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Abstract 

Survey research organizations have been researching the use of extracts of the United 

States Postal Service delivery sequence file (DSF) as a replacement for traditional listing.  

Due to software limitations, individual housing units (HUs) on the DSF are sometimes 

errantly geocoded which can influence coverage properties of selected segments.  NORC 

undertook a national listing effort in 2011 to augment the DSF in areas known to have 

limited coverage, such as rural areas and areas with new construction.  We used an 

“enhanced” listing method, where the lister, using a handheld device, verifies and edits 

the DSF list geocoded to a designated segment. One benefit of enhanced listing is the 

ability to capture the geographic coordinates of each HU, thus providing data to further 

explore the nature of DSF coverage.  We focus on a selection of rural and urban segments 

from the national listing effort. For addresses on the DSF but not found by the lister, we 

use logistic regression to model the likelihood of address-level geocoding error using 

DSF flags and census data from 2010. We also build an autologistic model (Besag, 1972) 

to account for spatially dependent data by incorporating spatial autocorrelation. Results 

indicate geocoding error occurrences are spatially dependent, and the probability of 

geocoding error is related to address characteristics such as drop delivery and address 

type as well as rural block characteristics including geographic area. Our model also 

demonstrates that low block-level DSF coverage is associated with geocoding error. 

Understanding the correlates of geocoding error in the DSF will increase listing 

efficiency and frame quality by allowing the identification of areas with the most limited 

DSF coverage that will require listing for sampling frame construction. 

Key Words: Address-based samples, geocoding error, sample frame construction, DSF, 

coverage 

1. Introduction 
 
Response rates for random-digit dial (RDD) telephone surveys have steadily declined 

over the past decades (Curtin et al., 2005).  Consequently, survey research organizations 

have been investigating alternative survey designs to overcome growing shortcomings in 

RDD. In turning to an address-based sampling (ABS) frame, researchers are afforded 

more control in coverage and can potentially access hard-to-reach populations and reduce 

survey non-response by integrating a multi-mode approach (Iannacchione et al., 2003; 

Link et al., 2009; Link et al., 2008). One primary disadvantage to ABS is its cost as it has 

historically been difficult to obtain accurate and up-to-date address lists for target 

populations or target areas in some situations. The gold standard for ABS frame 
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construction has been field listing until recently, a process wherein field staff enumerate 

and order each housing unit in a specified area. Listing can be costly and subject to 

timeliness issues in areas undergoing development. 

Survey research organizations have investigated using versions of the U.S. Postal Service 

Delivery Sequence File (DSF) as a replacement for traditionally field listed address lists 

to reduce costs (Iannacchione et al., 2003; Kennel and Li, 2009). Research has shown that 

coverage offered by the DSF can be adequate to use in place of the traditional lists in 

urban and suburban areas and that it is often more efficient to provide a field lister the 

DSF for enhancement rather than creating a list from scratch in places where the DSF 

coverage is questionable (English et al, 2012). The benefits of using the DSF for ABS 

frames are numerous. For one, using the DSF is considerably more cost-effective than 

traditional field listing. Also, because the address data found on the DSF are “cleaner” 

than the data collected in the field, it is easier to match to other databases, such as phone 

databases or market research databases (Brick et al., 2011). Such data standardization 

improves the ability of researchers to conduct multi-mode surveys and flag certain 

households as being part of a target group. Matching addresses to telephone numbers can 

bring costs closer to the level of RDD surveys (Link et al. 2008). Additionally, DSF lists 

are maintained by the U.S. Postal Service and as a result, are updated frequently to reflect 

housing changes. The constant update increases the accuracy of the frame and removes 

the costs of having to return to the field to update the frame (O’Muircheartaigh et al., 

2007).   

DSF Geography  

One drawback to using the DSF is that on the surface it lacks the geographic information 

necessary to link it to census geography. Because of the high costs related to in-person 

field interviewing, many ABS frame designs incorporate a multi-level sampling approach 

– first selecting a sample of geographic areas like census tracts or census block groups, 

then selecting a sample of housing units within the selected target areas. As opposed to a 

sample of 1,500 addresses randomly scattered across the entire United States, for 

example, the end result of a multi-level sampling approach might be 1,500 address 

clustered in groups of 15 across a selection of 100 nationally representative census tracts, 

greatly reducing the interviewer travel time and field costs of the study. The difficulty 

with this kind of ABS design, however, is that the DSF does not contain information on 

the precise location of each address. While the postal service maintains information 

related to city, state, zip, carrier route and walk sequence of each address, postal workers 

are not in the business of determining in which census block each address lies.  

