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Abstract 

 
In this paper, we apply the recently developed parametric bootstrap method in 
constructing confidence intervals for the well-known Fay-Herriot model in estimating 
survey-weighted small area proportions. Through design-based simulation studies from a 
real finite population and extensive purely model-based simulation studies, we examine 
the coverage properties of the parametric bootstrap confidence intervals for the Fay-
Herriot model. We also compare them with those obtained from other competing 
methods for the same model. 
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1. Introduction 

Small area estimation (SAE) methods are often used to estimate the proportions of units 
with a given characteristic for small areas. For example, Census Bureau has been using 
SAE  methods to estimate poverty rates for states, counties, and school districts in its 
Small Area Income and Poverty Estimates (SAIPE) program since 1990s (Citro and 
Kalton, 2000; Maples and Bell, 2005); Substance Abuse and Mental Health Services 
Administration (SAMHSA) has been applying SAE techniques to estimate substance 
rates for states with data from the National Survey on Drug Use and Health (NSDUH) 
(Wright et al., 2007); the National Center for Education Statistics used SAE techniques to 
estimate proportions at the lowest level of literacy for states and counties with data from 
the National Assessment of Adult Literacy (NAAL) (Mohadjer et al., 2012). In each case, 
the survey’s sample sizes in the small areas are not large enough to support direct 
estimates (survey weighted estimates) of adequate precision. A wide variety of methods 
have been developed to address such small area estimation problems. See Rao (2003) and 
Jiang and Lahiri (2006) for reviews, and Chattopadhyay et al. (1999), Farrell et al. (1997), 
and Malec et al. (1997, 1999) for methods specifically for estimating small area 
proportions. The range of methods includes both empirical best prediction (EBP) and 
hierarchical Bayes (HB) approaches and models developed at both the area and unit 
levels. 
 
In this paper, we apply the recently developed parametric bootstrap method by 
Chatterjee, Lahiri and Li (2008) in constructing confidence intervals for small area 
proportions using the well-known Fay-Herriot model and evaluate its coverage property. 
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In section 2, we describe some commonly used models. Section 3 lays out how to 
construct parametric bootstrap confidence intervals. The coverage property of the 
parametric bootstrap confidence intervals are evaluated by means of a design-based 
Monte Carlo simulation study in which stratified simple random samples are selected 
from a fixed finite population as well as a purely model-based simulation. The simulation 
study and the results are described in Section 4. Section 5 provides some concluding 
remarks. 
 
2. Commonly used small area models for estimating small area 

proportions 
 
 Let iN  denote the population size in area i  (𝑖 = 1, … ,𝑚) of the target finite population. 

Let iky  be the binary response for the characteristic of interest for unit k   

in area i . The parameters to be estimated are the small area proportions iikki NyP /Σ= . 
 
Let in  denote the sample size in area  i and ikw denote the sampling weight for sampling 
unit k in area  i . The standard direct survey estimator for iP  is: 

                               𝑝𝑖𝑤 =
∑ 𝑤𝑖𝑘𝑦𝑖𝑘
𝑛𝑖
𝑘=1
∑ 𝑤𝑖𝑘
𝑛𝑖
𝑘=1

, 𝑖 = 1, … ,𝑚.                                                        (1) 

 

                     

 
                                                                                         

The associated variance of iwp  can be expressed as 
 
                                   𝑉𝑎𝑟(𝑝𝑖𝑤) = 𝑃𝑖(1−𝑃𝑖)

𝑛𝑖
𝐷𝐸𝐹𝐹𝑖,                                                            (2) 

  
where iDEFF  is the design effect reflecting the impact of the complex sample design 
(Kish, 1965).  
 
The problem is that iwp  is very imprecise when the sample size in  is small or even 
cannot be computed if the sample size is zero. Small area estimation procedures can be 
used to address this problem. 
 
