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Abstract: Several design-based, model-based, and model-assisted methods have been developed to adjust survey 

weights for nonresponse or coverage errors, to reduce variances through the use of auxiliary data or by restricting 

the range of the weights themselves.  Some methods directly change the weights, like calibration weighting and 

design-based ad hoc weight trimming methods.  Other methods implicitly adjust the weights, like robust 

superpopulation modeling approaches.  The generalized design-based method models the weights as a function of 

the survey response variables and using the smoothed weights predicted from the model to estimate finite population 

totals.  This paper provides empirical examples of how several adjustment methods change a given sample’s weights 

and the resulting impact on estimates. 
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1. Introduction: Differential Sample Weights 
 

Survey weights are important since they reflect the various sample design decisions made to select the sample units 

and a number of practical issues that arise when the data are collected and cleaned.  These issues can be both 

planned and unplanned (Henry and Valliant 2012) and occur in the data collection and post-data collection stages in 

sampling.  Practitioners also tend to think more in terms of weights, even though thinking in terms of estimators 

makes more statistical sense.  There are many weighting methods that differ based on the desired type of inference. 

We compare the weights produced from some of these methods in a particular problem. 

 

For all alternatives considered here, we will write estimators of totals in the form, ˆ
i ii s

T w y


  where s is the set 

of sample units, iw  is a weight for unit i, and iy  is a data value.  Practitioners often think of weighting as a distinct 

step in survey processing—not entirely divorced from estimation but somewhat removed from it.  In contrast, some 

of the ―robust‖ alternatives we cover are geared toward improving estimates for specific y’s.  As we illustrate, the 

weights for those alternatives depend on y.  Consequently, writing them as weighted sums of y’s may seem awkward 

but allows comparisons to be made with other weighting approaches. 

 

2. Alternative Weighting Methods 
 

2.1. Design-based Methods 

 

HT Estimator. We start with base weights, or Horvitz-Thompson (HT, 1952) weights.  These weights are the inverse 

of the probability of selection for each sample unit i , i.e.,  1,i i iw P i s     where s  denotes a probability 

sample of size n  drawn from a population of N  units.  The HT estimator for the finite population total for a finite 

population total of the variable of interest y  is then  

 

ˆ
HT i i i ii s i s

T y w y
 

   . (1) 

 

This estimator is unbiased for the finite population total in repeated  ps sampling, but can be quite inefficient due 

to variation in the selection probabilities if i  and iy  are not closely related.  Alternative sample designs, such as 

probability proportional to a measure of size, introduce variable probabilities of selection in (1).  The variability in 

selection probabilities can increase under complex multistage sampling and multiple weighting adjustments.  

Influential observations in estimating a population total using (1) can arise simply due to the combination of 

probabilities of selection and survey variable values.  Thus, the HT-based estimates from one particular sample may 

be far from the true total value, particularly if the probabilities of selection are negatively correlated with the 

characteristic of interest (see discussion in Little 2004). 
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Poststratification. Here the HT weights are adjusted such that they add up to external population counts by available 

domains.  This adjustment is used to correct an imbalance than can occur between the sample design and sample 

completion, i.e., if the sample respondent distribution within the external categories differs from the population (e.g., 

subgroups respond or are covered by the frame at different rates), as well as reduce potential bias in the sample-

based estimates. Denoting the poststrata by 1, ,d D , the poststratification estimator for a total involves adjusting 

the HT-weighted domain totals ( ˆ
dT ) by the ratio of known ( dN ) to estimated ( 1ˆ

d ii s
N  


 ) domain sizes.  

Here the case weights are ˆ
d d iN N   and the estimator is 

1
ˆ ˆ ˆD
PS d d dd

T N T N


 . 

 

Ad hoc Trimming/Weight Redistribution. There is limited literature and theory on design-based weight trimming 

methods, most of which are not peer-reviewed publications and focus on issues specific to a single survey or 

estimator.  Potter (1988; 1990) presents an overview of alternative procedures and applies them in simulations.  All 

design-based methods involve establishing an upper cutoff point for large weights, reducing weights larger than the 

cutoff to its value, then ―redistributing‖ the weight above the cutoff to the non-trimmed cases.  This ensures that the 

weights before and after trimming sum to the same totals (Kalton and Flores-Cervantes 2003).  The methods vary by 

how the cutoff is chosen.   

 

Chowdhury et al. (2007) describe the weight trimming method used to estimate proportions in the U.S. National 

Immunization Survey (NIS).  The ―current‖ (at the time of the article) cutoff value was    median 6i iw IQR w , 

where  iIQR w  denotes the inter-quartile range of the weights.  Versions of this cutoff (e.g., a constant times the 

median weight or other percentiles of the weights) have been used by other survey organizations (Battaglia et al. 