To overcome the limitations of DSF geography, researchers must append additional 

geographic information to the DSF in a process called “geocoding”. Typically performed 

using commercial software, geocoding an address involves matching it to a database and 

imputing its location along a street using an address range. While highly accurate, 

especially in urban and suburban areas, the geocoding process is often an 

unacknowledged source of error in ABS frame design (Eckman and English, 2012). 
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Specifically, geocoding error can result in “over-coverage” or “under-coverage” in the 

frame. The purpose of this research is to perform an exploratory analysis to determine the 

correlates of geocoding error with the end goals of gaining a better understanding of the 

potential impact of geocoding error on bias and providing suggestions on how to enhance 

frame-making decisions. 

2. Background 
 
The fall of 2011 offered a unique opportunity to study geocoding error. Every ten years, 

after the release of the preliminary decennial census counts, NORC creates a new 

“National Frame” that is used to select representative samples for many national area-

probability studies conducted by NORC, such as the General Social Survey (GSS) and 

the Survey of Consumer Finances (SCF). Of the 1,516 segments selected – either census 

tracts or census block groups depending on the housing unit density – the vast majority 

were determined as having adequate DSF coverage based on the ratio of DSF to census 

counts. However, 126 segments were identified has having problematic DSF coverage 

that needed to be enhanced in the field.  

Unlike past frame construction that was conducted with paper-and-pencil, the 2010 

National Frame field listing was conducted using a handheld device that allowed for 

several enhancements. Listers were now able to collect latitude and longitude coordinates 

for each housing unit using an integrated GPS and take photographs using an integrated 

digital camera. In addition, use of the devices gave listers the ability to perform real-time 

searches of the DSF extract for each segment while in the field. New data collected by 

the device as well as methodological changes brought about by the searchable DSF 

extract provided a new opportunity to assess the geocoding quality of the DSF in the 

segments where listing was required.  In particular, we were now able to identify the DSF 

housing units that had incorrectly geocoded and try to model the conditions under which 

geocoding error was more likely to occur. What follows is a description of our analysis. 

3. Data and Methods 
 
Due to variations in the quality of listing due to lister skill and device performance, we 

did not analyze data from all 126 DSF-enhanced segments. Instead, 21 segments were 

selected for analysis based on the following criteria. First, we selected segments where 

the GPS was working for at least 90% of the addresses listed. Next, we eliminated 

segments where the initial DSF coverage relative to Census was very low – below 30% – 

to remove those without enough geocoded addresses to analyze. Finally, we made a 

selection from the remaining segments based on what we believed to be a fairly 

representative section of listing conditions – urban, suburban and rural. Our selection 

consisted of 21 segments containing 8,560 DSF lines that were enhanced in the field.  

As a next step, we needed to identify the DSF lines that were incorrectly geocoded into 

the National Frame segments. Of the 8,560 DSF addresses provided to the listers for 

enhancement, 7,504 or 88% were confirmed in the field, leaving 1,056 or 12% 

unconfirmed. There are number of reasons why a DSF line might not be confirmed in the 
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field. A housing unit may be difficult to find or, in rural areas, be located on a street that 

has multiple naming conventions. In addition, though we give explicit instructions to list 

vacant housing units, listers may exclude homes that appear vacant. Despite these issues, 

we argue that a large majority of DSF addresses that went unconfirmed did so because of 

geocoding error. That is, they were not located within the selected sample geography as 

indicated by the geocoding software.  

Taking this approach means are modeling DSF over-coverage only, and while there is a 

parallel problem of under-coverage due to geocoding errors, under-coverage is beyond 

the scope of this paper. The segments in which we are conducting our analysis are a 

subset of the 126 segments that were initially identified as having low DSF coverage. In 

order to measure under-coverage due to geocoding error, we would have had to match 

addresses added by the field listers to the DSF that geocoded outside of the segment.  

