(k)
j,l − t∗k) + Q′(

wi

wo
i

) − λ′ zi = 0

Summing both sides of this equation multiplied by wo
i zi, and applying (1), imme-
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diately gives

t∗z − t̂oz = Mz λ −
∑
i∈R

wo
i zi Q

′(
wi

wo
i

) −
K∑

k=1

pk∑
j=1

∑
i∈R

αk wo
i x

(k)
j,i zi (t̂x(k)

j

− t∗k) (7)

where the q-vector t̂oz and the q× q matrix Mz are defined in terms of the initial
weights by

t̂oz ≡ t̂(0)z =
∑
i∈R

wo
i zi , Mz ≡

∑
i∈R

wo
i zi z′i

Now we define an iterative resubstitution sequence for the preceding equations,
as follows. First let w

(0)
i = wo

i be the initial settings in a sequence of values
w

(m)
i , m ≥ 0. For ease of notation, inductively define via (7) :

λ(m) = M−1
z

{
t∗z − t̂

(0)
z +

∑
i∈R

wo
i zi Q

′(
w

(m)
i

wo
i

) +
K∑

k=1

αk

pk∑
j=1

t̂
(0)

x
(k)
j z

(t̂(m)

x
(k)
j

− t∗k)
}

(8)

for m ≥ 0, where

t̂
(m)

x
(k)
j

≡
∑
i∈R

w
(m)
i x

(k)
j,i , t̂

(m)

x
(k)
j z

≡
∑
i∈R

w
(b)
i x

(k)
j,i zi

The inductively updated weights w
(m+1)
i are then defined for i ∈ R by:

w
(m+1)
i = wo

i

{
1 + (λ(m))′ zi − Q′(

w
(m)
i

wo
i

) −
∑
k,j

αk x
(k)
j,i (t̂(m)

x
(k)
j

− t∗k)
}

(9)

In implementing the steps (9), it turns out to be necessary to make a modifica-
tion. Ideally, all of the newly defined w

(m+1)
i weights will fall inside the permissible

range (L,U) used in defining the penalty function Q for extreme weight ratios.
But in case some of the quantities w

(m+1)
i defined by (9) would fall outside the range

[L + ε, U − ε], they are replaced by

min
{

U − ε , max{w
(m)
i , L + ε }

}
where ε > 0 is a fixed constant chosen as an input to the optimization code. With
this modification, the hard-constraints (1) would be violated, so a further linear
calibration of these weights must be applied to enforce those constraints at each
iteration of the algorithm. These modifications turn out to have essentially no
effect in convergent instances of the resubstitution algorithm, and in fact are an
effective diagnostic for the failure of the algorithm when the constant factor C for
the soft-constraint penalty terms is taken too large.

4. Numerical Results on CPS Data

We illustrate the objective-function optimization and results, and the tracking of
weights in a multi-stage weight adjustment framework, using CPS data.
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4.1 CPS Background

In the CPS data from January 2012, there were 164386 sampled persons, and 131978
responders, corresponding to the standard monthly total of roughly 72,000 sample
households. We treat as ‘base’ weights the household control weights (hcwwgt on
CPS files) derived after a preliminary re-scaling to force the weights of sampled and
responding units to add to the same control population size (307,567,803) used later
in calibrating second-stage weights. The variables x(k)

j and zj used to define the
soft and hard controls were as follows. The Non-Interview stage (NIntv, p. 10-3 of
CPS documentation 2006) is based upon a partition (niclcode) of the population
into 202 cells defined by partitioning the entire sampled population into PSU’s by
metropolitan (central and non-central city) and non-metropolitan subsets. Since
the adjustment done at this stage is a household-level adjustment, the variables
x

(1)
j,i entering balance equations are dummy indicators of NIntv partition cell j di-

vided by the number of persons in the household containing person i. The variables
x

(2)
j,i appearing in balance relations for the National Coverage adjustment stage

