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Abstract
It is said that a well-designed survey can best prevent nonresponse. However, no matter how well

a survey is designed, in practice, nonresponse almost always occurs. The easiest way to deal with
nonresponse is to ignore it, but frequently, ignoring nonresponse results in poor survey quality. Item
nonresponse and unit nonresponse are two types of nonresponse. Imputation procedures are popular
remedies for the former while weighting methods are commonly used to compensate for the latter.
This paper focuses on weighting methods that help reduce nonresponse bias.
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1. Introduction

In survey sampling, a good sample is desirable for making good inferences about a pop-
ulation. The bias of a properly calculated estimate results from sampling error and non-
sampling errors. Practically, sampling error always exists because of sample-to-sample
variation. The only sure way to avoid sampling error is to study the entire population, i.e.,
census, and that is impractical for a huge population. Selection bias is an example of non-
sampling error, and it includes nonresponse which might greatly bias estimates calculated
without adjustments.

If there is nonresponse together with under-coverage in survey sampling, missing data
will result. Under-coverage occurs when not all of the elements in the target population
are included in the sampling frame. Nonresponse can be divided into item nonresponse
and unit nonresponse. In item nonresponse, at least one but not all of the measurements of
interest are obtained from the sampled unit. In unit nonresponse, the sampled unit provides
nothing. However, some information usually is available by other means.

Example 1.1. Suppose a telephone survey is conducted to estimate household electricity
consumption in a certain region, and a sample of n individuals is drawn from the residential
phone directory. Therefore, the target population includes all households in the region
and the sampling frame is the list of people in the telephone directory. Each of the n
individuals is asked the type of housing unit, the number of bedrooms, and the average
monthly electrical use (see Table 1).

Lohr (2009) stated that missing data and haphazard mistakes in data collection are
often the biggest causes of error in a survey. Designing a good survey and questionnaire,
and being careful in collecting data can prevent poor response rates and mistakes in data
collection. Follow-up and callback are common procedures used to increase response rate.
In the telephone survey example, it is possible that the selected person unavailable at the
first call is contacted and there is a response at the kth callback. k is a positive integer.
Since making phone calls may be expensive and time-consuming, it is impractical to try to
contact someone a number of times. Furthermore, it is usually the case that some people
refuse to be interviewed no matter how many times an interviewer tries.
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Table 1: Hypothetical data for example

Housing Unit Number of Average Monthly
Individual Type Bedrooms Electric Usage (kWh)

a House 3 2,000
b House - -
c - - 3,000
d Apartment - 500
f - - -
g - 2 1,000
h Other 2 -
i - 3 -
...

...
...

...

Unit nonresponse: f.
Item nonresponse: b, c, d, g, h, i.

Since nonresponse almost always occurs in a survey, one should be cautioned if the
nonrespondents differ critically from the respondents, especially when the response rate is
low. Due to the presence of nonresponse and the plausible difference between respondents
and nonrespondents, the sample is considered to be representative for the population of
people who will answer survey questions but not for the target population. Therefore,
inferences based only on the respondents do not seem to be valid. When nonresponse is
inevitable and non-ignorable, there are ways to compensate.

2. Simple Random Sampling (SRS)

Simple random sampling is the most common probability sampling procedure. Although
it is referred to as simple random sampling, this procedure is very important because fully
understanding simple random sampling is a prerequisite for further studies in other sam-
pling techniques. In simple random sampling, every element in the population has an equal
probability of being selected in the sample. Intuitively, each subset of a fixed number of
elements in the population has an equal probability of being selected as a sample.

2.1 Estimation in Simple Random Sampling

In many sampling studies, the most common objective is to estimate the population total,
mean, or proportion. The estimation of population total is emphasized here because esti-
mated population total divided by the population size yields the estimated population mean
and estimating proportion is a special form of estimating mean. To derive the estimator of
the population total, let U = {1, 2, ..., N} and let S be a set of n elements chosen from U .
Let Uy = {yi | i ∈ U} denote the population of size N , then yi is the survey characteristic
of the ith unit and the simple random sample is denoted by Sy = {yi | i ∈ S}. Let t and

ts be population total and sample total, respectively, then t =
N∑
i=1

yi and ts =
∑
i∈S

yi. The
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unbiased estimator of the population mean,

Y =
t

N
, (1)

is simply the sample mean, y =
ts
n

. The population total is estimated by substituting y for

Y in (1), so t̂ = N
n ts. Note that t and Y are unknown since, in a survey, a sample is a small

portion of the population, i.e., n < N . In fact, n is much smaller than N, and this is the
idea of sampling using n units to represent N units, i.e, one unit in the sample represents
N/n units in the population. Suppose that the perfect representative sample is given, then a
logical relation between the sample total and the population total should be ts : t = n : N .
From this relation, one can see that the estimation of the population total is

t̂ =
N

n
ts. (2)

Let wi = N/n for all i ∈ S, then (2) may be rewritten as

t̂ =
∑
i∈S

wiyi, (3)

where wi is called the sampling weight. Sampling weights are calculated to help simplify
the calculation in many sample surveys. More importantly, making adjustments on sam-
pling weights may help reduce nonresponse bias.