There are various statistical models and methods of estimation for developing small area 
estimates (SAEs) using survey data.  The most prominent fundamental approach is the 
Fay-Herriot model (Fay and Herriot, 1979) originally developed to estimate per-capita 
income for U.S. areas with populations of less than 1000. It has two components: the 
sampling model and the linking model.  The sampling model is a model for the sampling 
error of the direct survey estimates conditionally on the parameters of interest. The 
linking model relates the population value for an area to area-specific auxiliary variables 

'
ipii x,...,xx )( 1= .  A simple form of the Fay-Herriot model to estimate iP  can be 

written as: 
 

Sampling model:     )  ,(~| ii

ind

iiw DPNPp ;                                                                      (3) 

),...,1( iNk =

JSM 2013 - Survey Research Methods Section

110



Linking model:     ),(~,| ' AxNAP i

ind

i ββ ;                                                             (4) 
where iD  is the sampling variance of the direct estimate iwp  and is assumed known. In 
practice the sampling variances are estimated and due to the small sample sizes their 
estimates can be very unstable.  
 
Carter and Rolph (1974) applied an arcsine transformation function [ ( )ˆ arcsini ipθ = ] 

in their false alarm probability estimation example. For the model-based study presented 
in this paper, both the Fay-Herriot model without any transformation and the Fay-Herriot 
model after the arcsin transformation following Carter and Rolph (1974) were examined. 
 
There have been many developments of SAE models beyond the basic Fay-Herriot 
approach. For a full range review of different small area models, we refer to Rao (2003) 
and Jiang and Lahiri (2006). 
 
3. Parametric bootstrap confidence intervals based on the Fay-Herriot 

model  
 

Given the Fay-Herriot model (3)-(4), the empirical Bayes (EB) estimator for 𝑃𝑖 is: 
 
𝑃�𝑖𝐸𝐵 = �1 − 𝐵�𝑖�𝑝𝑖𝑤 +  𝐵�𝑖𝑥𝑖′�̂�,  where 𝐵�𝑖 = 𝐷𝑖 (�̂� + 𝐷𝑖)⁄ , 𝑖 = 1, … ,𝑚.                                     
 
The estimate �̂�  and �̂� are often obtained using maximum likelihood estimation (MLE) 
method and restricted maximum likelihood (REML) method respectively. One 
disadvantage of REML method for estimating 𝐴 is that it could produce zero and even 
negative estimates. To produce a strictly positive estimate of A, Li and Lahiri (2010) 
introduced an adjustment to the maximum (profile or residual) likelihood estimator of  𝐴  
for small 𝑚. We apply their method to estimate 𝐴 when producing parametric bootstrap 
confidence intervals. 
 
Following Chatterjee, Lahiri and Li (2008), we consider the five steps below to construct 
the parametric bootstrap prediction interval for the 𝑖 th small area:   
 
Step 1: Generate B bootstrap samples (say B=1000) using the following distributions: 
 
𝑃𝑖∗~𝑁�𝑥𝑖′�̂�, �̂��   and  𝑝𝑖𝑤∗ |𝑃𝑖∗~𝑁(𝑃𝑖∗,𝐷𝑖), 𝑖 = 1, … ,𝑚, where 𝛽 �  and  𝐴 �   are estimates 
based on the original sample.  
 
Step 2:  For each of the B bootstrap samples, obtain �̂�∗ , 𝐵�𝑖∗ , and �̂�∗ , where 𝐵�𝑖∗ =
𝐷𝑖/(�̂�∗ + 𝐷𝑖).   

Step 3:  For each bootstrap sample, compute:    𝑡𝑖 = (𝑃𝑖∗ − 𝑃�𝑖𝐸𝐵∗)/�𝐷𝑖�1 − 𝐵�𝑖∗�, where 

𝑃�𝑖𝐸𝐵∗ = �1 − 𝐵�𝑖∗�𝑝𝑖𝑤∗ + 𝐵�𝑖∗𝑥𝑖′�̂�∗ , the  EB estimator based on the bootstrap sample.  
 
Step 4:   Locate the two equal-tail 𝛼/2 cut-off points (𝑡1, 𝑡2) using the B (=1000) pivot 
values computed from step 3. 
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Step 5:   Construct the parametric bootstrap prediction interval for the small area 𝑖:   

𝑃𝐼𝑖 = �𝑃�𝑖𝐸𝐵 + 𝑡1�𝐷𝑖�1 − 𝐵�𝑖�,   𝑃�𝑖𝐸𝐵 + 𝑡2�𝐷𝑖�1 − 𝐵�𝑖��,                                               (5) 

 where 𝑃�𝑖𝐸𝐵 and 𝐵�𝑖 are estimated using the original sample, while 𝑡1 and 𝑡2 are obtained 
from the bootstrap procedure described in steps 1-4 above. 
 
