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Abstract

In this work we proposed estimators of the size of a hidden population, such as sexual workers
and drug users. Specifically, we derive unconditional and conditional maximum likelihood esti-
mators to be used along with the variant of link-tracing sampling proposed by F́elix-Medina and
Thompson (Jour. Official Stat., 2004). In this variant, a sampling frame made up by sites where
the members of the population can be found with high probabilities, such as bars and parks, is
constructed. The population is not assumed to be completelycovered by the frame. Then an initial
simple random sample of sites is selected from the frame. Thepeople in the sampled sites are identi-
fied and they are asked to name other members of the population. We say that there is a link between
a site and a person if that person is named by at least one element in the site. Following an idea used
by Pledger (Biometrics, 2000) in the context of capture-recapture, we derived maximum likelihood
estimators under the assumption that the elements in the population can be grouped into a number of
classes according to their susceptibility of being linked to a site in the initial sample. Elements in the
same class have the same probability of being linked to a particular site, while elements in different
classes have different link probabilities. This assumption allows us to model the heterogeneity of
the link probabilities. The unconditional maximum likelihood estimator is obtained by using the
ordinary maximum likelihood approach, whereas the conditional maximum likelihood estimator is
obtained by using an approach proposed by Sanathanan (Annals of Math. Stat., 1972). The results
of a simulation study indicate that the proposed estimatorsrequire relatively large sampling frac-
tions to perform satisfactorily, otherwise they present problems of high variability and numerical
instability.

Key Words: Capture-recapture, chain referral sampling, hard-to-detect population, latent class
model, maximum likelihood estimator, snowball sampling

1. Introduction

Link-tracing sampling (LTS), also known as snowball sampling or chain referral sampling,
has been proposed for sampling hidden or hard-to-detect populations,such as drug users,
sex workers, HIV infected people and undocumented workers. In this method an initial
sample of members of the target population is selected and the people in the initial sample
are asked to name or to refer other members of the population to be included in the sample.
The named people who are not in the initial sample might be asked to refer otherpersons,
and the process might continue in this way until a specified stopping rule is satisfied.

Félix-Medina and Thompson (2004) proposed a variant of LTS in which theinitial
sample is a simple random sample without replacement (SRSWOR) of sites selected from
a sampling frame made up by venues where the members of the population might befound
with high probabilities, such as public parks, bars and blocks. The population is not as-
sumed to be completely covered by the frame. The members of the population whobelong
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to a sampled site are identified and they are asked to name other members of the population.
In order to obtain a maximum likelihood estimator (MLE) of the size of the population,
those authors assumed that the probability that a person is named by any person in a par-
ticular sampled site, which we will call link probability, depends on the site, but not on the
named person, that is, they assumed homogeneous link probabilities.

Later, F́elix-Medina et al. (2009) extended the previous work to the case in which the
link probabilities depend also on the named people, that is, heterogeneous link probabilities.
They modeled the link probability between a site and a person by means of a mixedlogistic
normal model which is a function of two additive effects: a fixed effect associated with the
site and a normally distributed random effect associated with the person. Those authors
proposed a conditional MLE of of the population size. In a Monte Carlo study carried
out by them, they found that their estimator performed reasonably well, but that it was not
robust to some deviations from the assumptions under which it was derived. In particular,
it was not robust to deviations from the normal distribution of the random effects.

In this work we use a latent class model, suggested by Pledger (2000) in thecontext
of capture-recapture, to model the heterogeneity of the link probabilities. Our goal is to
obtain a robust estimator of the population size. The structure of the paper isas follows. In
Section 2 we describe the variant of LTS proposed by Félix-Medina and Thompson (2004).
In Section 3 we present the models we propose to describe the sampling procedure; in
Section 4 we derive unconditional and conditional MLEs of the population size; in Section
5 we present the results of a Monte Carlo study carried out to observe theperformance
of one of the proposed estimators, and finally in Section 6 we present conclusions and
suggestions for future research.