Example 2.1. A simple random sample of size 40 drawn from a population of size 120 is
illustrated in Figure 2.1. In this sample design, wi = 120

40 for all i ∈ S, i.e., one selected
unit represents 3 units including itself in the population.

Cornfield (1944) introduced a useful method of deriving the expected value and the
variance of an estimator in sampling without replacement from a finite population. In order
to use the method the researcher must show that t̂ is an unbiased estimator of t and to obtain
the variance of t̂. Let Zi be a random variable such that

Zi =

{
1, i ∈ S
0, i ∈ S ′

.

Note that E (Zi) = n/N , and E (ZiZj) =
n
N

n−1
N−1 . By definition, given n and N , the vari-

ance of t̂ is V ar
(
t̂ | n,N

)
= E

[(
t̂− t

)2 | n,N], and it can be shown V ar
(
t̂ | n,N

)
=

N2
(
1− n

N

)
S2

n , where S2 = (N − 1)−1
N∑
i=1

(yi − Y )2 , where the unknown S2 can be
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estimated by the sample variance, s2 = (n− 1)−1
∑
i∈S

(yi − y)2. Thus,

̂V ar
(
t̂ | n,N

)
= N2

(
1− n

N

) s2
n

(4)

is an unbiased estimator of V ar
(
t̂ | n,N

)
.

2.2 Nonresponse in Simple Random Sampling

Two widely discussed remedies for nonresponse are imputation and weighting adjustment.
In imputation, the researcher may fill in missing values by plausible values which are gen-
erated from observed variables, hence imputation is the common remedy for item nonre-
sponse. There are many imputation procedures used such as hot-deck imputation, cold-
deck imputation, regression imputation, multiple imputation, and fractional imputation.
However, our research focuses on weighting adjustment, in which sampled units are clas-
sified into classes by auxiliary information, and then each responding sampled unit is as-
signed an adjustment weight calculated by taking the inverse of the response rate of the
corresponding class. Responding sampled units in a class with low response rate are as-
signed higher weights than those in a class with a high response rate. Weighting adjustment
is the common remedy for unit nonresponse, and it does not require filling in gaps in the
data. A weighted estimator is unbiased under the assumption the probability of nonresponse
is the same for all units within a class. Although the assumption is usually not satisfied in
practice, it is more reasonable than to assume that the probability of nonresponse is the
same for all units in the sample, hence nonresponse is ignorable. As a result, weighting
adjustment might not eliminate nonresponse bias but it is useful for reducing nonresponse
bias.

Example 2.2. The small data set in Table 2. is created to mimic the situation in Example
1.1 in which one can see both item nonresponse and unit nonresponse. This sample of size,
n = 40, is drawn from the population of size, N = 120. The goal is to estimate t, the total
average monthly electricity consumption in the region of interest. Y is the study variable;
X1, X2, and X3 are the auxiliary variables. X3 is obtained from other available sources
but not from the sampled units, hence it is always observed. Y , X1, and X2 are subject
to nonresponse. Suppose that nonresponse can be totally ignored and only observed Y s

are considered in the estimation, then t̂ and ̂V ar
(
t̂ | n,N

)
can be calculated by using (3)

and (4), respectively. Although t̂ may not be affected by the nonresponse, ̂V ar
(
t̂ | n,N

)
becomes large because n is 26 instead of 40. Consequently, the confidence interval may be
too wide and does not provide much information.

Ignoring nonresponse is usually not a good idea. The following are some possible
approaches to handling this data set.

• Fill in every gap in the data set by some imputation techniques.

• Form classes by X3 and perform weighting adjustment.

• Fill in the gaps in auxiliary information and form classes by the best possible set of auxil-
iary variables. Then, perform weighting adjustment.

• Fill in the gaps for the data points with sufficient auxiliary information. Weighting adjust-
ment can then compensate for the remaining nonresponse. Note that item nonresponse may
be treated as unit nonresponse when a respondent answers too few questions.
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Table 2: Hypothetical sample of 40 from a population of 120

ID X1 X2 X3 Y

1 3 - 1 2500
2 2 1 1 500
9 3 3 1 -
10 1 - 1 -
12 1 4 2 4000
19 3 1 1 1500
23 3 2 2 -
28 4 2 1 2500
30 3 - 1 1000
32 2 1 1 2000
33 2 2 1 3000
36 3 2 1 3000
37 - - 1 -
43 - - 2 -
44 1 3 1 2000
52 3 1 1 1000
53 1 - 1 4500
58 4 - 1 500
60 3 2 1 2000
63 3 2 1 1500

ID X1 X2 X3 Y

65 1 2 1 1500
66 3 2 1 2500
70 3 1 1 500
73 3 2 1 -
75 1 - 2 2000
79 4 - 1 -
83 1 3 1 3500
84 1 3 2 -
85 3 1 1 1000
86 2 3 1 3000
88 - - 2 -
89 2 2 2 -
95 1 - 2 -
96 1 2 1 2500
99 - - 2 -
101 3 1 1 2000
104 3 1 1 1500
110 2 - 1 2500
112 1 - 1 -
117 2 3 2 -

Note: X1=1 house, =2 mobile home, =3 apartment,=4 other; X2=1 one bedroom, =2 two
bedrooms,= 3 three bedrooms,=4 at least four bedrooms; X3=1 the community was estab-
lishd after 1950, =2 otherwise; Y denotes average monthly electrical usage in kWh.