This process was deemed beyond the scope of this paper which instead attempts to model 

the probability, based on context and address characteristics, that an address provided for 

enhancement was confirmed as not existing by our field staff.  

For our analysis we used a generalized linear model with a logistic link function. To 

increase interpretability of results and decrease processing time, we conducted our model 

on a random sample of 4,000 addresses from the 8,560 addresses in the target area. The 

response variable was a binary flag indicating whether or not the address was confirmed 

in the field as described above. Our independent variables fell into two major categories, 

those that describe the address and those that describe the census block into which the 

address was initially geocoded. Address-level variables were derived directly from the 

DSF. In addition to basic address information, observations made by postal workers of 

housing units along their routes are stored in a variety of flags that accompany the DSF. 

The DSF flags we included in our first model were two binary variables, vacancy status 

and drop point flag, and one categorical variable, record type. The vacancy flag is self-

explanatory – it indicates whether the postal worker believes the unit to be vacant. 

Record type describes the type of housing unit it is: a single family home, a high-rise, or 

a rural route. The drop point flag indicates whether it is a multi-unit building in which the 

units have no unit designation and share a common mail box (Dekker et al, 2012). 

There may not be a strong theoretical connection between vacancy or drop point delivery 

and geocoding error. It stands to reason that neither the lack of inhabitants nor the 

possibility that a housing unit has been subdivided into multiple, undesignated units 

should influence whether or not the location of an address can be correctly imputed. As 

such, we chose to include these variables as controls for lister error. Listers often exclude 

addresses that appear vacant, despite receiving instructions to include them, and drop 

point addresses often contain hidden units that are difficult to find in the field (Dekker et 

al, 2012). Conversely, we hypothesize that there is a relationship between geocoding 

error and the type of residence. The easiest kind of address to geocode should be a single 

family home, while we expect that the geocoder should have much more difficulty with 

non-city style address and slightly more difficulty with high-rise addresses.  
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In addition to address-level variables, we included several variables that describe the 

characteristics of the blocks into which the address were initially geocoded. The most 

important of these variables is the DSF-to-Census ratio. As indicated earlier, this variable 

when calculated at the segment level is used to measure the DSF coverage and to 

determine whether it is advisable to use the DSF as a stand-alone frame. We can expect 

individual blocks to have a more unstable DSF-to-Census ratio and as a result be more of 

an indicator of geocoding error. For example, we hypothesize that a block with four times 

as many DSF housing units as housing units enumerated by the Census is likely to 

experience geocoding error. Because we do not believe this variable to behave linearly, 

we turned the DSF-to-Census ratio into a categorical variable measuring four ranges: 0 to 

0.9, 0.9 to 1.25, 1.25 to 2 and 2 and above; we used 0.9 to 1.25 as reference category. 

Other block-level variables measure the housing unit distribution and neighborhood 

characteristics of the block. We use the Census Type of Enumeration Area
1
 (TEA) code 

to estimate whether the block is rural or urban. In addition, we include a flag that 

indicates whether the block is within the boundaries of the principal city of the CSA, or 

Combined Statistical Area, (e.g., Chicago is the principal city of Chicago CSA). To 

provide a measure of block topology, we added the total area of the block as well as a 

flag indicating whether the block is adjacent to a water feature. Creeks and streams form 

the borders of many blocks and make it difficult to determine correct address ranges. 

Housing unit density, percent multi-unit dwellings, percent occupied housing units and 

percent owned all measure the character of the housing stock of a particular block. To 

measure the potential impact of geocoding error on bias, our model initially included 

demographic variables such as median household income, median house value and race 

percentages.  

4. Results 
Modeling Over-coverage Error 

Results from the initial model are presented in table 1, which demonstrate that many of 

the findings are significant and agree with our original hypotheses. The model fails the 

Hosmer-Lemeshow test indicating that the model demonstrates goodness of fit. 

Belonging to a block with urban characteristics as indicated by TEA code, the principal 

city flag and high housing unit density was associated with decreased probability of 

incorrect geocoding. Non-city style addresses were associated with an increase in the 

probability of geocoding error while belonging to a block with a high percentage of 

multi-unit buildings demonstrated the opposite. The results for the two DSF flags 

confirmed our expectations about interviewer error.  Vacant housing units were more 

likely to not be confirmed, as were drop point addresses.  