2. Sampling Design

In this work we consider the LTS design proposed by Félix-Medina and Thompson (2004).
Thus, letU be a finite population of an unknown numberτ of people. We assume that a
portionU1 ofU is covered by a sampling frame ofN sitesA1, . . . , AN , where the members
of the population can be found with high probability. We suppose that we have a criterion
that allows us to assign a person inU1 to only one site in the frame. Notice that we are
not assuming that a person could not be found in different sites, but that, as in ordinary
cluster sampling, we are able to assign that person to only one site, for instance, the site
where he or she spends most of his or her time. LetMi denote the number of members of
the population that belong to the siteAi, i = 1, . . . , N . From the previous assumption it
follows that the number of people inU1 is τ1 =

∑N
1 Mi and the number of people in the

portionU2 = U − U1 of U that is not covered by the frame isτ2 = τ − τ1.
The sampling design is as follows. A SRSWORSA of n sitesA1, . . . , An is selected

from the frame and theMi members of the population who belong to the sampled siteAi

are identified,i = 1, . . . , n. Let S0 be the set of people in the initial sample. Notice that
the size ofS0 is M =

∑n
1 Mi. The people in each sampled site are asked to name other

members of the population. We will say that a person and a site are linked if anyof the
people who belong to that site names him or her. For each named person we record the
sites that are linked to him or her, and the portion ofU : U1 − S0, a particularAi ∈ SA or
U2, that contains him or her.

3. Probability Models

As in Félix-Medina and Thompson (2004), we will suppose that the numbersM1, . . . , MN

of people who belong to the sitesA1, . . . , AN are independent Poisson random variables
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with meanλ1. Therefore, the joint conditional distribution of(M1, . . . ,Mn, τ1−M) given
that

∑N
1 Mi = τ1 is multinomial with probability mass function (pmf):

f(m1, . . . ,mn, τ1 −m) =
τ1!

∏n
1 mi!(τ1 −m)!

(

1

N

)m (

1 − n

N

)τ1−m

. (1)

To model the heterogeneity of the link probabilities we will consider a latent class
model proposed by Pledger (2000) in the context of capture-recapture. Thus, we will as-
sume that each person inUk belongs to only one ofC classes according to his or her
propensity to be linked to a site inSA. The idea behind these classes is that people in the
same class have the same probability of being linked to a site inSA, but people in different
classes have different link probabilities.

Let p(k)
c be the probability that a randomly selected person fromUk belongs to classc.

We will suppose thatp(k)
c > 0, c = 1, . . . , C, and that

∑C
1 p

(k)
c = 1. In addition, we will

assume that the numberC of classes is a fixed known number. It is worth noting that we
are not assuming that we know the class to which a person belongs.

Let us define the link indicator variablesX(k)
ij s byX(k)

ij = 1 if personj in Uk − Ai is

linked to siteAi, andX(k)
ij = 0 if j ∈ Ai or that person is not linked toAi, j = 1, . . . , τk,

i = 1, . . . , n, andk = 1, 2. We will suppose that if personj in Uk −Ai belongs to classc,
then

Pr
(

X
(k)
ij = 1|j ∈ Uk −Ai belongs to classc

)

= θ
(k)
ic

=
exp[µ(k) + α

(k)
i + η

(k)
c + (αη)

(k)
ic ]

1 + exp[µ(k) + α
(k)
i + η

(k)
c + (αη)

(k)
ic ]

,

i = 1, · · · , n; c = 1, · · · , C.

In this model,µ(k) is a fixed general effect;α(k)
i is a fixed effect associated with siteAi,

which indicates the potential ofAi of forming links with people inUk−Ai; η
(k)
c is a random

effect associated with classc, which indicates the propensity of the people in that class of
being linked to the sites inSA, and(αη)

(k)
ic is a random effect associated with siteAi and

classc that indicates the interaction between them.
For personj in Uk − S0 we will define then-dimensional vectorX(k)

j = (X
(k)
1j , . . . ,

X
(k)
nj ) of the link indicator variables associated with thej-th person. Notice thatX(k)

j

indicates the sitesAi ∈ SA that are linked to that person. LetΩ = {(x1, . . . , xn) : xi =
0, 1; i = 1, . . . , n}, the set of alln-dimensional vectors such that each one of their elements
is either0 or 1. Then the probability that the vector of link indicator variables associated
with a randomly selected person fromUk − S0 equalsx = (x1, . . . , xn) ∈ Ω is given by