2004; Pedlow et al. 2003; Appendix A in Reynolds and Curtin 2009).  

 

2.2. Model-based Methods 

 

We apply two model-based approaches, the super population (e.g., Valliant et al. 2000) and the generalized design-

based (e.g., Beaumont 2008).  Both methods incorporate models into estimation in very different ways.  Each has an 

associated set of case weights though often then are implicitly defined.  For the superpopulation approach, we 

consider estimation using the Best Linear Unbiased Predictor (BLUP) and some robust-BLUP methods.  The 

generalized design-based approach uses a model between the weights and survey values, then weights are replaced 

with their predictions from the model. 

 

Best Linear Unbiased Prediction. This approach assumes that the population survey response variables Y  are a 

random sample from a larger (―super‖) population and assigned a probability distribution  P Y θ  with parameters 

θ .  Typically the BLUP (e.g., Royall 1976) method is used to estimate the model parameters.  Here, for observation 

i , we assume that the population values of Y  follow the model 

     2 2, , ,T
M i i i M i i i M i j ijE y Var y D Cov y y D   x x β x , i j  (2) 

 

where ix  denotes a p -vector  of benchmark auxiliary variables for unit i , which is known for all population units, 

and 0iD   is a constant associated with  population unit i .  We consider only the case where the y’s are 

uncorrelated.  For  1, ,
T

Ny yY  denoting the vector of population y -values, the total is TT  1 Y , where1 is a 

vector of N 1’s.The population total can also be written as T T
s s r rT  1 y 1 y  where s1  and r1  are vectors of n and 

N-n 1’s.  Denote a linear estimator of the total as ˆ T
s sT  w y , where  1, ,

T
s nw ww  is a n -vector of 

coefficients.  The population matrix of covariates is 
s

r

 
  
 

X
X

X
, where sX  is the n p  matrix for sample units and 

rX  is the  N n p   matrix for nonsample units.  Under the general prediction theorem (Thm. 2.2.1 in Valliant et 

al. 2000), the optimal estimator of a total is then 

 ˆˆ T T T
opt s s r rT  1 y 1 X β , (3) 
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where 1 1ˆ T
s s ss s
 β A X V y , 1T

s s ss s
A X V X , and ssV  is the part of V for the sample units.  The optimal value of the 

weight vector is 1 1 T
s ss s s r r s

  w V X A X 1 1 .  

 

Note that the BLUP is also variable-specific since a separate model may be formulated for each y -variable.  The 

case weights depend on the covariate matrix X, the variance  MVar Y (and thus indirectly on the variable y ), and 

how the sample and non-sample units are designated.  They can be less than one, even negative.  However, this 

expression is a standard form for writing the case weights, which is beneficial when comparing between the 

alternatives.  The estimator for the total using these weights is model-unbiased under the BLUP model, and is only 

design-unbiased under special circumstances (e.g., Hansen et. al 1983). 

 

Since the efficiencies of the BLUP method depend on how well the associated model holds, these methods can be 

susceptible to model misspecification.  When comparing a set of candidate weights to a preferable set of weights, 

the difference in the estimated totals under the ―preferable‖ model attributed to model misspecification is a measure 

of design-based inefficiency or model bias.  To overcome the bias, the superpopulation literature has developed a 

few robust alternatives. Generally, each approach involves using a preferable alternative model to adjust the BLUP 

estimator for model misspecification and/or influential observations.  We describe two examples. 

 

Chambers et al.’s Robust BLUP.  Chambers et al. (1993) proposed an alternative to the BLUP approach that applies 

a model-bias correction factor to linear regression case weights.  This bias correction factor is produced using a 

nonparametric smoothing of the linear model residuals against frame variables known for all population units is 

applied to the BLUP estimator (3).  Suppose that the true model is  i i i i iy m v e x x , with working model 

variance   2
i i iVar y Dx .  The model bias in the BLUP total under this model is    ˆ

M BLUP ii r
E T T 


  x

, where      ˆT
i i M iE m  x x β x .  Since the residual ˆˆ T

i i ie y x β  (under the preferred model) is an unbiased 

estimator of  i x , the sample-based residuals can estimate the nonsample  i x  values.  This leads to the 

nonparametric calibration estimator for the finite population, given by  

 ˆ ˆˆ ˆˆT
C i i i BLUP ii s i r i s i s

T y e T 
   

       x β x , (4) 

 