Lohr (2009) noted that response rates can be manipulated by defining them differently
and presented several formulas that are used in surveys for calculating response rates. Here,
for demonstration purposes, assume that only one variable is to be observed in a survey.
Therefore, the calculation of response rates is straightforward. Let Y be the study variable
subject to nonresponse, and the response rates are calculated by dividing the number of
observed Y s by the number of units in sample. Let m be the number of observations
obtained from the simple random sample of size n drawn from the population of size N
and let r · 100% denote the response rate, where r = m

n . Figure 2.1 displays the sample
with 100%, a response rate that is nearly impossible to achieve in surveys. The following
example is an altered Example 2.1 in which nonresponse occurs. It shows the effect of
ignoring nonresponse.

Example 2.3. Consider the situation in Example 1.1 again. The goal is to estimate the total
average monthly electricity consumption in the region of interest. Let Y denote the average
monthly electrical usage. Suppose that the sample is shown in Figure 2.3 in which O and
M represent selected persons who do not give information about their average monthly
electrical usage while H and N represent selected persons who answer the question about
their average monthly electrical usage. The response rate is 65% because m = 26 and
n = 40.

Since the sample is drawn from a telephone directory, selected persons’ addresses are
usually available notwithstanding nonresponse. This additional information enables the
researcher to find out in what community a person lives. Suppose it is observed that housing
units in old communities are generally larger than those in new communities. Also, it is
reasonable to state that people who live in large properties normally have higher electrical
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usage than those who live in small properties. Ideally, one would like to form classes by
some characteristics and then view the group of respondents in each class as a simple
random sample of the corresponding class. Consider only Y and X3, then the data set
in Table 2. can be classified into two groups by the age of the community, X3. One can
visually tell the difference in response rate between the two classes in Figure 2.4. Class I
is comprised of n1 = 30 people and m1 = 24 out of 30 people are respondents. Thus, the
response rate in class I is 80%, i.e., r1 = 0.8. Class II is comprised of n2 = 10 people
and only m2 = 2 out of 10 people are respondents. Thus, the response rate in class II is
20%, i.e., r2 = 0.2.
Suppose that people in class II consume more electricity than people in class I , then
ignoring nonresponse can seriously bias the estimate. To show that, use the data of the 26
respondents to estimate the total average monthly electricity consumption, t. This can be
thought of as taking a simple random sample of size, m = 26, drawn from the population
of size, N = 120, so here, S is a set containing 26 respondents’ IDs. The sampling weight
is N/m. Use (3) to find t̂ ≈ 249, 231.

As an example, assume that the sample is representative and the classification is perfect,
then the group of respondents in each class can be viewed as a simple random sample
obtained from a corresponding subpopulation. Let N1 and N2 be the number of members
in subpopulation I and the number of members in subpopulation II , respectively. Since
the sample is representative, then

nc
Nc

=
n

N
holds for c = 1, 2. Therefore, N1 = 90 and

N2 = 30. Let y1 and y2 be the mean average monthly electrical usage in class I and
II , respectively. So, y1 = 2, 000 and y2 = 3, 000. Let Y 1 and Y 2 be the mean average
monthly electrical usage in subpopulation I and II , respectively, then t = N1Y 1 +N2Y 2.
The reasonable estimate of t should be: t̂adj = N1y1 +N2y2 = 270, 000.

If yc is close to Y c for c = 1, 2, then the difference between t̂adj and t will be small.
Assume that y1 = Y 1 and y2 = Y 2, then t̂adj = t. Compare t̂ with t̂adj , one may conclude
that t̂ underestimates t, and

∣∣t̂− t∣∣ is large if:

• for a fixed r2 − r1 6= 0,
∣∣Y 2 − Y 1

∣∣ is large.

• for a fixed Y 2 − Y 1 6= 0, |r2 − r1| is large.

If r2 = r1 or Y 2 = Y 1, then t̂ = t.

2.3 Weighting Adjustment in Simple Random Sampling

In general, suppose that the classification forms C classes. The set, S, containing the

identification numbers of sampled units can be partitioned so that S =
C⋃
c=1
Sc. Let U =
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Table 3: The composition of sample response and nonresponse

c 1 2 ... C Note

mc m1 m2 · · · mC m =
C∑
c=1

mc

nc −mc n1 −m1 n2 −m2 · · · nC −mC n−m

nc n1 n2 · · · nC n =
C∑
c=1

nc

Nc N1 N2 · · · NC N =
C∑
c=1

Nc

rc
m1

n1

m2

n2
· · · mC

nC

m

n

S ∪ S ′. There exist partitions U1, U2, · · · , UC , such that Sc ⊂ Uc for c = 1, 2, · · · , C.
Let Ac be the set that contains the identification numbers of responding units in class c, so
Ac ⊂ Sc for c = 1, 2, · · · , C. Let Nc, nc, and mc denote the number of elements in Uc,