(NatCov) are dummy variables for 180 cells of a partition of the sample defined by
cross-classification according to sex and age category, with different age groupings
used within 6 different Race/Hispanic subsets. The State Coverage stage (StCov)
also uses dummy indicators x

(3)
j,i , in this case for a partition of the population into

515 cells by sex, age, Race/Hispanic subgroup, and 53 state indicators (including
District of Columbia, with California and New York each split into major city and
balance of state). Finally, in the Second-stage adjustments (2ndStg), the popula-
tion is partitioned three different ways. The 337 soft-control variables are broken
down into three stages (k = 4, 5, 6) corresponding to the respectively 159, 52, and
126 dummy variables from the three partitions, which are used as variables x

(k)
j,i ,

for k = 4, 5, 6 in balance equations for adjustment. The 1234 variables x
(k)
j men-

tioned so far are used for soft-calibration and are intended to cause final weights to
reproduce approximately the updated-census population estimates for Tables 10-1
to 10-4 in the CPS (2006) documentation. In addition, CPS second-stage weights
are raked to 79 non-redundant hard constraints defined by 53 state-category totals
and 26 other Race/Hispanic by age-group by sex cells within the population aged
16 and older. We treat these constraints as exact linear balance equations defined
through variables zj,i.

CPS actually goes beyond second-stage weight adjustments to combine weights
from monthly data to provide a ‘composite’ weight taking account of different num-
bers of persons’ months in sample within the CPS rotating panel design, but we
ignore that further complication in the present research.

4.2 Tracking Weight Adjustments in CPS Practice

It was mentioned above that the choice of soft-constraint penalty coefficients αk in
our objective function (4) should be informed by calculations of the extent to which
early-stage weight-adjustment balance equations fail to hold with later- or final-
stage weights. We do such a calculation on CPS data for the root-mean-squares
RMSk of balance-equation discrepancies for k = 1, . . . , 3, i.e. the square roots of

RMS2
k ≡ 1

pk
‖t̂x(k) − t∗k ‖2 =

1
pk

pk∑
j=1

( ∑
i∈R

wi x
(k)
j,i − t∗k

)2
, k = 1, 2, 3
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Table 1: Root-mean-square soft-control balance equation discrepancies for
Jan. 2012 CPS data with CPS-calculated second-stage and composite weights.

RMS1 RMS2 RMS3 RMS4

psswgt 98155 20813 4740 0
pwcmpwgt 198635 603232 349491 1462551

p1 = 202 p2 = 180 p3 = 515 p4 = 337

and for a fourth stage in which the 337 second-stage adjustment variables are lumped
together to create a root-mean-square equal to the square root of

RMS2
4 = (p4 + p5 + p6)−1

6∑
k=4

‖t̂x(k) − t∗k‖2

We do this first for wi equal to the second-stage CPS weights pwsswgt calculated in
CPS for the January 2012 data, and then again for the even later-stage ‘composite’
weights pwcmpwgt which make use of the month-in-sample information for persons
in sample. The results are displayed in Table 1. Additional calculations (not shown)
confirm that the psswgt results are very stable across months of CPS data. The 0
value for RMS4 with second-stage weights arises because these weights are actually
raked to the totals t∗4, t∗5, and t∗6, and many of the aggregated cell totals StCov
are actually the same as for 2ndStg, so the RMS3 value for psswgt is also in some
sense artificially small. The behavior of the RMSk values with composite weights
do not show the same kind of steady decrease as with second-stage weights. Since
our concern here is how to define soft-control penalties for second-stage weights, we
suppose that apart from the coincidence of aggregate-level cells from the stages 3
and 4 with fixed calibration cells for psswgt there might be decay of RMSk over k by
a factor of 5 to 10, and we choose penalty coefficients (a1, . . . , a4) = C · (1, 2, 4, 8)
in our following optimization calculations, with a4 = a5 = a6 reflecting that the k =
4, 5, 6 adjustment ‘stages’ together constitute the single second-stage adjustment in
CPS. The ak sequence for each run is therefore determined by the value a1 = C,
and recall that αk = ak/‖t∗k‖1 .