In general, nonparametric case weights are  1 1 1T T
s ss sr s s r s ss sr r s s

       
  

w V V X A X X V V 1 1 m , where sm  

contains the sample residual-based estimates of  i x .  Here, the case weights are ( ) ˆi i BLUP i iw w e y   if 

0iy  , where ( )i BLUPw  are the original BLUP weights.  The estimator for the total using these weights is model-

unbiased under the preferred model, when the BLUP is not, and is also approximately design-unbiased. The weights 

depend directly on y  and, like the BLUP weights, they have no size restriction.  Chambers et al. (1993) used ridge 

regression to produce ˆˆ T
i i i ridgee y  x β .  Chambers (1996) proposed further extensions.  The robust BLUP is 

model-unbiased under the preferred model when the BLUP is not and the β̂ parameter estimates are less influenced 

by extreme observations.  

 

Difference Estimator.  Firth and Bennett (F&B 1998) produce a similar bias-correction factor to Chambers et al. 

(1993,) for a difference estimator (Särndal et al. 1992) as follows: 

  1 ˆˆ ˆ 1 T
D BLUP i i ii s

T T y 


    x β . (5) 

 

The case weights are  1
( ) ˆ1i i BLUP i i iw w e y     if 0iy  , where îe  comes from the BLUP model.  Again, 

these case weights depend directly on y  and have no size restrictions.   Estimator (5) is model-unbiased under the 

BLUP model, but it smoothes the effects of influential observations, and is also approximately design-unbiased.  
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Generalized Design-Based Method. A recently developed weight smoothing approach uses a model to trim large 

weights on highly influential or outlier observations.  The general framework and theory for estimating finite 

population totals was developed later by Beaumont (2008).  Generally, within a given observed sample, we fit a 

model between the weights and the survey response variables.  Denote M  as the model proposed for the weights, 

conditional on the sample y -values Y , sample inclusion indicators I , and the design used to select the sample  .  

The model M trims weights by removing variability in them.  This is different from the superpopulation model-

based approach, where the model describes the relationships between a survey response variable and a set of 

auxiliary variables.  Here only one model is fit and one set of smoothed weights is produced for all y -variables.  

The weights predicted from the model then replace the weights and are used to estimate the total.  The hope is that 

using regression predictions of the weights will eliminate extreme weights. 

 

One example of a weights model that is appropriate in pps samples (used in the empirical example) is the inverse 

model:   1 21 , T
M i i iiE w v   I Y H β , where iH  and 0iv   are known functions of the y -variables, the errors are 

 
i.i.d.

2~ 0,i  , and 
2,β  are unknown model parameters.  This model produces the smoothed weight 

1
ˆˆ T

i iw


 
 
H β , where β̂  is the generalized Least Squares estimate of β .   Since  ,i M iw E w I Y  is unknown, it 

is estimated with ˆ iw , found by fitting a model to the sample data.  The estimator for the finite population total is 

then ˆ ˆB i ii s
T w y


 , with case weights ˆ iw .  

 

2.3. Model-Assisted Weighting Methods  

 

Here two model-assisted approaches are discussed: the generalized regression (GREG) estimator and a robust 

estimator produced using penalized spline models.  Both are special forms of calibration estimators, where we 

incorporate an underlying model for the survey and auxiliary variables, but evaluate estimators with respect to their 

design-based properties. 

 

Generalized Regression (GREG).  Case weights resulting from calibration on benchmark auxiliary variables can be 

defined with a global regression model for the survey variables (Kott 2009).  Deville and Särndal (1992) proposed 

the calibration approach that involves minimizing a distance function between the base weights and final weights to 

obtain an optimal set of survey weights.  Here ―optimal‖ means that the final weights produce totals that match 

external population totals for the auxiliary variables X  within a margin of error.   

 

Specifying alternative calibration distance functions produces alternative estimators.  A least squares distance 

function produces the general regression estimator (GREG)  ˆ ˆ ˆ ˆT
GREG HT X XHT i i ii s

T T g y 


   B T T , 

where ˆ
XHT i i i ii s i s

w 
 

  T x x  is the vector of Horvitz-Thompson totals for the auxiliary variables, 

1

N
X ii
T x  is the corresponding vector of known totals, 1 1 1ˆ T T

s s ss s s
  B A X V Π y  is the regression coefficient, 

with  1 1T
s s ss s s

 A X V Π X , T
sX  is the matrix of ix  values in the sample,  ss idiag vV  is the diagonal of the 

variance matrix specified under the model, and  s idiag Π  is the diagonal matrix of the probabilities of 

selection for the sample units.  In the second expression for the GREG estimator,   1 1ˆ1
T

i X XHT s i ig v   T T A x  

is called the ―g-weight.‖  Thus, the case weights here  are i i iw g  . 

