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Regression Coefficient Estimation in Dual Frame Surveys

Yan Lu*

Abstract

Dual frame surveys, in which independent samples are selected from two frames to decrease survey
costs or to improve coverage, can present challenges for regression coefficient estimation because
of complex designs and unknown degree of overlap. In this research, we developed four regression
coefficient estimators in dual frame surveys. Simulation results show that all the proposed methods
work well.
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1. Introduction

Traditionally, large surveys use a single sampling frame from which the sample is selected.
Let x be the matrix of explanatory values for the sampgldye the response vector of the
sample observations. From design-based perspectives, the finite population quantities of
interestB for regression are the least squares coefficients for the population that minimizes
the residual sum of squards;=' [y; — x! B]2. The estimator oB is

B = (xTwx) xTwy, Q)

wherew is a diagonal matrix of the sample weights. Linearization, as shown in Shah
and Folsom (1977), can be used to estimate the varianBe of

Shah and Folsom (1977) discussed regression inference in complex survey data. Holt
etal. (1980) studied regression in complex surveys from a maximum likelihood perspective.
Skinner and Coker (1996) extended the method of incoporating incomplete observations
with missing values of a covariate into the fitting of a linear regression model by maximum
likelihood methods to complex surveys. Zieschang (1990), Renssen and Nieuwenbroek
(1997), Merkouris (2004) and other researchers also studied combining independent re-
gression estimators from multiple surveys of the same population.

As the population and methods used to collect survey data change, single frame surveys
may miss parts of the population. For example, random digit dialing is a popular sampling
method. However, as mentioned in Keeter et al. (2010), “The number of Americans who
rely solely or mostly on a cell phone has been growing for several years, posing an in-
creasing likelihood that public opinion polls conducted only by landline telephone will be
biased”. In order to obtain better coverage of the population of interests and to decrease
survey costs, there is an increasing interest of U.S. government to employ dual frame de-
sign, in which independent samples are taken from two overlapping sampling frames. In
a general type of a dual frame survey, each frame can contain units the other frame does
not have as well as units in common as depicted in Figure 1. For example, ftarar
be a landline frame and fram@ can be a cell phone frame. The overlap domdirin-
cludes those people who have both landlines and cellphones. A dual frame survey presents
additional challenges to those from a single frame survey because there are now two sam-
ples, each with a possibly complex sampling design and may have an unknown degree of
overlap. Most research on dual frame surveys concentrate on estimating population totals.
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Figure 1: Frames A and B are both incomplete but overlapping.

In practice, we may want to discover a relationship between diastolic blood pressure as a
function of age, gender and ethnicity from a dual frame survey (Metcalf and Soctt, 2009).
For applications where prediction is the objective, such as imputing missing values, regres-
sion estimation provides a useful tool. This research is to study the regression coefficient
estimation in a dual frame survey. One approach considered is to treat the union of two
samples as a single sample by adjusted weights and perform regression analysis. Another
approach is to consider the regression coefficients of the union as weighted average of the
regression coefficients from the two independent samples. Traditional minimizing variance
criterion and minimizing prediction error criterion are used to derive the estimators.

This paper is organized as follows. Section 2 gives a brief review of frame work and
point estimators in dual frame surveys. Section 3 proposes four methods for regression
coefficient estimation. Section 4 presents simulation studies. A discussion of the research
is given in Section 5.

2. Background

In a dual frame survey, framé and frameB together cover the population of interest. The
union of these two frames is divided into three mutually exclusive domains, illustrated in
Figure 1. Domairu includes the elements contained only in frasheDomainb includes
the elements contained only in franie The overlap domaimb includes the elements
contained in both framé and frameB. The population sizes for the frames and domains
are denoted b4, Ng, N,, Ny, and Ny, whereNy = N, + Ny, andNg = N + Ny,
The population size for the union of the two fram@ss N = N4+ Np — Ng,. Two inde-
pendent sampleS4 andSp are taken from framel and frameB respectively according
to specified probability sampling designs. The probability of afieing included inS 4
ist = p{i € Sa}. The probability of uniti being included inSg is 77 = p{i € Sp}.
The sample sizes for the frames and domainswaren s, nq, ny, n2s andn’, wheren’,
andnfb represent the sample sizes for the elements of doatdimat were originally taken
from frames A and B respectively. S, = n, +n7; andnpg = n, + n5,.