Sc, and Ac, respectively, and assume that mc > 1 for c = 1, 2, · · · , C. So, m =
C∑
c=1

mc,

n =
C∑
c=1

nc, and N =
C∑
c=1

Nc. The overall response rate and response rate for each class

can be calculated and compared by constructing a table similar to Table 3. Suppose that
each of the nc units has the same probability of responding, then mc responding units may
be interpreted as a simple random sample drawn from the nc sampled units. To interpret in
terms of weighting, the mc units is to represent the nc units, so each of the mc units has
a weight of

nc
mc

. For c = 1, 2, · · · , C, let yci be the observation of the study having the

identification number, i, and let tsc =
∑
i∈Sc

yci. Let t =
C∑
c=1

tc and tc =
∑
i∈Uc

yci, then tc

can be estimated by
Nc

nc
· tsc. Since not every yci where i ∈ Sc is available, tsc should be

estimated. Let tac =
∑
i∈Ac

yci, then t̂sc =
nc
mc
· tac. If Nc is known for c = 1, 2, · · · , C,

then t̂c =
Nc

nc
t̂sc =

Nc

nc

nc
mc
· tac =

Nc

mc

∑
i∈Ac

yci.

It can be regarded as using a simple random sample of size mc to represent the popula-
tion of size Nc. Therefore, the adjusted estimator of t is

t̂adj =

C∑
c=1

∑
i∈Ac

wciyci (5)

where wci = Nc/mc, and it can be expressed as wci = wbciwadjci where wbci = Nc/nc is
called the base weight in class c and wadjci = nc/mc is called the nonresponse adjustment
weight in class c. In (5), Nc should be known for all c = 1, 2, · · · , C, and t̂adj is also called
the post-stratified estimator of t that may also be employed in adjusting under-coverage.

Generally, t̂adj should provide a better estimate than t̂ =
∑
i∈A

N

m
yi where nonresponse is

totally ignored.
To show that t̂ is an unbiased estimator of t, follow the method proposed by Cornfield
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(1944) and define:

Zci =

{
1, i ∈ Sc
0, i ∈ S ′c

and Aci =

{
1, i ∈ Ac
0, i ∈ A′c

.

Thus,E (Zci) = nc/Nc,E (Aci) = mc/nc, andE (ZciAci) = mc/Nc. For c = 1, 2, · · · , C,
let uc = (mc, nc, Nc)

′, then it can be shown thatE
(
t̂c | uc

)
= tc. Since themc responding

units can be regarded as a simple random sample of size mc representing the population of
size Nc for c = 1, 2, · · · , C, then

V ar
(
t̂c | uc

)
= N2

c

(
1− mc

Nc

)
S2
c

mc
(6)

where S2
c = (Nc − 1)−1

∑
i∈Uc

(yci − tc/Nc)
2. Note that (6) is just the analogous to the

variance of t seen in Section 2.1. Therefore, E
(
t̂adj | u

)
= E

(
C∑
c=1

∑
i∈Ac

Nc

mc
yci | u

)
=

C∑
c=1

E
(
t̂c | uc

)
=

C∑
c=1

tc = t, and V ar
(
t̂adj | u

)
= V ar

(
C∑
c=1

t̂c | u
)

=
C∑
c=1

V ar
(
t̂c | uc

)
=

C∑
c=1

N2
c

(
1− mc

Nc

)
S2
c

mc
, where u = (m1, · · · ,mC , n1, · · · , nC , N1, · · · , NC)

′. In the post-

stratified estimator, the estimated variance (5) is

̂V ar
(
t̂adj | u

)
=

C∑
c=1

N2
c

(
1− mc

Nc

)
s2c
mc

(7)

where s2c = (mc − 1)−1
∑
i∈Ac

(yci − tac/mc)
2; E

(
s2c
)
= S2

c .

So far, the estimation can be done when Nc is available for c = 1, 2, · · · , C. However,
if this is not the case, consider the example of the perfect simple random sample in Example
2.3 in which the ratio of each sub sample size to its corresponding subpopulation size
is equal to the ratio of the sample size to the population size. Although this condition
is almost impossible to satisfy in a single sampling activity, the sampling distribution of
nc/Nc should be centered at n/N . That is E(nc/Nc) = n/N and E(Nc/nc) = N/n.
Therefore, t can be estimated by

t̃adj =
C∑
c=1

∑
i∈Ac

w∗ciyci (8)

where w∗ci =
N

n

nc
mc

and t̃adj is called the weighting class estimator of t.

Let u∗ = (m1, · · · ,mC , n1, · · · , nC)′; therefore, it can be shown that the expected

value of t̃adj given u∗, that is E
(
t̃adj | u∗

)
= t +

C∑
c=1

nc
n

(
N

Nc
tc − t

)
6= t. The variance

of t̃adj given u∗ can be estimated by substituting
nc
n
·N for Nc in (7). Thus,

˜V ar
(
t̃adj | u∗

)
=

C∑
c=1

(
N · nc

n

)2(
1− n

N

mc

nc

)
s2c
mc

. (9)

Consider the weighting class estimator. Oh and Scheuren (1983) proposed that an
approximate 100(1− α)% confidence interval for t may be constructed by

t̃adj ± zα/2

√
˜MSE
(
t̃adj | u∗

)
(10)
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where zα/2 is the (1− α/2)th percentile of the standard normal distribution and

˜MSE
(
t̃adj | u∗

)
= ˜V ar

(
t̃adj | u∗

)
+

˜[
Bias

(
t̃adj | u∗

)]2
=

C∑
c=1

(
N · nc

n

)2(
1− n

N

mc

nc

)
s2c
mc

+
N − n
N − 1

C∑
c=1

nc
n2

(
N · tac

mc
− t̃adj

)2

.