 

The GREG estimator for a total is model-unbiased under the associated working model and is approximately design-

unbiased when the sample size is large (Deville and Särndal 1992).  When the model is correct, the GREG estimator 

achieves efficiency gains.  If the model is incorrect, then the efficiency gains will be dampened (or nonexistent) but 

the GREG estimator is still approximately design-unbiased.  However, the case weights can be negative or less than 

one.  Calibration can also introduce considerable variation in the survey weights.  To overcome the first problem, 

extensions to limit the range of calibration weights have been developed that involve either using a bounded distance 
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function (Rao and Singh 1997; Singh and Mohl 1996) or bounding the range of the weights using an optimization 

method (such as quadratic programming, Isaki et al. 1992).  Chambers (1996) proposed penalized calibration 

optimization function to produce non-negative weights and methods that impose additional constraints on the 

calibration equations. 

  

p-spline (Robust GREG).  Recent survey methodology research has focused on a class of estimators based on 

penalized (p-) spline regression to estimate finite population parameters (Zheng and Little 2003, 2005; Chen et. al 

2010; Breidt and Opsomer 2000; Breidt et al. 2005).  Breidt et al. (2005) develop a model-assisted p-spline 

estimator similar to the GREG estimator.  In application, they showed their p-spline estimator is more efficient than 

parametric GREG estimators when the parametric model is misspecified, but the p-spline estimator is approximately 

as efficient when the parametric specification is correct.   

 

Assuming that quantitative auxiliary variables ix  are available and known for all population units, Breidt et al. 

(2005) propose the following superpopulation regression model:    
ind

, ~ 0,i i i i iy m x N D   .  Treating 

  , :i ix y i U  as one realization from this model, the spline function using a linear combination of truncated 

polynomials is    0 1 1
, , 1, ,

pQp
p q p qq

m x x x x i N     
     β , where the constants 1 L    

are fixed ―knots,‖ and the term  
p pu u

  if 0u   and zero, otherwise, p  is the degree of the spline, and 

 0 , ,
T

p Q  β  is the coefficient vector.   For  , ,i i Um m i U x β  denoting the p-spline fit obtained from 

the hypothetical population fit at ix ,  Breidt et al. (2005) incorporate im  into survey estimation by using a 

difference estimator  i i i ii U i s
m y m 

 
   . Given a sample, im  here can be estimated using a sample-based 

estimator ˆ im .  For  1 ,s idiag i s W  and for fixed  , the  -weighted estimator for the p-spline model 

coefficients is  
1

ˆ T T
s s s s s s s  


  β X W X D X W y G y , such that  ˆˆ ,i im m  x β .  Their estimator is 

*ˆ 1ˆ ˆ 1
j Ti i

mpsp i j i i i ii U i s i s j U i s
i i j

Iy m
T m e y w y

      

  
      

    
    x G , (6) 

where 1jI   if j s  and zero otherwise and  ˆT
i i ie y  x β and * 1

ˆˆ i U
i i i

i

m Nm
w y

n




  
    

 

, with 

ˆ ˆU ii U
Nm m


 .  In penalized (p)-spline regression, the influence of the knots is bounded using a constraint on the 

Q -spline coefficients.  One constraint with the truncated polynomial model is to bound 2

1

Q
q pq

   by some 

constant, while leaving the polynomial coefficients 0 , , p   unconstrained.  This smoothes the 1, ,p p Q    

estimates toward zero, reducing the possibility of over-fitting the model.  Adding the constraint as a Lagrange 

multiplier, for a fixed constant 0   in we have   
2 2

1
ˆ arg min ,

Q
i i q pi U q

y m    
   ββ x β .  The 

smoothing of the resulting fit depends on  ; larger values produce smoother fits; 0   corresponds to the 

Chambers’ ridge regression model.   

 

Breidt and Opsomer (2000) and Breidt et al. (2005) proposed and developed a model-assisted p-spline estimator that 

was more robust to misspecification of the linear model, resulting in minimum loss in efficiency compared to other 

calibration estimators.  The p-spline estimators are a specific case of a robust model-prediction estimator.  It is 

approximately model-unbiased under the p-spline model, when the linear GREG model does not hold and it can also 

smooth the effects of influential observations.   However, this method assumes that the covariates are known for all 

population units and applies when these are quantitative (vs. categorical) variables. 
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2.4. Comparing Theoretical Properties 

Before comparing the alternatives in an empirical example, we consider the theoretical bias properties of the 

alternative estimators, which correspond to comparing the assumed underlying structural models.  The design- and 

model-bias properties are summarized in Table 1.  It is apparent that no one particular estimator will theoretically 

outperform the other alternatives in every scenario.  Theoretically, the model-assisted approaches aim for a 

compromise between the design- and model-based approaches.  However, the performance of both the GREG and 

robust-GREG estimators depends on the fit of associated underlying model to the sample data.  We include an 

empirical example to gauge how the alternatives perform when applied to data collected in single-stage samples. 