Chatterjee, Lahiri and Li (2008) showed that the prediction interval defined by (5) has a 
coverage probability of 1 − 𝛼  with marginal error of 𝑂�𝑚−3/2�  given the model is 
correct. 
 

4. Simulation Study 

In this research, we conducted extensive simulation studies to evaluate the performance 
of the bootstrap confidence intervals for the small area proportions through design-based 
and model-based simulations.  
 
4.1 Design-based simulation 
 
4.1.1 The study population 

 
The sampling frame for the design-based study was the 2002 Natality public-use data file 
that covered all births occurring within the United States in that calendar year. The file 
contained data obtained from the certificates filed for births occurring in each state and 
territory (for details see U.S. National Center for Health Statistics, 2009).  
 
The finite target population studied was restricted to the 4,024,378 records of live births 
that occurred in 2002 in the 50 states of U.S. and the District of Columbia (DC) and that 
had birth weights reported. The parameter of interest was the state level percentage of 
weights at birth below the national median birthweight iP , 511,...,i = . The national 
median birthweight for the 2002 target population was equal to 3,345 grams. The true 
parameters of interest 𝑃𝑖 obtained from the sampling frame varied from 40.2% to 58.5%.  
 
We used the same sampling design as the one used in the simulation study described in 
Liu et al (2007) but with some modifications.  Within each state, a stratified SRS design 
was used to draw samples from the birth records. Mother’s race (White, Black, and 
Other) was used as the stratification variable. In Liu et al (2007), the national sample size 
was set to be about 1,500 birth records for each race group. A uniform sampling fraction 
was used across the states for each race group, subjecting to the condition at least two 
birth records were sampled within each race group in each state. The resultant national 
sample size turned out to be 5264,n = birth records. The state sample sizes in  ranged 
from 7 (for small states such as Vermont) to 690 (for California), with a median sample 
size of 61. For this study, the states with an original sample size less than 50, we 
increased the sample size to 50 so the total sample size was 5,148. This sampling 
procedure was repeated 0001,R =  times, creating 1,000 independent samples. The 
sampling weights remain the same over different simulation runs. 
 
The reason we chose percentage of below median birthweight for this research was to get 
a set of true iP  that are normally distributed so the assumption of the linking model (4) of 

JSM 2013 - Survey Research Methods Section

112



the Fay-Herriot model could hold. We tested this assumption using this set of true iP . The 
following five auxiliary variables were selected to fit the model after stepwise model 
selection process: 1) percent of births with father being White; 2) percent of births with 
mother being Non-Hispanic; 3) percent of births with being first live child in family; 4) 
percent of births with mother being native born; and 5) percent of births with no prenatal 
care. All the five selected auxiliary variables were significant in predicting iP  at the 
significant level of 𝛼 = 0.05. We ran the regression version of model (4), i.e.,  𝑃𝑖 =
β'ix + 𝑣𝑖,   where 𝑣𝑖~𝑁(0,𝐴),  with and without the five selected covariates. Figure 1 

below shows the histogram of the residuals 𝑣𝑖, the left histogram is for the case when no 
covariates were included, the right histogram is for the case when the 5 selected auxiliary 
variables were included. We further assessed the normality of the residuals using both 
Shapiro-Wilk normality test and Kolmogorov-Smirnov normality test . The p-values from 
the Shapiro-Wilk normality test were 0.2283 and 0.1382 for the case without covariates 
and the case with 5 covariates respectively. The corresponding p-values were 0.7348 and 
0.2608 from the Kolmogorov-Smirnov normality test. Both normality tests concluded 
that the residuals were normally distributed for the two cases. The normality tests suggest 
that both the model without covariates and the one with the 5 auxiliary variables are good 
candidate for assumption (4).  

 

Figure 1: Histograms of the residuals from model (4) without and with covariates 
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4.1.2 Computation of the model-based Estimates and associated confidence 

(credible) intervals 
 

For each sample, the first step in the computations was to calculate the state direct sample 
estimates. Then from both EBP method and HB method obtain the final model-based 
estimates for each small area. We considered both with and without covariates models in 
the estimation. We also used several different approaches to compute the 95% confidence 
interval for the associated point estimates. To avoid extra variability we used the true 
sampling variances (2) in all the computations.  
 