A number of researchers have proposed methods for combining the information from
the two samples in a dual frame survey to estimate population quantities such as total,
mean and gross flows, including Hartley (1962, 1974), Fuller and Burmeister (1972), Skin-
ner (1991), Skinner and Rao (1996) and Lu and Lohr (2010) etc,. Lohr and Rao (2000)
summarized estimators used for estimating population totals in cross-sectional dual frame
surveys.
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In the following, we review the pseudo-maximum likelihood (PML) estimator proposed
by Skinner and Rao (1996), which we will use in our proposed method 1. Skinner and Rao
(1996) considered estimators under complex designs where the same weights are used for
all variables. They modified the maximum likelihood estimator for a simple random sample
to obtain a PML estimator for complex designs and suggested the following estimator:

~ A ~

. Ny — N, ~ N, ~ Np — N, .
VoL = A Aab,PMLYa 4 abA,PMLYab L OB Aab,PMLYb 7 @)

Na Nab Nb

where N,,, Y., N, andY;, are standard basic estimato¥s;, = 6} + (1 — )Y, and
N = 0N + (1 —0)NE. The estimatoN,, py, 1, is a function of N4, N2 andd, and is
the smaller root of the quadratic equation

o6  (1-6)7 , N4 NEB ” .
Np -1+ + (A -0)F ONA +(1—-60)NE =0, (3
{NBJF Na }x * NB+( )NA :’H"[ ab T+ ( JNap| =0, (3)
where ) )
NoNpu(NE)

(4)

Op = — - - -
NoNpv(NE) + NyNsv(NA)

is chosen to minimize the asymptotic variancel\b&),pML(Q) andu(-) is the variance of

(+)-
3. Estimators of Regression Coefficients

In this section, we propose four estimators for regression coefficient in dual frame sur-
veys. We assume that the underlying regression models are the same in the three domains.
Method 1 and method 2 consider the union of the two samples as a single sample using
adjusted weights. Method 3 and method 4 consider a weighted average of independent
regression coefficient estimates from sampland sample3.

3.1 Method 1 and Method 2

Method 1 is a natural extension of the cross-sectional estimator suggested by Skinner and
Rao (1996). The optimal variabk in (4) is used to reweight the observations in the
overlap domain in order to construct a pseudo sample. yLbée a sample of response
values fromS, USp withy = (t(y?), t(y?))7, y* andy? are the response vector 8f;
andSg respectively. Lek be the sample design matrix 8f U Sp defined agx’, x5)7,
with x4 andxp be the design matrix fron$4 andSp respectively. The fitted value of
elements inA U B for method 1 is

y = xB. (5)

Let w* be the diagonal matrix of the modified sample weightswith

w;, if i€a,
W — Ow;, if icabandi € Sy, ©6)
: (1 -6)w;, if iecabandic Sp,
Wy, if 7€b,

whered = 0p for method 1. Apply (1), the proposed regression coefficient estimator is

B= (xTw*x) " xTw*y. @)
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In method 2, we use cross-validation (CV) to derive a fully data-dri#eselection
procedure. Applying (5), the weighted prediction sum of squares is as follows

cv(h) = Z wi(yi_g(i))2

1€SAUSE

= ;wi(l_ —I—Z:HwZ

B
Tab ny

+ D= Oy Y e )R

J=1

’l’l

whereg ;) is the estimate computed without using the observatior(x;, v;), e; = yi — ¥,

yi — ;) is the deleted residual, which is equivalent te; /(1 — h;;) in complex surveys,
h;; is theith diagonal element of the hat mat# with H = x(x”wx)~'x”w. The idea
behind the cross validation method is that ki observation is treated as an additional
observation for prediction andV (6) measures the quality of predictions. In practice, we
set up a grid betweeft, 1) to find the optimab that minimize the CV quantity.