 

Table 1: Theoretical Properties of Alternative Estimators  

 

Method Design-Unbiased? Model-Unbiased? 

Design-based 

     HT 

 

     PS  

 

Yes 

 

Approximately 

 

Under the model 
2, ~ (0, )T

i i i iy    x β ,  and i i Unx Nx 
 

Under the model 
2, ~ (0, )i g i iy       where g is a poststratum

 
Model-based 

     BLUP 

 

     Chamber’s Robust 

 

 

 

     F&B Difference 

 

 

     Beaumont 

 

Not here 

 

Not here 

 

 

 

Yes 

 

 

Not here 

 

Under the BLUP model 
2, ~ (0, )T

i i i i iy x
   x β .  

 

Under the BLUP model; model-unbiased if BLUP model is wrong 

and model 
2( ) , ~ (0, )i i i i iy m x

   x  fits better. 

 

Under BLUP model; effect of influential observations is reduced. 

 

Design- and model-unbiased under the model 
1 2

1 1 2 2 1, ~ (0, )i i i i i iw y y y         

Model-assisted 

     GREG  

 

     Robust GREG 

 

Approximately 

 

Approximately  

 

Under the model 
2, ~ (0, )T

i i i iy    x β .  
 

Under the p-spline model 
2( ) , ~ (0, )i i i i iy m x

   x ; effect of 

influential observations is reduced. 

 

 

3. Empirical Comparisons 
 

The data used in this illustration come from the 1998 Survey of Mental Health Organizations (SMHO; 

Manderscheid and Henderson 2002).  The survey dataset with non-zero hospital beds was randomly replicated up to 

a pseudopopulation of 10,000 units.  The original SMHO98 sample is stratified by the type of the organization, with 

sample sizes in collapsed strata given with the pseudopopulation counts in Table 2. 

 

Table 2: Number of SMHO98 Sample Units, by Organization Type 

 

Organization Type (stratum) SMHO Subample Pseudopopulation 

Psychiatric Hospital 215 3,242 

Residential 64 959 
General Hospital 216 3,329 
Military Veterans 38 522 
Multi-service or Substance Abuse 131 1,948 
Total 664 10,000 

 

The variables of interest are the total ( 1y ) and a count ( 2y ) of medical expenditures an individual organization 

incurred during a calendar year, and an artificial dependent variable ( 3y ), where    3 10 1.5ln , ~ 0,1y x N    .  

The auxiliary variable ( x ) is the number of beds in a given hospital.  The SMHO98 file was modified by removing 
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hospitals with zero beds, five Partial Care of Outpatient hospitals, and one extremely large hospital, leaving 664 

hospitals.  We expanded this dataset to 10,000 units by selecting additional units with replacement from the 664.  

The values of 1 2 3, , ,  and x y y y
 
were slightly randomly perturbed to eliminate duplicate values.  Figure 1 shows the 

plots of these variables in the pseudopopulation.   

 

 
 

Figure 1: Plots of y-Variables vs. Number of Beds, SMHO98 Pseudopopulation 

 

 

We see the relationship between the number of beds and the expenditures from Figure 1.  The number of beds is 

more correlated with the total expenditures (―y1‖, 0.58) and y3 (0.54).  Figure 2 shows the x-y plots in more detail, 

with points in different colors by hospital type. In each plot, linear (in blue) and loess smoother (in green) prediction 

lines are also shown.  The difference in the two lines indicates that there are some influential points and/or curvature 

in the data.  The relationships between number of beds and the y-variables vary by hospital type, so we apply 

weighting adjustments within the type of hospital. 

 

 
 

Figure 2: Plots of Total Expenditures and Number of Expenditures vs. Number of Beds for SMHO Populations, 

With Linear Regression and Nonparametric Smoother Lines 
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3.1. One-Sample Results 

 

Using the number of beds as the auxiliary variable, a sample of size 500 was drawn from the non-zero bed SMHO 

psuedopopulation with probability proportional to the number of beds (the measure of size, or MOS).  Two design-

based methods were used:  

 

(i) the HT estimator, with base weights varying under the pps sampling, and 

 

(ii) post-stratification adjustments to the population size by the hospital type in Table 2. 