The EBP approach: 
 
The EBP estimate of 𝑃𝑖 based on each sampled data set was computed using formula (5) 
described in Section 3. To compute the 95% confidence intervals, we applied the 
following two approaches:  
Approach 1: The parametric bootstrap method described in section 3;  
Approach 2: The REML-Delta method. This approach consists of using  the REML 
method to estimate 𝐴, then apply the Datta and Lahiri (2000) method to estimate the 
mean square error, and then compute the 95% confidence interval under normality 
assumption.  
 
The HB approach: 
 
For the HB approach without covariates the following assumptions were made: 
1. No auxiliary variables were used, so that µ=β'xi ; 
2. Flat prior for µ , i.e., 1,  )( ∝µf and uniform prior for 𝐴,  i.e., 𝐴~𝑈𝑛𝑖𝑓(0, 𝐿) , 
where 𝐿 is a fixed large numerical number. We used 𝐿 = 100 in this study. 

 
For the HB approach with covariates, we included the five selected state level auxiliary 
variables described in Section 4.1.1. The prior assumptions were the same as the 
approach without any covariates, except that we assumed a flat prior for 𝛽 instead of 𝜇. 
 
The direct estimates for each sample were used in turn as input to the WinBUGS 
software (Lunn et al., 2000), which was used to produce the HB estimates for the Fay-
Herriot model. For each WinBUGS run, three independent chains were generated. For 
each chain, burn-ins of 10,000 samples were produced, with 10,000 samples after burn-
in. The samples after burn-in were thinned by a factor of two to reduce auto-correlation 
of the MCMC samples. The resultant 15,000 MCMC samples from the three chains after 
burn-in were then used to compute the posterior mean and percentiles for each HB model 
based on each sample data set. The potential scale reduction factor R̂ was used as the 
primary measure for convergence (see Gelman and Rubin, 1992).  
 
Let HB

iP denote an HB estimator of iP , the percentage of live births with birthweight 

below the grand median birthweight in state i, and let HB
qiP ,  denote the q th percentile of 

the posterior distribution of iP . The 95% credible interval (or confidence interval) for 
HB

iP  was defined as ( HB
iP 5.2, , HB

iP 5.97, ).  
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The direct approach 
 
For comparison purpose, we also computed the 95% confidence interval using the direct 
estimates defined by (1) and the estimated variances under normality assumption. We 
computed the associated variances using formula (2) but replacing  by 𝑝𝑖𝑤  and 

 by iwdeff , the approximate design effect as defined in Liu et al (2007), which 
does not depend on any unknown parameters. 
 
4.1.3  Simulation results  

Based on the results from the 1,000 samples, Tables 1a and 1b present the following for 
each of the 4 different approaches: the noncoverage probability for the 95 percent 
credible intervals of the estimate of iP , i.e., the probability that the interval fails to cover 

iP  along with the Monte Carlo simulation standard errors; and the mean width of the 
credible intervals.  Table 1a presents the results when no covariates were used in the 
model, while Table 1b reports the results when the 5 covariates were incorporated in the 
model.   
 
To examine the effect of state sample size on the simulation results, the 50 states plus DC 
are placed in 3 groups according to their sample sizes: the 24 states with relatively small 
sample sizes ;)60(50 <≤ in the 15 states with medium sample sizes ;)10060( <≤ in  
and the 12 states with large sample sizes ;)100( ≥in  The results presented in Table 1a 
and 1b are overall averages across all states and averages for the three groups separately. 
 
 
Table 1a: Percentage of times that the 95 percent credible intervals fail to cover iP , mean 
95 percent credible interval width, along with the Monte Carlo simulation standard errors 
based on 1,000 simulations (in percentages) based on 4 different approaches without any 
covariates 
 

 
 