Perhaps the most interesting finding is the relationship of block-level DSF-to-Census 

ratio and geocoding error. As hypothesized, the model demonstrates that belonging to a 

block with a very high DSF-to-Census ratio (at or above 2) is associated with increased 

                                                           
1 TEA Code is used by the Census Bureau to indicate if a block is sufficiently urban to enumerate via mail-out/mail, or if it 
requires in-person address updating and data collection. 
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probability that a housing unit is not confirmed in the field. Surprisingly, though, 

belonging to a block with a medium-high DSF-to-Census ratio (between 1.25 and 2.0) is 

associated with similarly high odds of geocoding error as belonging to a block with low 

DSF-to-Census ratio (less than 0.9). This finding may influence future frame building 

decision. Because a low DSF-to-Census ratio at the block level is generally associated 

with an increased probability of geocoding error, it is not safe to assume that the DSF-to-

Census ratio is accurate below a certain threshold. For example, consider the situation 

where a hypothetical researcher were determining if a segment with a borderline DSF-to-

Census ratio (say 91%) needed to be listed. If it were determined that several of the 

Census blocks that composed this segment had a less than adequate DSF-to-Census ratio, 

then it may not be safe to assume that all DSF lines in the segment geocoded into the 

correct areas. In fact, because a low DSF-to-Census ratio at the block level is associated 

with higher levels of geocoding error, the segment in question might have coverage 

below originally calculated rate of 91%. At the very least, this finding should encourage 

researchers to look at DSF coverage at different levels of geography – segment and block 

– when making listing decisions. 

Table 1. Odds Ratios for Variables Predicting Over-coverage due to Geocoding Error 

Variable or Predictor Odds Ratio 

95 %             

Confidence Interval 

DSF-to-Census Ratio <.9 (vs. .9 to 1.25)   2.249*** 1.412 3.583 

DSF-to-Census Ratio 1.25 to 2 (vs .9 to 1.25) 

 

2.370** 1.349 4.164 

DSF-to-Census Ratio ≥2 (vs. .9 to 1.25) 

 

4.294*** 2.627 7.019 

Urban block (TEA Code)  

 

0.573*** 0.461 0.712 

Drop Delivery Flag 

 

9.087*** 4.455 18.535 

Record Type – High rise (vs. Single Family Home) 

 

0.663 0.233 1.886 

Record Type - Rural route (vs. Single Family Home) 

 

94.523*** 8.568 >999.999 

Vacant Flag 

 

4.302* 1.124 16.466 

In Principal City 

 

0.166*** 0.065 0.422 

Area in Sq. Miles (mean centered) 

 

1.082*** 1.055 1.109 

HU Density (mean centered) 

 

0.999*** 0.999 0.999 

Pct. Multi-Unit (mean centered)   0.279* 0.081 0.958 

* p ≤ .05, ** p ≤ 0.01, *** p ≤ 0.001 
        

 

Incorporating Spatial Effects 

 

One of the underlying assumptions of the standard logistic regression is that the errors 

(residuals) are independently and identically distributed. However, the occurrence of 

over-coverage geocoding error might not be spatially independent. If the assumption of 

independent errors were violated, the standard logistic approach might not be sufficient to 

analyze the spatially-correlated data. Taking spatial effects into account when analyzing 

spatial data would result in better parameter estimates and enhance the overall goodness 

of fit of the model. Intuitively, we expect the existence of spatial dependence among 

spatial data analysis. The occurrence of over-coverage geocoding error for an address 
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might be dependent on the occurrence of geocoding error of its neighboring addresses. 

Some possible explanations for the cause of spatial dependence include similar 

environmental circumstances such as road and water features.    