3. Stratified Random Sampling (STR)

In simple random sampling, it is possible that some certain groups of sampling units in
the population are underrepresented and hence, will result a bad sample. Stratified random
sampling enables one to avoid having a bad sample and to improve the precision of esti-
mates for a fixed sample size or to achieve the same level of precision with a sample size
not as large as in simple random sampling. In stratified random sampling, the population of
size N is divided into H ≥ 2 subpopulations called strata. Let stratum h have size Nh for
h = 1, 2, · · · , H . The sample is obtained by randomly selecting nh sampling units from
stratum h for h = 1, 2, · · · , H . Therefore, H simple random samples are obtained in the
stratified random sampling. Stratified random sampling works well when the variation in
the measurement of interest is low within the strata but is high between the strata.

Suppose that the total sample size is n so n =
H∑
h=1

nh. To allocate the sample among

the strata may depend on the sample design or some constraints such as costs. Discussions
of the allocation of sampling units among the strata can be found in Cochran (1977) and
Lohr (2009).

3.1 Estimation in Stratified Random Sampling

Since a procedure of simple random sampling is implemented in each stratum, the results
of the preceding sections can be applied directly to each stratum. Let index set, U =
{1, 2, · · · , N}, denote the population of size N . Let Uh denote stratum h of size Nh for

h = 1, 2, · · · , H such that U =
H⋃
h=1

Uh, N =
H∑
h=1

Nh, and Uh ∩ Uk = ∅ for h 6= k. Let Sh
denote the simple random sample of size nh drawn form Uh for h = 1, 2, · · · , H and let

S =
H⋃
h=1

Sh. Therefore the total sample size is n =
H∑
h=1

nh. Let yhi be the measurement of

interest in stratum h, then th =
∑
i∈Uh

yhi and tstr =
H∑
h=1

th are the total in stratum h and the

population total, respectively. The unbiased estimator of th is

t̂h =
∑
i∈Sh

wstrhiyhi (11)

where wstrhi = Nh/nh, and the variance of t̂h given nh and Nh is V ar
(
t̂h | nh, Nh

)
=

N2
h(1 − nh/Nh)S

2
h/nh where S2

h = (Nh − 1)−1
∑
i∈Uh

(
yhi − Y h

)2 and Y h = th/Nh.

The sample variance obtained from stratum h is s2h = (nh − 1)−1
∑
i∈Sh

(yhi − yh)
2 where

yh = n−1h
∑
i∈Sh

yhi and E
(
s2h
)
= S2

h. Therefore,

̂V ar
(
t̂h | nh, Nh

)
= N2

h

(
1− nh

Nh

)
s2h
nh
. (12)
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Since the population total is tstr =
H∑
h=1

th, then it can be estimated by t̂str =
H∑
h=1

t̂h. Thus,

t̂str =
H∑
h=1

∑
i∈Sh

wstrhiyhi, and E
(
t̂str | q

)
=

H∑
h=1

E
(
t̂h | nh, Nh

)
=

H∑
h=1

th = tstr, where

q = (n1, · · · , nH , N1, · · · , NH). The variance of t̂str given q can be estimated by

̂V ar
(
t̂str | q

)
=

H∑
h=1

N2
h

(
1− nh

Nh

)
s2h
nh

(13)

because V ar
(
t̂str | q

)
= V ar

(
H∑
h=1

t̂h | q
)

=
H∑
h=1

N2
h

(
1− nh

Nh

)
S2
h

nh
.

3.2 Nonresponse in Stratified Random Sampling

In stratified random sampling, the researcher deals with multiple simple random samples.
Suppose that there are H strata and a simple random sample of size nh is obtained from
each of the H strata having size Nh. Thus, there are H simple random samples. Consider
only unit nonresponse and for h = 1, 2, · · · , H , let mh denote the number of the observa-
tions obtained from the nh sampled units. If mh < nh (which is almost always the case
in surveys) then nonresponse occurs in the sample obtained from stratum h and estimation
without adjustments might not produce the best results for making inferences about the
subpopulation as well as the population.

3.3 Weighting Adjustment in Stratified Random Sampling

Suppose that a stratified random sampling procedure is carried out and there exists nonre-
sponse. Assume that it is possible to divide the sample selected from stratum h into Ch
classes by some available auxiliary information for h = 1, 2, · · · , H such that every sam-
pled units in the same class has an equal probability of responding. Let set, Shc, denote
class c having size nhc in the sample selected from stratum h for c = 1, 2, · · · , Ch and

h = 1, 2, · · · , H , then Sh =
Ch⋃
c=1
Shc where Shc ∩ Shk = ∅ for h 6= k and nh =

Ch∑
c=1

nhc.