 
Among the model-based methods, the HB approach gave an overall of 7.8% noncoverage 
rate using the model without any covariates and 3.8% for the model with the 5 covariates, 

iP

iDEFF

estimate SE estimate SE estimate SE estimate SE
overall 10.4 0.12 19.4 0.15 7.8 0.11 6.0 0.10
50<=n<60 (24 states) 12.9 0.19 25.1 0.24 9.7 0.17 6.3 0.16
60<=n<100 (15 states) 13.4 0.25 25.0 0.31 11.1 0.24 5.9 0.19
100<=n<=690 (12 states) 1.6 0.12 0.8 0.08 1.3 0.10 5.4 0.21

estimate SE estimate SE estimate SE estimate SE
overall 15.2 0.02 13.2 0.02 15.8 0.01 30.3 1.01E-05
50<=n<60 (24 states) 16.1 0.02 13.5 0.03 16.9 0.02 35.4 1.68E-05
60<=n<100 (15 states) 15.6 0.03 13.4 0.04 16.3 0.02 30.8 7.34E-06
100<=n<=690 (12 states) 13.0 0.02 12.6 0.03 13.1 0.02 19.6 3.27E-07

State sample size n

EBP Parametric 
Bootstrap EBP REML-Delta HB Direct Method

Non coverage percentage and Monte Carlo simulation standard error

Mean width of the 95% confidence interval 
and Monte Carlo simulation standard error

JSM 2013 - Survey Research Methods Section

115



which were the best among the three model-based methods. The EBP parametric 
bootstrap approach gave an overall of 10.4% noncoverage rate using the model without 
any covariates and 7.6% for the model with the 5 covariates which are further away from 
the 5% nominal value compared to the HB approach. The EBP REML-Delta approach 
produced the worst noncoverage rates. All three methods ended up with an over coverage 
for the large group (the noncoverage rates are in the range of 0.8% to 1.9%). Comparison 
of Table 1a and Table 1b indicates that the use of covariates in the modeling process can 
help improve the coverage property, though the noncoverage rates were still away from 
the 5% nominal value. As expected, the direct method has average noncoverage rate 
close to the 5% nominal value especially for the large states. However, the average 
widths of the confidence intervals were much larger than those obtained based on model-
based approaches. 
 

Table 1b: Percentage of times that the 95 percent credible intervals fail to cover iP , mean 
95 percent credible interval width, along with the Monte Carlo simulation standard errors 
based on 1,000 simulations (in percentages) based on 4 different approaches with 5 
covariates  
 

 

 

4.2  Model-based simulation 

4.2.1  Data generation 

Let 𝑃𝑖 and 𝐷𝑖 ,  i = 1, … ,51, be the state level proportions with birth weight less than the 
grand median computed from the 2002 Natality data and associated true variances. We 
generated 1,000 sets of simulated data using the following steps: 
 
Step 1: Obtain 𝛽 and A by fitting 𝑃𝑖 on the five auxiliary variables described in section 
4.1.1 using 𝑃𝑖~N(𝑥𝑖′𝛽, A); 
 
Step 2: Generate 𝜃𝑖 based on 𝜃𝑖~N(𝑥𝑖′𝛽, A); 
 
Step 3: Generate 1,000 sets of observed data using different approaches: 

estimate SE estimate SE estimate SE estimate SE
overall 7.6 0.10 9.6 0.11 3.8 0.08 6.0 0.10
50<=n<60 (24 states) 12.7 0.19 15.2 0.20 6.1 0.14 6.3 0.16
60<=n<100 (15 states) 4.3 0.16 7.3 0.20 1.9 0.11 5.9 0.19
100<=n<=690 (12 states) 1.6 0.11 1.1 0.10 1.9 0.12 5.4 0.21

estimate SE estimate SE estimate SE estimate SE
overall 15.5 0.02 14.4 0.02 16.9 0.01 30.3 1.01E-05
50<=n<60 (24 states) 16.2 0.03 15.2 0.03 18.6 0.02 35.4 1.68E-05
60<=n<100 (15 states) 15.8 0.03 14.4 0.03 17.3 0.02 30.8 7.34E-06
100<=n<=690 (12 states) 13.8 0.02 12.8 0.02 13.3 0.01 19.6 3.27E-07

Mean width of the 95% confidence interval 
and Monte Carlo simulation standard error

State sample size n

EBP Parametric 
Bootstrap EBP REML-Delta HB Direct Method

Non coverage percentage and Monte Carlo simulation standard error
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Approach A:  Generate 𝑝𝑖𝑤  based on the Level 1 of the Fay-Herriot model: 
𝑝𝑖𝑤~𝑁(𝜃𝑖,𝐷𝑖);   
  
 Approach B:  Generate 𝑦𝑖  using binomial distribution: 𝑦𝑖~𝐵𝑖𝑛 �𝑖𝑛𝑡(

𝑛𝑖
𝐷𝐸𝐹𝐹𝑖

),𝜃𝑖� and then 

compute 𝑝𝑖𝑤 = 𝑦𝑖
𝑖𝑛𝑡(𝑛𝑖 𝐷𝐸𝐹𝐹𝑖⁄ )

. 
 