π(k)
x

(p∗
k, ψ

∗
k) =

C
∑

c=1

p(k)
c

n
∏

i=1

[

θ
(k)
ic

]xi
[

1 − θ
(k)
ic

]1−xi

=
C

∑

c=1

p(k)
c

n
∏

i=1

exp{xi[µ
(k) + α

(k)
i + η

(k)
c + (αη)

(k)
ic ]}

1 + exp[µ(k) + α
(k)
i + η

(k)
c + (αη)

(k)
ic ]

,

wherep∗
k = (p

(k)
1 , . . . , p

(k)
C ) andψ∗

k = (µ(k), {α(k)
i }n

1 , {η
(k)
c }C

1 , {(αη)
(k)
ic }n,C

1,1 ).
Similarly, for personj in Ai′ ∈ SA, we will define the(n − 1)- dimensional vector

X
(Ai′ )
j = (X

(Ai′ )
1j , . . . , X

(Ai′ )
i′−1j , X

(Ai′ )
i′+1j , . . . , X

(Ai′ )
nj ) of the link indicator variables associ-

ated with thej-th person. LetΩi′ = {(x1, . . . , xi′−1, xi′+1, . . . , xn) : xi = 0, 1; i 6=
i′, i = 1, . . . , n}. Then the probability that the vector of link indicator variables associated
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with a randomly selected person fromAi′ ∈ SA equalsx = (x1, . . . , xi′−1, xi′+1, . . . , xn)
∈ Ωi′ is given by

π
(Ai′ )
x (p∗

1, ψ
∗
1) =

C
∑

c=1

p(1)
c

n
∏

i6=i′

[

θ
(1)
ic

]xi
[

1 − θ
(1)
ic

]1−xi

=
C

∑

c=1

p(1)
c

n
∏

i6=i′

exp{xi[µ
(1) + α

(1)
i + η

(1)
c + (αη)

(1)
ic ]}

1 + exp[µ(1) + α
(1)
i + η

(1)
c + (αη)

(1)
ic ]

.

It is worth noting that the parametersp∗
k andψ∗

k are not identifiable. To solve this problem
we need to impose some constrains on them. For instance

C
∑

1

p(k)
c = 1, α(k)

n = 0, η
(k)
C = 0 and (αη)

(k)
ic = 0 if i = n or c = C, k = 1, 2.

Another possibility is sum-to-zero constrains:

C
∑

1

p(k)
c = 1,

n
∑

1

α
(k)
i = 0,

C
∑

1

η(k)
c = 0 and

n
∑

1

C
∑

1

(αη)
(k)
ic = 0, k = 1, 2.

Thus, letpk = (p
(k)
1 , . . . , p

(k)
C−1) andψk be the vector of the parametersµ(k), α(k)

i , η(k)
c and

(αη)
(k)
ic that are identifiable.

4. Likelihood Function

To construct the likelihood function we will factorize it into different components. One
factor is associated with the probability of selecting the initial sampleS0, which is given
by the multinomial distribution (1), that is,

LMULT (τ1) ∝
τ1!

(τ1 −m)!
(1 − n/N)τ1 .

Two other factors are associated with the probabilities of the configurationsof links
between the people inUk − S0, k = 1, 2, and the sitesAi ∈ SA. To obtain these factors,
for x = (x1, . . . , xn) ∈ Ω, let R(k)

x be the random variable that indicates the number of
distinct people inUk − S0 whose vectors of link indicator variables are equal tox. Finally,
letRk be the random variable that indicates the number of distinct people inUk − S0 that
are linked to at least one siteAi ∈ SA. Notice thatRk =

∑

x∈Ω−{0}R
(k)
x , where0 denotes

then-dimensional vector of zeros, andR(1)
0

= τ1 −M −R1 andR(2)
0

= τ2 −R2.