For h = 1, 2, · · · , H , let Uh1, Uh2, · · · , and UhCh
be the substrata of Uh and each of them

has size Nh1, Nh2, · · · , and NhCh
, respectively, so that Nh =

Ch∑
c=1

Nhc and Shc ⊂ Uhc.

Let Ahc denote the group of responding units in class c of the sample drawn from
stratum h and let mhc be the size of Ahc. For h = 1, 2, · · · , H , rhc denotes the response
rate in Shc. In post-stratified approach, the base weight, wbhci = Nhc/nhc, indicates that
one unit in Shc is to representNhc/nhc units in substratum hc. The nonresponse adjustment
weight, wadjhci = nhc/mhc, indicates that one unit in Ahc is to represent nhc/mhc units in
Shc. The final weight, whci = Nhc/mhc is

whci = wbhci × wadjhci . (14)

This indicates that one unit in Ahc represents Nhc/mhc units in substratum hc.
Using the techniques in the preceding sections, one can find an unbiased estimator,

given uhc = (mhc, nhc, Nhc)
′, for thc, the total of substratum hc:

t̂hc =
∑
i∈Ahc

whciyhci. (15)
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The variance of t̂hc given uhc may be estimated by

̂V ar
(
t̂hc | uhc

)
= N2

hc

(
1− mhc

Nhc

)
s2hc
mhc

where s2hc =
1

mhc − 1

∑
i∈Ahc

(
yhci −

tahc
mhc

)2

and tahc =
∑

i∈Ahc

yhci. Moreover, for h =

1, 2, · · · , H , the post-stratified estimator of the total of stratum h is

(
t̂h
)
adj

=

Ch∑
c=1

∑
i∈Ahc

whciyhci (16)

andE
[
(t̂h)adj | uh

]
= th where uh = (mh1, · · · ,mhCh

, nh1, · · · , nhCh
, Nh1, · · · , NhCh

)′

since E
(
t̂hc | uhc

)
= thc. Thus, for h = 1, 2, · · · , H , the variance of

(
t̂h
)
adj

given uh

can be estimated by
̂

V ar
[(
t̂h
)
adj
| uh

]
, by summing ̂V ar

(
t̂hc | uhc

)
from c = 1 to C.

Therefore, using a post-stratified approach, the population total can be estimated by

(
t̂str
)
adj

=
H∑
h=1

Ch∑
c=1

∑
i∈Ahc

whciyhci (17)

and it is unbiased given u� = (u1;u2; · · · ;uH) since E
[(
t̂h
)
adj
| uh

]
= th. The variance

of
(
t̂str
)
adj

given u� may be estimated by

̂
V ar

[(
t̂str
)
adj
| u�
]
=

H∑
h=1

Ch∑
c=1

N2
hc

(
1− mhc

Nhc

)
s2hc
mhc

. (18)

Suppose that the Nhc is not available for c = 1, 2, · · · , Ch and h = 1, 2, · · · , H , then con-
sider the weighting class estimator: t̃hc =

∑
i∈Ahc

w∗hciyhci where w∗hci = wstrhiwadjhci .

That is replacing wbhci , c = 1, 2, · · · , Ch with wstrhi =
Nh

nh
in (14). Furthermore,(

t̃h
)
adj

=
Ch∑
c=1

t̃hc and
(
t̃str
)
adj

=
H∑
h=1

(
t̃h
)
adj

. Therefore, using weighting class approach,

the population total may be estimated by

(
t̃str
)
adj

=

H∑
h=1

Ch∑
c=1

∑
i∈Ahc

w∗hciyhci (19)

Let u∗h = (mh1, · · · ,mhCh
, nh1, · · · , nhCh

)′ and let u�∗ = (u∗1;u
∗
2; · · · ;u∗H). To show

that E
[(
t̃str
)
adj
| u�∗

]
6= tstr, define:

Zhci =

{
1, i ∈ Shc
0, i ∈ S ′hc

and Ahci =

{
1, i ∈ Ahc
0, i ∈ A′hc

.

It can be shown that E (Zhci) =
nhc
Nhc

, E (Ahci) =
mhc

nhc
, E (ZhciAhci) =

mhc

Nhc
for c =

1, 2, · · · , Ch and h = 1, 2, · · · , H , andE
[(
t̃str
)
adj
| u�∗

)
= tstr+

H∑
h=1

Ch∑
c=1

nhc
nh

(
Nh

Nhc
thc − th

)
.
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The variance of
(
t̃str
)
adj

given u�∗ may be estimated by replacing Nhc with
nhc
nh
·Nh

in (18). That is

˜
V ar

[(
t̃str
)
adj
| u�∗

]
=

H∑
h=1

Ch∑
c=1

(
Nh ·

nhc
nh

)2(
1− nh

Nh

mhc

nhc

)
s2hc
mhc

. (20)

If proportional allocation is used in the sample design, then
nh
Nh

=
n

N
for all h = 1, 2, · · · , H .

In (19), w∗hci becomes
N

n
· wadjhci and (20) can be written as

˜
V ar

[(
t̃str
)
adj
| u�∗

]
=

(
N

n

)2 H∑
h=1

Ch∑
c=1

n2hc

(
1− n

N

mhc

nhc

)
s2hc
mhc

.