Approach C:  Generate 𝑦𝑖  using Poisson distribution: 𝑦𝑖~𝑃𝑜𝑖𝑠 �

𝜃𝑖𝑛𝑖
𝐷𝐸𝐹𝐹𝑖

� and then compute 

𝑝𝑖𝑤 = 𝑦𝑖
𝑛𝑖 𝐷𝐸𝐹𝐹𝑖⁄ ; 

 
4.2.2 Computation of the model-based Estimates and associated confidence 

(credible) intervals 
 

For each generated data set, we applied the EBP parametric bootstrap approach, the EBP 
REML-Delta approach and the HB approach with the 5 covariates as described in Section 
4.1.2 to obtain the model-based estimates for 𝑃𝑖 and the associated 95% confidence 
(credible) intervals based on the Fay-Herriot model defined by(3)-(4). Using the same 
simulated data, we also tried the Fay-Herriot model on the data with arcsin 
transformation. Let 𝑧𝑖 = arcsin��𝑝𝑖𝑤�  (Carter & Rolph, 1974). The following model 
was applied on  𝑧𝑖:  
 
Sampling model: 𝑧𝑖|𝜃𝑖~𝑁�𝜃𝑖,

𝐷𝐸𝐹𝐹𝑖
4𝑛𝑖

� ;    

Linking model:      𝜃𝑖 = 𝑥𝑖′𝛽 + 𝑣𝑖; where 𝑣𝑖~𝑁(0,  𝐴). 
 
The goal was to estimate 𝑃𝑖 = 𝑠𝑖𝑛2(𝜃𝑖) and the associated 95% confidence (credible) 
intervals using the same three approaches (EBP parametric bootstrap, EBP REML-Delta, 
and HB). For convenience purpose, we labeled the above model as Fay-Herriot model 
with arcsin transformation. The prior assumptions for the HB approach were the same as 
those in section 4.1. 
 
4.2.3 Simulation results 

Table 2a reports the percentage of times that the 95% confidence interval covers the true 
value and the mean width of the confidence intervals along with standard Monte Carlo 
simulation errors for the three approaches (EBP parametric bootstrap, EBP REML-Delta, 
and HB) when the simulated data was generated using the Fay-Herriot model. The left 
half of the table reports the estimation results based on the Fay-Herriot model, while the 
right half of the table reports the estimation results based on the Fay-Herriot model with 
arcsin transformation. The EBP parametric bootstrap approach based on the Fay-Herriot 
model gave 4.9% overall average noncoverage rate, which is very close to the nominal 
5%. This is pretty consistent with what Chatterjee, Lahiri and Li (2008) showed 
analytically. The HB approach based on the Fay-Herriot model produced very good 
average noncoverage rates (4.7%) for the medium and large groups and a little 
conservative noncoverage rate (3.0%) for the small group. The REML-Delta approach 
performed worse than the other two approaches in terms of noncoverage rate.  When Fay-
Herriot model with arcsin transformation was used in the estimation, the average 
noncoverage rates were quite similar to those based on the Fay-Herriot model for all the 
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three approaches.  This is probably due to the fact that the small area proportions were 
around 50%.  
 
 
Table 2b reports the percentage of times that the 95% confidence interval covers the true 
value and the mean width of the confidence intervals along with standard Monte Carlo 
simulation errors for the three approaches when the simulated data was generated using 
binomial model. The performances of the three approaches were worse than the case 
when the data were generating using Fay-Herriot model but better than the case when the 
data were generated using Poisson regression in terms coverage property. Again, 
parametric bootstrap approach performs the best among the three methods being 
compared and the performance of the three approaches did not differ much across the two 
estimation models (Fay-Herriot model and Fay-Herriot model with arcsin 
transformation).  
 