In order to incorporate spatial effect into the previous model, we use Moran’s I to detect 

possible existence of spatial effects, if any (Moran, 1950). If the spatial effects are 

present, the relationship between the binary response variable and the predicting variables 

will be modified. The Rook contiguity-based spatial weight is chosen in this paper for 

spatial weight matrix. The matrix, W, is an N by N matrix where N equals the number of 

addresses. We use the census tabulation block as the geography to calculate the 

contiguity matrix and assume that addresses in a tabulation block are considered as 

neighbors of the addresses in a neighboring tabulation block. After computing the spatial 

weight matrix for mailing addresses, we test the presence of spatial autocorrelation using 

Moran’s I. Ranging between -1 and 1, Moran’s I measures spatial autocorrelation with 

positive values indicating clustering, zero values indicating randomness and negative 

values indicating a non-random “checkerboard” distribution. For the distribution of mis-

geocoded addresses from our analysis, the observed Moran’s I value is low, 0.0281, but 

positive and highly significant: the p-value is Moran’s I statistic is less than 0.00001. This 

result indicates the presence of spatial autocorrelation.  

Table 2. Odds Ratios for Variables Including Spatial Autocovariate Predicting Over-

coverage due to Geocoding Error 

Variable or Predictor Odds Ratio 
95 % 

 Confidence Interval 

DSF-to-Census Ratio <.9 (vs .9 to 1.25)   2.109** 1.445 3.172 

DSF-to-Census Ratio 1.25 to 2 (vs .9 to 1.25) 

 

2.297** 1.443 3.72 

DSF-to-Census Ratio ≥2 (vs .9 to 1.25) 

 

3.99*** 2.673 6.134 

Urban block (TEA Code)  

 

0.584*** 0.486 0.702 

Drop Delivery Flag 

 

9.38*** 5.184 17.281 

Record Type – High rise (vs. Single Family Home) 0.659 0.268 1.534 

Record Type - Rural route (vs. Single Family Home) 94.711*** 15.417 >999.999 

Vacant Flag 

 

4.168* 1.88 11.987 

In Principal City 

 

0.169*** 0.07 0.345 

Area in Sq. Miles (mean centered) 

 

1.078*** 1.056 1.101 

HU Density (mean centered) 

 

0.999*** 0.999 0.999 

Pct. Multi-Unit (mean centered) 

 

0.291* 0.099 0.785 

Spatial Autocovariate    1.017* 1.005 1.028 

* p ≤ .05, ** p ≤ 0.01, *** p ≤ 0.001         

 

Based on the spatial statistics calculated, we extend the standard logistic regression 

model by adding an additional spatially related variable to account for the unrepresented 

spatial autocorrelation. This is achieved by adding an autocovariate to standard logistic 

regression to represent the relationship of neighboring response variables (Besag, 1971). 
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The results can be found in Table 2. We find that the odds ratio of the autocovariate in 

the spatial model equals 1.017 and is statistically significant (p < 0.05). Because the odds 

ratio is above 1, the model indicates that incorrectly geocoded addresses are clustered in 

space to some extent, which confirms our expectation that common environmental 

circumstances might influence the presence of geocoding error. Though the high rise flag 

is no longer significant in the second model, including the spatial autocovariate reduces 

the AIC from 2683.9 to 2680.5.  

5. Discussion and Conclusion 
 
The purpose of this research was to perform an exploratory analysis on the correlates of 

geocoding error in order to gain a better understanding of its impact on frame-building 

decisions. Initial findings indicate that there are covariates available that could be used or 

should be investigated for better predictions of potential problems related to geocoding 

error. Our two models demonstrate a significant, negative association between block-

level characteristics of urbanicity and geocoding over-coverage. Blocks that have an 

urban TEA code designation, are located in the principal city of a metro area or have a 

higher percentage of multi-unit buildings are less likely to experience geocoding error. 

By the same token, larger block area, a characteristic of rural places, is positively 

associated with geocoding error. At the address level, the pattern holds; DSF records 

flagged as rural addresses are demonstrated to be related to higher levels of geocoding 

error, while DSF records flagged as high-rise buildings are demonstrated to be related to 

lower levels of geocoding error. The most important takeaway from this research is the 

positive relationship between low DSF-to-Census ratio and over-coverage due to 

geocoding error. If the DSF cannot account for more than 90% of the housing units in a 

block, results from our models indicate that there is an increased likelihood that the 

housing units associated with that block geocoded incorrectly. When making decisions 

about where to list, researchers should consider overall segment-level DSF coverage but 

also the DSF coverage of component blocks. This will allow for a more robust frame 

building process.  
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