Because of the assumptions we made about the variablesX
(k)
ij s, we have that given

M1, . . . ,Mn, the joint probability distribution of the variables{R(1)
x }x∈Ω is a multinomial

distribution with parameter of sizeτ1 −M and probabilities{π(1)
x (p1, ψ1)}x∈Ω, whereas

that of the variables{R(2)
x }x∈Ω is a multinomial distribution with parameter of sizeτ2 and

probabilities{π(2)
x (p2, ψ2)}x∈Ω.

Therefore, the factors of the likelihood function associated with the probabilities of the
configurations of links between the people inUk − S0, k = 1, 2, and the sitesAi ∈ SA are

L1(τ1,p1, ψ1) ∝
(τ1 −m)!

(τ1 −m− r1)!

∏

x∈Ω−{0}

[π(1)
x

(p1, ψ1)]
r
(1)
x [π

(1)
0

(p1, ψ1)]
τ1−m−r1
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and

L2(τ2,p2, ψ2) ∝
τ2!

(τ2 − r2)!

∏

x∈Ω−{0}

[π(2)
x

(p2, ψ2)]
r
(2)
x [π

(2)
0

(p2, ψ2)]
τ2−r2 .

The last factor of the likelihood function is associated with the probability of thecon-
figuration of links between the people inS0 and the sitesAi ∈ SA. To obtain this factor,

for x ∈ Ωi′ let R(Ai′ )
x be the random variable that indicates the number of distinct peo-

ple in Ai′ ∈ SA whose vectors of link indicator variables equalx. Finally, letR(Ai′ )

be the random variable that indicates the number of distinct people inAi′ ∈ SA that are

linked to at least one siteAi ∈ SA, i 6= i′. Notice thatR(Ai′ ) =
∑

x∈Ωi′−{0}R
(Ai′ )
x and

R
(Ai′ )
0 = Mi′ − R(Ai′ ). Then, givenM1, . . . ,Mn, then the joint probability distribution

of the variables{R(Ai′ )
x }x∈Ωi′

is a multinomial distribution with parameter of sizeMi′ and

probabilities{π(Ai′ )
x (p1, ψ1)}x∈Ωi′

.
Thus, the probability of the configuration of links between the people inS0 and the sites

in SA is the product of the previous multinomial probabilities (one for eachAi′ ∈ SA), and
consequently the factor of the likelihood function associated with that probability is

L0(p1, ψ1) ∝
n

∏

i′=1

∏

x∈Ωi′−{0}

[π
(Ai′ )
x (p1, ψ1)]

r
(Ai′ )
x [π

(Ai′ )
0

(p1, ψ1)]
mi′−r

(Ai′ ) .

From the previous results we have that the likelihood function is given by

L(τ1, τ2,p1,p2, ψ1, ψ2) = L(1)(τ1,p1, ψ1)L(2)(τ2,p2, ψ2),

where

L(1)(τ1,p1, ψ1) =LMULT (τ1)L1(τ1,p1, ψ1)L0(p1, ψ1) and (2)

L(2)(τ2,p2, ψ2) =L2(τ2,p2, ψ2). (3)

5. Unconditional and Conditional Maximum Likelihood Estimators

5.1 Unconditional estimators

Numerical maximization of (2) and (3) yields the unconditional MLEŝτU
k , p̂U

k andψ̂U
k of

τk, pk andψk, k = 1, 2. Therefore, the unconditional MLE ofτ = τ1+τ2 is τ̂U = τ̂U
1 +τ̂U

2 .
Although we cannot obtain closed forms forτ̂U

k , p̂U
k andψ̂U

k , by computing the deriva-
tives of the logarithms of (2) and (3) with respect toτ1 andτ2, respectively, equating those
derivatives to zero, and solving the equations forτ1 andτ2, we get that the unconditional
MLEs τ̂U