3.2 Method 3 and Method 4

Method 3 and method 4 consider a weighted average of independent regression coefficient
estimates fromS, andSg. Denote the regression fit of elements in framdy y4 =

x“B“ and regression fit of elements in frameby §5 = xBB?5. The regression fit for
elementsind U B is

y = xB with B = AB* + (1 — \)B?. (8)
Method 3 choose to minimize %1 v(B;), with v(B;) = A2v(B) + (1 — A\)?u(BPF)

andk be the number of predictor variables(B?) can be estimated using linearization
suggested by Shah and Folsom (1977) as follows:

5(B) = (x"wx) Z:wlqZ (xTwx)™1, 9)
€S

whereq; = x! (y; — x; B) Taking derivative of\ and set to zero, the optimalderived
by method 3 is

k-1
~ S u(B?)
AP =5 = k-1 : (10)
> v(B) + X v(BP)
i=0 i=0

Method 3 considers minimizing the variance of a linear combinatiaB4fandBZ. The
optimal A found by method 3 may not be “optimal” from a prediction perspective.

In Method 4, we consider minimizing the prediction error instead of minimizing vari-
ance in Method 3. Using (8), the deleted residijdb

di = Yi— i)
yi — xBy;
= i — AxB{j) — (1 - \)xBf,
= My (Z)) + (=) (yi — Xﬁg))
_ MM+ (1= N)(eP) ificA
- { Ae)+(1-=NdP) ifieB
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where B(Z-) is the coefficient computed without using tii observation(x;, v;), Bg),

F € {A, B}, is the coefficient computed without using thé observationx!", v;), df’ =
ef /(1 — hE), hE is theith diagonal element of the hat matrix related to sample F. The
weighted prediction sum of squares is as follows

cviy) = Z wi(yi — §s))*

iESAUSB
B

— 2

= E wi (A —hA+ —|—E wj( )\e +(1-X) —hB-)'

Taking derivative of\ and set to zero, the optimalfrom method 4 is

nAa A np B B
B e B € A e
- <E wieg (ha =€) + 2 wim (ef - 125))
~ =1 2 ]:1 23 73
\p = — — _ . (11)

3w = P2+ 3% wef - 5 )
i=1 g j=1 7

4. Simulations

In this section, a small simulation study has been conducted to investigate the finite sample
properties of the four proposed regression coefficient estimators. The simulation set up is
similar as Harms and Duchesne (2010).

4.1 Comparison of the Four Methods

The following equation is used to generate the population
Yi :ﬁ0+ﬁ1ti+€ia 1= 17710003 (12)

where each population haé = 1000 values oft; which is equally spaced in the interval

[0, 1] and random errors are from the normal distribution with mean 0 and constant variance
o2. First, we generate population df U B by settingt € [0,1]. Frame A is defined by
settingt € [0,0.7] and frame B is defined by settirge [0.3, 1]. Note, Whent € [0.3,0.7],

frame A and frame B overlapped.

The simulation study was performed with factors: 6l): 1 and0.4; (2) Sampling
rate f: 5%, 10% and20%; (3) Sampling plan: Poisson sampling scheme (unequal prob-
ability design). The sampling weights; of poisson sampling scheme have been chosen
such that the weights are proportional to the auxiliary variable (y; + 2)(¢; + 2) and
> aup l/wi = E(ns) = N x f. Note, elements in the overlap domain have the same
weights; (4) Method: method 1 to 4.

Simulation doed. = 1000 times for each setting. Each time, we generate a population
based on model (12), then use Poisson sampling to draw two samples from frame A and
frame B respectively. The regression coefficient estimates using the four methods and
variance estimates using (9) are calculated. In Table (1) and Tablgy(®the average
value of the estimates ¢, from the 1000 replications; SE) is the sample standard error

and is considered as the true standard deviatiofiypfy/ VTE)) is the average standard

error of 3, using (9) from the 1000 replications; Numbers in parenthesis are the sample
standard error. Similarly interpret the quantities relateghtorable (1) and Table (2) report

the performance of the proposed estimators under Poisson sampling scheme for different
settings.
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Table 1. Performance of the Four Methods: Simulation Result 1