Oh and Scheuren (1983) proposed
˜

MSE
[(
t̃str
)
adj
| u�∗

]
as

˜
MSE

[(
t̃str
)
adj
| u�∗

]
=

˜
V ar

[(
t̃str
)
adj
| u�∗

]
+

˜{
Bias

[(
t̃str
)
adj
| u�∗

]}2
,

and
˜{

Bias
[(
t̃str
)
adj
| u�∗

]}2
=

H∑
h=1

Nh − nh
Nh − 1

Ch∑
c=1

nhc
n2h

[
Nh ·

tahc
mhc

−
(
t̃h
)
adj

]2
.

4. Two-Stage Cluster Sampling

A multi-stage random sample is constructed by selecting a sample in at least two stages.
Sampling in stages enables one to reduce the population and to combine sampling proce-
dures. Suppose the population can be divided into a number of subpopulations. Contrary
to stratification, it is expected that the variance with respect to the measurements of interest
is high within each subpopulation, whereas the variance with respect to the measurements
of interest is low between subpopulations. The subpopulations are called clusters here, and
they are usually naturally formed from, for example, communities, city blocks, and schools.
In the first stage, a random sample of clusters is obtained, and a number of sub-clusters are
formed within each selected cluster for selection in the next stage. The subgroups formed
for selection in each stage prior to the final stage can be called the population units in gen-
eral, and the process of selecting population units within each population unit obtained in
the previous stage can be repeated until the sizes of the population units meet the require-
ments. In the last stage, a random sample of sampling units is obtained from each selected
population unit.

4.1 Estimation in Two-Stage Cluster Sampling

Suppose that the population consists of L clusters, then in the first stage, let a simple ran-
dom sample of l clusters be obtained. Let τ be the population total and let tg be the total
of cluster g for g = 1, · · · , L. Let index set U = {1, 2, · · · , L} denote the population,
then τ =

∑
g∈U

tg. Let S denote the simple random sample of size l drawn from U , then an

unbiased estimator of τ is
τ̂ =

∑
g∈S

wgtg (21)
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where wg = L/l. The variance of τ̂ given l and L can be estimated by ̂V ar (τ̂ | l, L) =

L2 (1− l/L) s
2
t

l
where s2t = (l − 1)−1

∑
g∈S

(
tg − t

)2 and t = l−1
∑
g∈S

tg. These estimators

are usable in one-stage cluster sampling, but additional work is required in two-stage cluster
sampling.

Since, in the second stage, simple random sample g is to be drawn from cluster g for
all g ∈ S, then tg in (21) is not observed but should be estimated. Let Ug denote cluster g
having size Ng, and let Sg denote simple random sample g having size ng drawn from Ug
for g ∈ S . Let ygi be the measurement of interest obtained from sampling unit i in cluster
g, then for g ∈ S, an unbiased estimator of tg is

t̂g =
∑
i∈Sg

wgiygi (22)

wherewgi =
Ng

ng
. The variance of t̂g given ng andNg can be estimated by ̂V ar

(
t̂g | ng, Ng

)
Combining (21) and (22), the unbiased estimator of τ for two-stage cluster sampling is

given by
ˆ̂τ =

∑
g∈S

∑
i∈Sg

wgwgiygi. (23)

Lohr (2009) proved the variance of ˆ̂τ has two components: the variability between clusters
and the variability of sampling units within each cluster. The variance of ˆ̂τ can be estimated
by

̂
V ar

(
ˆ̂τ | l, L,q

)
= L2

(
1− l

L

)
s2
t̂

l
+
L

l

∑
g∈S

N2
g

(
1− ng

Ng

)
s2g
ng

(24)

where q =
{
(ng, Ng)

′ | g ∈ S
}

, s2
t̂
= (l − 1)−1

∑
g∈S

(
t̂g − t̂

)2
, and t̂ = l−1

∑
g∈S

t̂g.

4.2 Nonresponse in Two-Stage Cluster Sampling

Nonresponse appears in the second stage of two-stage cluster sampling. If a single cluster
is selected in the first stage, then the nonresponse problem in the sample drawn from this
cluster is identical to that in a regular simple random sampling. However, here one deals
with l simple random samples with nonresponse. For g ∈ S, suppose that there are mg

responding units in simple random sample g, then the response rate for sample g is rg =
mg

ng
. Nonresponse appears if rg < 1.

4.3 Weighting Adjustment in Two-Stage Cluster Sampling

Assume that it is possible to divide sample g into Cg classes by some available auxiliary
information for all g ∈ S so that each unit in a class has an equal probability of responding.
Let Sgc denote class c of sample g consisting of ngc units and let Agc ⊂ Sgc denote a set
of mgc responding units in class c of sample g for c = 1, 2, · · · , Cg within each g ∈ S,

then ng =
Cg∑
c=1

ngc and mg =
Cg∑
c=1

mgc. For g ∈ S, let Ug1, Ug2, · · · , and UgCg be the

sub-cluster of Ug having size Ng1, Ng2, · · · , and NgCg , respectively, so that Ng =
Cg∑
c=1

Ngc
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and Sgc ⊂ Ugc. Suppose that Ngc are known for all g ∈ S and c = 1, 2, · · · , Cg. The
post-stratified estimator for the total of cluster g where g ∈ S is