 

Four model-based methods were used: 

 

(iii) the BLUP using the working model described below within each of the 5 hospital types, 

 

(iv) Chambers’ robust estimator, using ridge regression within each of the 5 hospital types, 

 

(v) the F&B difference estimator within each of the 5 hospital types, and  

 

(vi) Beaumont’s estimator assuming an inverse model within each hospital type, with the weight as the 

dependent variable and 1y , 2y , and 3y  as independent variables in the model.   

 

Last, two model assisted methods are also included: 

 

(vii)  the GREG estimator using the working model within the 5 hospital types, and 

 

(viii) the robust p-spline GREG within each of the 5 hospital types. 

 

 

An ad hoc design-based weight trimming method is also used to trim the design-based PS and GREG model-assisted 

weights, using the empirical 95
th

 percentile as the cutoff (choices (ii) and (viii)).  A single cutoff was used for the 

entire sample, without regard to hospital type. The excess weight exceeding the cutoff for a particular unit was then 

equally distributed to all units within the same hospital type (vs. redistributing the total excess weight to all non-

trimmed cases in the sample, disregarding the hospital type).  

 

The working model for most strata is:     2, hT
M i i i M i i iE y Var y x


 x x β x , where i ix x 

 
x  for x  

denoting the number of hospital beds, y  the total expenditure, and the variance measure of size h  
is estimated 

iteratively from the population and rounded (Henry and Valliant 2006), giving  1.75,0.50,0.75,0.25,0.50h   for 

1y ,  2.00,0.75,1.00,0.75,1.00h 
 
for 2y , and  0.00,2.00,0.00,0.25,0.00h 

 
for 3y .  Upon further inspection 

of the data, the same model was used, but without the ix -component in x  for stratum 2 with 1y  and strata 2 and 

4 for 2y  and 3y .  The calibration and robust calibration methods use the same models, but with a constant variance.  

Since Figure 2 shows different relationships by hospital type, the model was fit within each stratum.  For 

consistency, the Beaumont smoothing model was fit within each stratum. In all estimators, including Beaumont’s, 

the working models did not include an intercept. 

 

Figure 3 on the following page shows plots of the case weights produced using each method and plots of the 

alternative weights vs. the original HT base weights, for each variable.  For this sample, the number of sample units 

by hospital type were (213, 63, 111, 26, 87).  The plots of the PS and GREG weights before and after the trimming 

are also shown.  Each plot also contains a 45 degree reference line shown in red.  We see that the different methods 

can produce very different weights.   

 

The PS and GREG weight adjustments do not drastically change the HT weights.  We see that trimming and 

redistribution adjustment the PS and GREG weights results in slight changes since we only adjust 5 percent of the 
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sample weights.  The model-based methods produce very different weights; this is not necessarily detrimental since 

they use a different estimation strategy.  However, in terms of case weights, some of the BLUP, robust BLUP, F&B 

difference, and p-spline weights are more varied, some even negative.  The Beaumont method here applies severe 

trimming to the HT weights.  And we see how the ad hoc trimming and redistributing modifies the PS and GREG 

weights in the last two plots.  The impact of all these alternative weights on estimation of totals is examined next. 

 

 
 

Figure 3: Plots of Alternative Weights vs. HT Weights, Example Sample of n=500 Drawn from SMHO 

Pseudopulation 1y -Variable 

 

 

3.2. Simulation Results 

 

We replicated the one-sample results, selecting 10,000 samples of size 500 using the same design as described above 

from the SMHO pseudopopulation.  Table 3 on the following page shows the bias of each alternative estimator 

relative to the true population totals (Relbias) the estimator’s root mean square error (RMSE), relative to the RMSE 

of the HT estimator (RMSE Ratio).   

 

For the totals estimated from the pps 10,000 samples, we see that the HT and PS estimators have very low bias.  The 

PS estimator also has lower RMSE than the HT estimator for all three variables, lowest for the variable 3y .  

However, the trimming and redistribution of the largest 5 percent PS weights introduces a positive bias in the totals 

for all three variables.  As larger weights are associated with larger x-values, and thus generally associated with 

smaller y-values, redistributing the weight equally to the non-trimmed cases (which have higher y-values than the 

trimmed cases) causes this bias.  The same occurred for the calibration weights, with the exception for 3y . Thus, in 

these pps samples, weight trimming is generally not appropriate. 

 

The model-based estimators have a slight bias, but interestingly the bias for the robust and difference estimators, 

which include so-called ―bias correction factors,‖ do not outperform the BLUP.  The BLUP and robust BLUP do 

outperform the HT estimator for the variable 3y  in terms of the RMSE.  This is expected since the BLUP model 
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incorporates terms that account for the curvature we introduced in this variable.  The Beaumont estimator is the 

poorest performer, in terms of both the bias and RMSE of estimated totals.  In modeling the inverse weights, the 

estimated totals appear to be very sensitive to changes in the small i ’s, which in turn create large differences 

between the HT and predicted smooth weights.  The model-assisted estimators have both low bias and RMSE’s.  