c=1,08=5 6 =1 N = 1000

— —

Method Samplingrate Gy,  SEf) V(Bo) B SEB) V(61)
Method 1 5% 49970 .2552 .2418(_0454) 1.0063 .4272 -4126(.0669)
10% 5.0046 .1749 .1731(.0241) .9859 .2947 .2947(_03515)
20% 5.0092 .1267 .1235(_0114) .9913 .2166 -2095(.0166)
Method 2 5% 5.0046 .2469 .2373(0442) 1.0016 .4251 -4054(.0638)
10% 5.0099 .1783 .1737(0245) .9852 .3023 .2954(_0351)
20% 5.0091 .1282 .1238(_0120) .9857 .2165 .2098(_0177)
Method 3 5% 5.0260 .3122 2688 0427) .9650 .5605 ‘4954(‘0653)
10% 5.0051 .2020 .1948(0224) .9904 .3618 .3572(_0345)
20% 5.0031 1451 .1402(g15 9936 2547 2554417
Method 4 5% 5.0072 .2652 .3304(.1714) 1.0013 .4591 .5902(.2811)
10% 5.0032 .2031 -2421(.1508) 1.0037 .3487 ‘4296(‘2466)
20% 49965 .1388 1695 o7s6) 1.0082 .2375 3009 1245)

From Table (1) and Table (2), we see that the point estimates and variance estimates
from the four methods are all very close to the true value, indicating that our estimators
perform well. On the other hand, we observe that Method 1, 2 and 3 give smaller variance
estimates than the true value, while method 4 gives a little larger variance estimates.

4.2 Assumption of regression function in domains

In the four proposed Methods, we assume that the regression function in the three domains
are the same. Therefore, by combining the information from both framued frameB, we
would have more degrees of freedom in estimating the regression coefficients. If different
domain has different underlying regression function, combining the information from two
frames to derive a unified regression function is not appropriate. In such case, the residual
plot would present a pattern related to domains. In the following, a simulated data was used
to study this issue.

Assumee ~ N(0,.16), we generate a data using= 3 + 5t + € in domaina by setting
t € (0,.3), y = 3+ 8t + e in domainab by settingt € (.3,.7), andy = 3 + 5t + € in
domainb by settingt € (.7, 1). The fitted regression line by using method 2 is

§ = 3.6269 + 4.9116t. (13)

Figure 2 presents the scatterplot together with the fitted regression line. Figure 3 presents
the residual plot. From Figure 2 and Figure 3, we see an obvious pattern related to domains
that most of residuals in domaith are positive and most of residuals in domaimnd
domainb are negative. This suggests that the assumption of same regression model in the
three domains is violated. Therefore, the proposed methods are not appropriate. In such
situation, we would suggest fit the regression lines by different domains.

5. Discussion

It is becoming more difficult, for a single sampling frame to include the entire population
of interest and to be inexpensive to sample. As a result, dual frame surveys are becoming
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Table 2. Performance of the Four Methods: Simulation Result 2

c=4,08=55=1,N=1000

j—

—

Method Samplingrate Gy  SEf) V(o) B SEB) V(B1)
Method 1 5% 49999 .0964 ~0949(.0164) .9992 .1615 1620 p242)
10% 49969 .0690 .0677(_0084) 1.0089 .1191 1150 0121)
20% 5.0016 .0498 .0485(.0041) .9975 .0817 0821 gos8)
Method 2 5% 5.0044 .1015 .0949(.0159) .9954 1710 .1631(.0237)
10% 5.0042 .0706 .0679(.0084) .9935 .1196 1152 0118)
20% 5.0017 .0482 .0485(_0039) .9978 .0816 .0822(.0057)
Method 3 5% 5.0058 .1174 .1061(.0156) 9911 .2070 .1951(.0239)
10% 5.0042 .0847 .0762(.0084) 19913 .1528 .1401(.0127)
20% 5.0032 .0577 .0547(.0039) .9938 .1022 .0999(_0059)
Method 4 5% 5.0003 .1076 -1347(.0849) .9973 .1846 .2403(,1415)
10% 5.0046 .0745 .0910(.0513) .9935 .1286 .1624(_0900)
20% 5.0035 .0517 .0663(.0461) .9963 .0889 .1177(_0757)

Figure 2: Scatterplot of the data fromd U B with the fitted regression line
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Figure 3: Plot of residual v.s predictor variablethe vertical lines divide the union of two
frames into three nonoverlap domains
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more common. Such surveys require new methods for analyzing the regression aspects of
the data.