4.2.1 Characteristics of Optimized CPS 2nd Stage Weights

We implemented the algorithm of Section 3 using the CPS January 2012 data,
based on K = 6 stages of soft controls with C = 1.25 and a total of 1234 variables,
and with 79 hard controls. We set the Q penalty-function parameters as before, at
c1 = .5, c2 = 2, L = .2, U = 5, and A1 = A2 = 20. We used as initial weights
the CPS housing control weights hccwgt scaled (roughly by the factor 1.27) so that
when summed over all 131978 CPS responding persons they yield the US control
population total of 307, 567, 803.

For comparison, we calculated for C = 500 and 2500 the minimum of the
quadratic form in (6) without regard to any bounds on weight-ratios wi/wo

i , re-
spectively denoting by Qmin1 and Qmin2 the two optimized sets of weights.

In Table 2, we display the objective-function components

Loss =
∑
i∈R

(wi − wo
i )

2/(2wo
i ) , Soft.Pen =

K∑
k=1

αk

2
‖t̂x(k) − t∗k‖2
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along with range of weight-ratios wi/wo
i , and – since the soft-penalty terms are

a little difficult to interpret directly – we also provide the root-mean-square dis-
crepancies RMSk. balance-equation discrepancies. These quantities are displayed
for the initial and second-stage weights together with the three sets optimized by
resubstitution and by the minimum of the linearly constrained quadratic form in
(6) without weight-ratio bounds.

It turned out that the resubstitution-algorithm runs (the one shown and many
others not shown) converged only when the penalty factor C was sufficiently small
that the weight-ratio bounds Lwo

i ≤ wi ≤ Uwo
i had no effect. This was an unan-

ticipated deficiency of the resubstitution method, which we think is due to the arti-
ficial re-calibration needed to restore the hard constraints when the resubstitution
steps resulted in weights wi set equal to Lwo

i or Uwo
i . In fact, the resubstitution-

generated weights were essentially identical to the weights fitted to (6) with the Q
penalty omitted when C = 1.25

Table 2: Comparison of features of design weights, CPS second-stage weights,
two sets of weights obtained by linearly constrained quadratic minimizer without
weight compression, and one set generated by the method of Sec. 3, based on the
CPS Jan. 2012 data. Loss, Soft.Pen and RMSk values given in units of 105. Column
C denotes weight-factor multiplying a coefficients (1, 2, 4, 8, 8, 8) used in optimiza-
tion.All Soft.Pen terms were calculated with a1 = 1.25.

Weights C Loss Soft.Pen range RMS1 RMS2 RMS3 RMS4

init. ∗ 0.00 3.01 (1,1) 0.96 2.01 0.67 2.56
Resub 1.25 12.42 0.81 (0.80,1.58) 1.02 1.08 0.46 0.95
Qmin1 500 35.50 .05 (0.26,2.27) 0.59 0.15 0.14 0.10
Qmin2 2500 71.36 .01 (0.01,2.68) 0.29 0.05 0.05 0.04
2nd-St ∗ 68.37 0.11 (0.41,4.01) 0.98 0.21 0.04 0.00

In the weight-optimization runs Qmin1 and Qmin2 summarized in the Table, the
79 fitted Lagrange-multipliers λj respectively fall in the ranges (−0.32, 0.43) and
(−0.51, 0.65). Generally speaking, the large-sample theory of Deville and Särndal
(1992), developed slightly further in Slud and Thibaudeau (2010), requires that the
Lagrange multipliers fall in a small neighborhood of 0 (which does not vary with
growing superpopulation and sample size) in order that the weights minimizing (4)
subject to (1) produce design-consistent weighted survey totals. So the slightly
larger λj ’s under C = 2500 indicate that C cannot be taken much larger than that
if design-consistency is to remain important. Both optimized weight-sets Qmin1 and
Qmin2 contained some small weights, for example, respectively 4 and 590 (out of
about 132,000) falling below 1/3.