Both the calibration and p-spline calibration estimators are among the best performers for all three variables; the p-

spline being relatively the ―best’ in terms of the relative bias and RMSE relative to the HT estimator’s RMSE. 

 

Table 3: Relative Bias and RMSE Ratios of Estimated Totals, from SMHO98 Simulation  

 

 Total Expenditures Number of Expenditures 
3y -Variable 

Method RelBias  

(%) 

RMSE  

Ratio 

RelBias  

(%) 

RMSE  

Ratio 

RelBias  

(%) 

RMSE  

Ratio 

Design-based  

     HT 

     PS 

     Trimmed PS  

 

0.05 

0.08 

10.85 

 

1.00 

0.41 

25.95 

 

0.03 

0.04 

6.29 

 

1.00 

0.46 

7.52 

 

0.03 

0.02 

2.10 

 

1.00 

0.02 

0.93 

Model-based 

     BLUP 

     Chamber’s Robust 

     F&B Difference 

     Beaumont (Inverse) 

 

4.12 

4.38 

4.62 

-25.03 

 

3.99 

4.47 

5.11 

134.57 

 

2.55 

2.52 

2.90 

-28.91 

 

1.54 

1.52 

2.47 

124.43 

 

1.48 

1.33 

0.93 

-33.35 

 

0.50 

0.42 

0.29 

228.78 

Model-assisted 

     GREG 

     Trimmed GREG  

     Robust GREG  

 

0.93 

1.23 

-0.01 

 

0.71 

0.84 

0.53 

 

2.75 

2.93 

-0.17 

 

2.06 

2.22 

0.71 

 

0.67 

0.73 

0.01 

 

0.11 

0.13 

0.02 

 

 

Figure 4 at the end of this paper shows the empirical box plots of the totals, for each variable.  These boxplots in 

show the Table 3 results visually.  Generally, we see how the Beaumont estimator has the largest bias and variance, 

the trimmed estimators and model-based estimators have a positive bias, and the model-assisted estimators have 

relatively low bias and variance. 

 

 

4. Discussion: Implications for Inference and Practice 
 

4.1. Practical Considerations 

 

In practice, there is usually only one realized sample.  The simulations we conducted are generally not feasible.  

Even when they are, long-run simulation properties may not be a good reflection of the quality of an particular 

sample that is selected.  However, it is possible, within a one-sample comparison, to express each of the alternative 

estimators in a form with a ―base component‖ of some weight (either the HT or BLUP, depending on the estimator) 

multiplied by iy  and an ―adjustment factor component‖ multiplied by iy .   

 

Table 4 shows the breakdown of these weighted components within each estimator.  For example, the robust BLUP 

can be written as ˆ ˆBLUP ii s
T e


  =   î i ii BLUPi s

w e y y


 .  This makes it clear that what the effect is on 

different weights.  We then compare different components to each other to gauge their contribution to the weighted 

total.   

 

As an example, Figure 4 shows plots of the different components for the 1y –variable in Table 2.  The x-axis of each 

plot is the base component multiplied by 1y  and the y-axis is the adjustment factor component multiplied by 1y . 
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Table 4: Base and Adjustment Factor Contributions, by Estimator 

 

Estimator Name Estimator Form 
Base  

Component 

Adjustment Factor 

 Component 

Poststratification 
1

ˆ ˆD
d d dd

N T N
  1

i


  1 ˆ 1i d dN N    

Robust BLUP ˆ ˆBLUP ii s
T e


  ( )i BLUPw  î ie y  

Difference  1ˆ ˆ1BLUP i ii s
T e 


   ( )i BLUPw   1 ˆ1i i ie y    

Beaumont ˆi ii s
w y

  1
i


 
1ˆi iw    

GREG  1
( ) 1i i i cal i ii s

w y y 


  
   1

i


  ( ) 1i i cal iw y   

Robust GREG (pspline) 
1

ˆˆ i U
i i ii s

i

m Nm
y y

n








  
    

   
  1

i


 
ˆˆ i U

i
i

m Nm
y

n

 
   
 

 

Adhoc Trimming ( )i trim ii s
w y

  1
i


 
1

( )i trim iw    

 

 

 
 

Figure 4: Plots of Alternative Weighted y- Components vs. HT/BLUP- Weighted y- Components,  