In this research, we propose four regression coefficient estimators in dual frame sur-
veys. Simulation results show that all the four proposed methods work well. Method 1,
using the PML value of p, uses the same value #for each responses. While, in Method
2, 3 and 4, the value df or A depends on the response variah|eherefore will be differ
for each regression model. Thus, Method 1 has the advantage that the same set of weights
is used for every response and every model. We also observe that Method 1, 2 and 3 give
smaller variance estimates than the true value, while method 4 gives a little larger variance
estimates. Method 1 and Method 2 consider a pseudo sample by adjusting weights in the
overlap domain. However, by treatifig. as a constant when constructing the pseudo sam-
ple, we miss the part of additional variation by estimafipgwhich is difficult to estimate.
Method 1 and Method 3 consider minimizing variance. From the above reasons, Method
1, 2 and 3 tend to have smaller variance. Method 4 considers a weighted combination of
independent regression coefficient estimators from the two samples and uses minimizing
prediction error criterion. From the limited simulation result, we observe that method 4
provides a little larger variance estimates. Although all the four methods work well, we
recommend method 2 and method 4 for prediction purpose in practice.

Our research is done in the context of survey sampling, but they also apply to other
settings in which data could be combined from two independent sources and could be
extended to more than two surveys.

References

Fuller, W. A. and Burmeister, L. F. (1972), “Estimators for Samples Selected from Two
Overlapping Frames,” iASA Proceedings of the Social Statistics Sectiamerican
Statistical Association, pp. 245-249.

Harms, T. and Duchesne, P. (2010), “On Kernel Nonparametric Regression Designed for
Complex Survey DataMetrika, 72, 111-138.

4694



Section on Survey Research Methods —JSM 2012

Hartley, H. O. (1962), “Multiple Frame Surveys,” WSA Proceedings of the Social Statis-
tics SectionAmerican Statistical Association, pp. 203—-206.

— (1974), “Multiple Frame Methodology and Selected Applicatioi®ghkhg, Series C
36, 99-118.

Holt, D., Smith, T. M. F., and Winter, P. D. (1980), “Regression Analysis of Data from
Complex Surveys,'Journal of the Royal Statistical Society. Series A (Gengfg,
474-487.

Keeter, S., Dimock, M., and Christian, L. (2010), “The Growing Gap between Landline
and Dual Frame Election Pollsgvvailable at pewresearch.orgiNovember 22.

Lohr, S. L. and Rao, J. N. K. (2000), “Inference from Dual Frame Survggsitnal of the
American Statistical Associatip@5, 271-280.

Lu, Y. and Lohr, S. L. (2010), “Gross Flow Estimation in Dual Frame SurveSsjvey
Methodology 36, 13-22.

Merkouris, T. (2004), “Combining Independent Regression Estimators from Multiple Sur-
veys,” Journal of the American Statistical Associatio®9, 1131-1139.

Metcalf, P. and Soctt, A. (2009), “Using multiple frames in health survegttistics in
Medicine 28, 1512-1523.

Renssen, R. H. and Nieuwenbroek, N. J. (1997), “Aligning Estimates for Com mon Vari-
ables in Two or More Sample Surveysdgurnal of the American Statistical Associatjon
92.

Shah, B. V., M. M. H. and Folsom, R. E. (1977), “Inference about regression models from
sample survey dataBulletin of the international statistical institutd7, 43-57.

Skinner, C. J. (1991), “On the Efficiency of Raking Ratio Estimation for Multiple Frame
Surveys,"Journal of the American Statistical Associatj@&®, 779-784.

Skinner, C. J. and Coker, O. (1996), “Regression Analysis for Complex Survey Data with
Missing Values of a CovariateJournal of the Royal Statistical Society. Series A (Statis-
tics in Society)159, 265-274.

Skinner, C. J. and Rao, J. N. K. (1996), “Estimation in Dual Frame Surveys with Complex
Designs,”Journal of the American Statistical Associati@i, 349—-356.

Zieschang, K. D. (1990), “Sample Weighting Methods and Estimation of Totals in the
Consumer Expenditures Surveypurnal of the American Statistical Associatid@b,
986-1001.

4695