 
Table 2a: Percentage of times that the 95 percent credible intervals fail to cover iP , mean 
95 percent credible interval width, along with the Monte Carlo simulation standard errors 
based on 1,000 simulations (in percentages) for the 3 different estimation methods - Data 
generated using level 1 of the Fay-Herriot model (Approach A): 
 

 
 

Table 2b: Percentage of times that the 95 percent credible intervals fail to cover iP , mean 
95 percent credible interval width, along with the Monte Carlo simulation standard errors 
based on 1,000 simulations (in percentages) for the 3 different estimation methods - Data 
generated using Binomial regression (Approach B): 
 

EBP 
Parametric 
bootstrap

EBP      
REML-Delta HB

EBP 
Parametric 
bootstrap

EBP    
REML-
Delta HB

overall 4.9 (0.09) 6.9 (0.1) 3.9 (0.08) 4.5 (0.09) 6.4 (0.1) 4.1 (0.09)
50<=n<60 (24 states) 4.9 (0.13) 6.2 (0.15) 3 (0.11) 4.6 (0.13) 5.8 (0.14) 3.6 (0.12)
60<=n<100 (15 states) 5.6 (0.18) 8.5 (0.21) 4.7 (0.16) 5.2 (0.17) 7.9 (0.2) 4.5 (0.16)
100<=n<=690 (12 states) 3.9 (0.17) 6.2 (0.2) 4.7 (0.19) 3.6 (0.16) 5.8 (0.2) 4.7 (0.19)

overall 18.7 (0.02) 17.4 (0.02) 18.7 (0.01) 19 (0.02) 17.6 (0.01) 19 (0.01)
50<=n<60 (24 states) 19.7 (0.03) 18.7 (0.02) 20.6 (0.02) 20.1 (0.02) 19 (0.02) 21 (0.02)
60<=n<100 (15 states) 19.1 (0.03) 17.6 (0.03) 19.1 (0.02) 19.4 (0.03) 17.9 (0.03) 19.4 (0.02)
100<=n<=690 (12 states) 16.1 (0.02) 14.4 (0.02) 14.5 (0.01) 16.2 (0.02) 14.5 (0.02) 14.7 (0.01)

State sample size n Non coverage percentage and Monte Carlo simulation standard error

Mean width of the 95% confidence interval 
and Monte Carlo simulation standard error

FH -model FH-model after arcsin transformation
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Table 2c reports the percentage of times that the 95% confidence interval covers the true 
value and the mean width of the confidence intervals along with standard Monte Carlo 
simulation errors for the three approaches when the simulated data was generated using 
Poisson regression. Again, the left half of the table reports the estimation results based on 
the Fay-Herriot model, while the right half of the table reports the estimation results 
based on the Fay-Herriot model with arcsin transformation. The noncoverage rates from 
the three approaches became worse than those reported in Tables 2a and 2b, though the 
parametric bootstrap approach still gave the best coverage compared with the other two 
methods. The noncoverage rates were worse for all the three approaches when the Fay-
Herriot model with arcsin transformation was used compared to the case when Fay-
Herriot model was used.   
 
Table 2c: Percentage of times that the 95 percent credible intervals fail to cover iP , mean 
95 percent credible interval width, along with the Monte Carlo simulation standard errors 
based on 1,000 simulations (in percentages) based on 3 different estimation methods - 
Data generated using Binomial regression (Approach C): 
 

 
 

EBP 
Parametric 
bootstrap

EBP      
REML-Delta HB

EBP 
Parametric 
bootstrap

EBP        
REML-Delta HB

overall 4.5 (0.09) 6.3 (0.1) 3.7 (0.08) 4.2 (0.08) 6 (0.1) 3.6 (0.08)
50<=n<60 (24 states) 3.2 (0.11) 3.9 (0.12) 2 (0.09) 3 (0.11) 3.7 (0.12) 2.1 (0.09)
60<=n<100 (15 states) 4.9 (0.17) 7.3 (0.2) 3.6 (0.15) 4.5 (0.16) 6.7 (0.19) 3.2 (0.14)
100<=n<=690 (12 states) 6.5 (0.2) 10.1 (0.24) 7.1 (0.22) 6.1 (0.2) 9.6 (0.24) 7 (0.22)

overall 18.5 (0.02) 17.2 (0.02) 18.6 (0.01) 18.7 (0.02) 17.4 (0.02) 18.7 (0.01)
50<=n<60 (24 states) 19.5 (0.03) 18.5 (0.03) 20.4 (0.02) 19.8 (0.03) 18.8 (0.02) 20.5 (0.02)
60<=n<100 (15 states) 18.9 (0.03) 17.4 (0.03) 19 (0.02) 19.2 (0.03) 17.7 (0.03) 19 (0.02)
100<=n<=690 (12 states) 15.9 (0.02) 14.3 (0.02) 14.5 (0.01) 16.1 (0.02) 14.4 (0.02) 14.5 (0.01)