Example Sample of n=500 Drawn from SMHO Pseudopulation, 1y -Variable 

 

 

As is apparent from Figure 4, the alternative estimators perturb the base component weights substantially, both 

positively and negatively.  When the base component is the  -weight, the HT-estimator is unbiased and the positive 

and negative perturbations need to balance out to maintain the unbiasedness in repeated sampling.  The PS, GREG, 

and robust GREG do have this property and were unbiased in the simulation study. The Beaumont estimator is 

unstable for having many, large negative adjustments, leading to its large negative bias in the simulations. 
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4.2. Summary 

 

The goal behind all of the methods that we have summarized is to somehow make inferences robust to anomalous 

values of weights or y’s or both.  There are many variations on how this can be attempted.  Among them are: 

 

- Smooth or trim the weights; 

- Smooth or trim the y’s; 

- Use nonparametric estimators that are minimally affected by outlying weights, y’s, or combinations of 

the two. 

 

In some cases, explicit formulas for weights are obtained; in others the smoothing must be done using iterative 

methods that give only implicit sets of weights.  Practitioners fighting deadlines gravitate toward methods where 

weights are trimmed or smoothed without consideration of the analysis variables with which the weights will be 

used.  This is pragmatic because the process of weight computation often proceeds on a parallel track from the 

editing of the analytic variables.  However, the weight-trimming approach can be inefficient for some variables.  If 

an outlying iy  or i iw y  product causes an estimator to have an unnecessarily large variance, weight trimming alone 

may not correct the problem and may, in fact, make it worse.  Plus, values of weights or y’s that are innocuous for 

full population estimates may be quite influential for some domain estimates. The pros and cons of the different 

approaches are summarized below. 

 

Methods that incorporate realistic models will improve the estimates of totals. By incorporating the relationship 

between the survey variable and some known auxiliary information, estimates of totals can have lower mean square 

errors.  When the model is correctly specified, the associated estimators are optimal (e.g., the BLUP in Valliant et. al 

2000). However, when the model does not hold or the sample contains outliers, several robust alternative estimators 

have been developed.  While the superpopulation model-based and model-robust approaches introduce implicitly 

defined weights, their impact on estimation varies based on the method used.  For example, the ―robust‖ alternative 

methods incorporate a residual-based adjustment to improve estimates of the finite population total by reducing the 

bias. These methods can handle both categorical and quantitative auxiliaries. In our simulation study, the BLUP was 

somewhat biased but often had root mean square errors smaller than the HT-estimator.  The robust alternatives did 

not improve substantially on the BLUP in our study.   

 

The generalized design-based method (Beaumont 2008) smoothes weights by modeling them as functions of the y’s. 

The weight for each unit is then replaced by its regression prediction. Although the method may be an improved 

weight trimming method in some applications, much of the associated theory and its effectiveness in practice need 

to be further studied.  While the variability in estimated totals may be reduced through a reduction of variance in the 

weights, this method seems easy to misapply.  In addition, this method modifies all survey weights (perhaps 

substantially), while the typical design-based approaches aim to make sizeable changes to only a small number of 

cases. The wholesale changing of all weights by the generalized design-based approach may damage some estimates 

for domains even if overall population estimates are improved.  In the simulations reported here, weight smoothing 

was extremely inefficient—introducing bias and dramatically inflating RMSEs. 

 

In our empirical study, the GREG and robust GREG (p-spline) estimators were the most efficient choices, being 

nearly unbiased and having RMSEs substantially less than the basic HT-estimator. The poststratified estimator was 

also competitive even though it did not explicitly account for the relationship between the y and x variables we used.  

In contrast, trimming and redistributing the weights in the poststratified and GREG estimators was completely 

ineffective.  Trimming added a slight to relatively large bias in the estimated totals, and thus increased RMSEs. 

 

Generally, all weight trimming or modification methods have the potential to ―undo‖ the effects of previous steps in 

weight calculation, like base weighting, nonresponse adjustment, and calibration to external controls.  Nonresponse 

and calibration adjustments are designed to reduce biases and/or variances.  In some cases, variable weights can be 

more efficient and their beneficial bias/variance reductions could be needlessly removed through arbitrary trimming 

of large weights.  Thus, there is a need for diagnostic measures of the impact of weight trimming or modification on 

survey inference that extend past the existing ―design effect‖ type of summary measures, most of which do not 

incorporate the survey variable of interest.  The current methods do not quantify such ―loss of information;‖ i.e., 

there is no indication of how various methods’ distortion of the original weight distribution potentially impacts 

inference about full population or domain estimates. 
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Figure 4: Boxplots of Alternative Totals, 10,000 Simulated Samples of n=500  
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