(
t̂g
)
adj

=

Cg∑
c=1

∑
i∈Agc

wgciygci (25)

where wgci = wbgciwadjgci , wbgci =
Ngc

ngc
, and wadjgci =

ngc
mgc

. Thus, wgci =
Ngc

mgc
. The

variance of
(
t̂g
)
adj

given ug =
(
mg1, · · · ,mgCg , ng1, · · · , ngCg , Ng1, · · · , NgCg

)′ is esti-

mated by
̂

V ar
[(
t̂g
)
adj
| ug

]
=

Cg∑
c=1

N2
gc

(
1− mgc

Ngc

)
s2gc
mgc

where s2gc =
1

mgc

∑
i∈Agc

(
ygci − ygc

)2
and ygc =

1

mgc

∑
i∈Agc

ygci.

Since ˆ̂τ =
∑
g∈S

wg t̂g, then ˆ̂τadj =
∑
g∈S

wg
(
t̂g
)
adj

. When using post-stratified estimators

in the second stage to compensate for nonresponse, the unbiased estimator of the population
total is

ˆ̂τadj =
∑
g∈S

wg

Cg∑
c=1

∑
i∈Agc

wgciygci. (26)

The variance of ˆ̂τadj given u� = {ug | g ∈ S} may be estimated by

̂
V ar

(
ˆ̂τadj | l, L,u�

)
= L2

(
1− l

L

)
s2
t̂′

l
+
L

l

∑
g∈S

Cg∑
c=1

N2
gc

(
1− mgc

Ngc

)
s2gc
mgc

where s2
t̂′
= (l − 1)−1

∑
g∈S

[
(
t̂g
)
adj
− t̂adj ]2, and t̂adj = l−1

∑
g∈S

(
t̂g
)
adj

.

If using weighting class adjustment, then one can replace wgci with w∗gci =
Ng

ng
·wadjgci

in (25). Thus, the weighting class estimator of tg for g ∈ S is

(
t̃g
)
adj

=

Cg∑
c=1

∑
i∈Agc

w∗gciygci. (27)

Let u∗g =
(
mg1, · · · ,mgCg , ng1, · · · , ngCg

)′. Given u∗g, for g ∈ S, the variance of
(
t̃g
)
adj

and squared bias of
(
t̃g
)
adj

may be estimated by

˜
V ar

[(
t̃g
)
adj
| u∗g

]
=

Cg∑
c=1

(
Ng ·

ngc
ng

)2(
1− ng

Ng

mgc

ngc

)
s2gc
mgc

and
˜{

Bias
[(
t̃g
)
adj
| u∗g

]}2
=
Ng − ng
Ng − 1

Cg∑
c=1

ngc
n2g

[
Ngygc −

(
t̃g
)
adj

]2
,

respectively.
When using weighting class estimators in the second stage to compensate for nonre-

sponse, the estimator of τ is

˜̃τadj =
∑
g∈S

wg

Cg∑
c=1

∑
i∈Agc

w∗gciygci. (28)
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Given u�∗ =
{
u∗g | g ∈ S

}
, the variance of ˜̃τadj and squared bias of ˜̃τadj may be estimated

respectively by

˜V ar
(
˜̃τadj | l, L,u�∗

)
= L2

(
1− l

L

)
s2
t̃′

l
+
L

l

∑
g∈S

Cg∑
c=1

(
Ng ·

ngc
ng

)2(
1− ng

Ng

mgc

ngc

)
s2gc
mgc

and

˜[
Bias

(
˜̃τadj | l, L,u�∗

)]2
=
L

l

∑
g∈S

Ng − ng
Ng − 1

Cg∑
c=1

ngc
n2g

[
Ngygc −

(
t̃g
)
adj

]2
where s2

t̃′
= (l − 1)−1

∑
g∈S

[
(
t̃g
)
adj
− t̃adj ]2, and t̃adj = l−1

∑
g∈S

(
t̃g
)
adj

.

An approximate 100 (1− α)% confidence interval for τ may be constructed by

˜̃τadj ± zα/2

√
˜MSE
(
˜̃τadj | l, L,u�∗

)
(29)

where ˜MSE
(
˜̃τadj | l, L,u�∗

)
= ˜V ar

(
˜̃τadj | l, L,u�∗

)
+

˜[
Bias

(
˜̃τadj | l, L,u�∗

)]2
and

zα/2 is the (1− α/2)th percentile of the standard normal distribution.

5. Conclusion

Two very common weighting adjustments for unit nonresponse, post-stratification and
weighting class methods, are described in simple random sampling, stratified random sam-
pling, and two-stage cluster sampling. It is expected that these methods can be used to
reduce nonresponse bias. It is inappropriate to fully rely on these weighting adjustments
because the assumption of forming a group in which the nonresponse is completely neg-
ligible is rarely satisfied in the real world. A researcher should always try to avoid low
response rates. Furthermore, item nonresponse and unit nonresponse normally appear to-
gether; thus, some imputation techniques may be necessary as complementary remedies
since filling in missing values by using some known information could be efficient and
useful for obtaining desirable classification in weighting adjustments.
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