State sample size n

FH -model FH-model after arcsin transformation

Non coverage percentage and Monte Carlo simulation standard error

Mean width of the 95% confidence interval 
and Monte Carlo simulation standard error

EBP 
Parametric 
bootstrap

EBP      REML-
Delta HB

EBP 
Parametric 
bootstrap

EBP    REML-
Delta HB

overall 6.7 (0.11) 8.6 (0.12) 9.3 (0.13) 8.1 (0.12) 10 (0.13) 10.6 (0.14)
50<=n<60 (24 states) 6 (0.15) 7.2 (0.17) 7.7 (0.17) 7.5 (0.17) 8.6 (0.18) 9.2 (0.19)
60<=n<100 (15 states) 6.9 (0.2) 8.5 (0.23) 9.2 (0.23) 8.5 (0.22) 10.2 (0.24) 10.7 (0.25)
100<=n<=690 (12 states) 7.7 (0.24) 11.5 (0.29) 12.5 (0.3) 8.9 (0.26) 12.5 (0.3) 13.3 (0.31)

overall 24.1 (0.01) 22.9 (0.01) 23.2 (0.01) 24 (0.01) 22.9 (0.01) 23.3 (0.01)
50<=n<60 (24 states) 26.3 (0.02) 25.5 (0.02) 26.1 (0.02) 26.4 (0.02) 25.6 (0.02) 26.2 (0.02)
60<=n<100 (15 states) 24.8 (0.02) 23.4 (0.02) 23.8 (0.02) 24.6 (0.02) 23.4 (0.02) 23.8 (0.02)
100<=n<=690 (12 states) 18.7 (0.01) 16.9 (0.01) 16.9 (0.01) 18.6 (0.01) 16.9 (0.01) 16.9 (0.01)

State sample size n

FH -model FH-model after arcsin transformation

Non coverage percentage and Monte Carlo simulation standard error

Mean width of the 95% confidence interval 
and Monte Carlo simulation standard error
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4 Discussion 

In this paper, we report the results of a simulation study from a real finite population and 
a simulation study where the data were generated based on presumed models to evaluate 
three different approaches (EBP parametric bootstrap, EBP REML-Delta and HB) in 
estimating the confidence/credible intervals for small area proportions based on Fay-
Herriot type of models.  
 
In the first simulation study, the design-based approach, since the true model was 
unknown, we chose the outcome of interest (percentage of birth weights below the grand 
median) which was expected to be normal so Fay-Herriot model is appropriate. We tried 
both excluding and including auxiliary variables in the estimation model. Although there 
are some differences in the coverage properties for the state finite population proportions 
and the use of covariates helped improve the coverage rates, none of the three approaches 
produced coverage rates close to the nominal rates.   
In the second simulation study, the model-based approach, we tried three different 
models to generate the data and then applied both Fay-Herriot model and Fay-Herriot 
model with arcsin transformation to produce the confidence intervals using the three 
different approaches. The EBP parametric bootstrap approach gave the best coverage 
property across all the cases, though it only produced coverage rates close to the nominal 
rates when the data was generated using Fay-Herriot model. The HB approach gave the 
next best coverage property though it tended to produce over conservative credible 
intervals for most of the cases.  For all the three approaches, there was not much 
difference whether to use Fay-Herriot model or Fay-Herriot model with arcsin 
transformation in terms coverage property.   
 
In the design-based simulation study, since the true model was unknown, it seems very 
difficult to obtain confidence intervals with coverage rates close to the nominal value. 
Similar conclusion was found in Liu et al (2007). Based on our limited results, users of 
small area estimates need to be cautioned about the interpretation of the credible intervals 
associated with the estimates. 
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