By comparison of the objective-function components in the optimized-weight
cases with those for the CPS initial and second-stage weights, it becomes clear that
optimization allows one to trade off the spread of allowed weights against the desired
degree of agreement between weighted estimates of soft-control totals and their fixed
targets. The resubstitution-generated weights remain close to the design weights but
allow substantial reductions in RMSk values for k ≥ 2 by comparison with the design
weights. The Qmin1 and Qmin2 weights allow much broader departures from the
design weights but achieve remarkable reductions in RMSk, down to levels below those
of the second-stage CPS weights, especially in view of their much narrow ranges of
weight-ratios wi/wo

i as compared with the second-stage weights. Further progress
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in optimization technique for (6) will likely provide similar soft-control balance
equation discrepancies with still narrower ranges of weight ratios. If hard-control
constrained minima of (4) also turn out to be accurately and rapidly computable
in the CPS setting, then the use of convex penalty-functions Q in place of constant
upper and lower weight-ratio bounds promises a still more favorable distribution of
weight ratios without appreciable enlargement of soft-control discrepancies.

5. Conclusions and Future Research

The feasibility of the quadratic-programming solution in (d) of Sec. 1.3 makes us
optimistic that in many large surveys, single-stage nonresponse and hard-calibration
weight adjustments incorporating quadratic soft-calibration penalty terms can be
solved rapidly and accurately and can become part of the Census Bureau’s repertoire
of weight-adjustment methods. The clear benefits of such optimized weights will
include the ease of documentation of weight adjustments, the customization of soft-
control penalties providing weight-adjustments with small (but nonzero) soft-control
discrepancies where they are most desired, and also the availability of linearized
analytical variance estimates, along the lines of those developed in Thibaudeau and
Slud (2010).

We plan to continue our research in this area, in the following directions:

• Improved optimization technique As mentioned in paragraph (d) within
Sec. 1.3, we have already begun to develop gradient-projection techniques of
weight-optimization within (6), which can be tailored to the special features
(i)-(ii) of quadratic programs arising in large national surveys. Further re-
search is also needed into the development of numerical optimization code
for (4) subject to (1). Due to the Q penalty terms, this is a convex and
not a quadratic programming problem, but it may be that starting from the
solutions to (6) could make the further optimization much easier.

• Linearized variance estimates Design-based superpopulation asymptotic
theory is available in this setting under regularity conditions, as in Deville and
Särndal (1992) and Slud and Thibaudeau (2010), establishing that when all
of the soft- and hard-calibration totals (apart fron the internal InfoS con-
trols used in the k = 1 stage for nonresponse adjustment) are correct, the
converged Lagrange multipliers λ(b) and centered weighted survey estimators∑

i∈R w
(b)
i yi, will be OP (N/

√
n) and asymptotically normally distributed.

The resulting linearized variance estimators will provide a useful alternative
to the replication-based variance estimation methodology currently used for
CPS and other major surveys by the Census Bureau. However, as in the other
cited references, the asymptotic theory relies on the asymptotic smallness of
Lagrange multipliers λ and weight-changes wi/wo

i − 1, a requirement which
seems to fail in many real applications where adjustments change weights
markedly. If the large weight-changes happen rarely enough, then it should
be possible to show as in Thibaudeau and Slud (2010) that design-consistency
of survey-weighted totals is still possible.

• Future detailed comparative studies are needed to evaluate the new optimization-
based weight adjustments in CPS and resulting survey estimates versus the
current, standard method. One ultimate goal is a detailed cross-classified
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comparisons over subdomains of weighted totals of the important employment-
related attributes in CPS data.
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