1 andτ̂U
2 can be expressed as

τ̂U
1 =

M +R1

1 − (1 − n/N)π
(1)
0

(p̂U
1 , ψ̂

U
1 )

and τ̂U
2 =

R2

1 − π
(2)
0

(p̂U
2 , ψ̂

U
2 )
,

wherep̂U
k andψ̂U

k are the unconditional MLEs ofpk andψk, k = 1, 2.
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5.2 Conditional estimators

Another approach to obtain estimators ofτk, pk andψk is the conditional maximum likeli-
hood estimation approach.This approach was proposed by Sanathanan (1972) in the context
of capture-recapture estimation. Because the resulting conditional estimators are asymp-
totically equivalent to the unconditional MLEs, and they are easier to computethan the
unconditional ones, several authors, such as Fienberg (1972) andCoull and Agresti (1999),
have suggested this approach.

Thus, the idea is to factorize the probability mass function (pmf) of the multinomial
distribution of the variables{R(k)

x }x∈Ω as follows

L1(τ1,p1, ψ1)∝ f({r(1)
x

}x∈Ω|m, τ1,p1, ψ1)

= f({r(1)
x

}x∈Ω−{0}|r1,m, τ1,p1, ψ1)f(r1|m, τ1,p1, ψ1)

∝
∏

x∈Ω−{0}

[

π
(1)
x (p1, ψ1)

1 − π
(1)
0

(p1, ψ1)

]r
(1)
x

× (τ1 −m)!

(τ1 −m− r1)!
[1 − π

(1)
0

(p1, ψ1)]
r1 [π

(1)
0

(p1, ψ1)]
τ1−m−r1

=L11(p1, ψ1)L12(τ1,p1, ψ1) and

L2(τ2,p2, ψ2)∝ f({r(2)
x

}x∈Ω, τ2 − r2|τ2,p2, ψ2)

= f({r(2)
x

}x∈Ω−{0}|r2, τ2,p2, ψ2)f(r2|τ2,p2, ψ2)

∝
∏

x∈Ω−{0}

[

π
(2)
x (p2, ψ2)

1 − π
(2)
0

(p2, ψ2)

]r
(2)
x

τ2!

(τ2 − r2)!
[1 − π

(2)
0

(p2, ψ2)]
r2 [π

(2)
0

(p2, ψ2)]
τ2−r2

=L21(p2, ψ2)L22(τ2,p2, ψ2).

Notice that in each case the first factorLk1(pk, ψk) is proportional to the joint pmf

of the variables{R(k)
x }x∈Ω−0, which is the multinomial distribution with parameter of

sizeRk and probabilities{π(k)
x (pk, ψk)/[1 − π

(k)
0

(pk, ψk)]}x∈Ω−0, and that this distri-
bution does not depend onτk. Notice also that the second factorsL12(τ1,p1, ψ1) and

L22(τ2,p2, ψ2) are proportional to the pmfs of the Bin(τ1 − m, 1 − π
(1)
0

(p1, ψ1)) and

Bin(τ2, 1 − π
(2)
0

(p2, ψ2)), respectively, where Bin(τ, θ) denotes the Binomial distribution
with parameter of sizeτ and probabilityθ.

The conditional MLEŝpC
k andψ̂C

k of pk andψk, k = 1, 2, are obtained by maximizing
numerically

L11(p1, ψ1)L0(p1, ψ1) and L21(p2, ψ2) (4)

with respect to(p1, ψ1) and(p2, ψ2), respectively. Notice that the factors in (4) do not
depend onτk, k = 1, 2.

Finally, by plugging the estimateŝpC
k andψ̂C

k into the factors of the likelihood func-
tion that depend onτk, k = 1, 2, and maximizing these factors, that is, maximizing
L12(τ1, p̂1, ψ̂1)LMULT (τ1) andL22(τ2, p̂2, ψ̂2), with respect toτ1 and τ2, respectively,
we get that the conditional MLEŝτC

1 andτ̂C
2 of τ1 andτ2 are given by

τ̂C
1 =

M +R1

1 − (1 − n/N)π
(1)
0

(p̂C
1 , ψ̂

C
1 )

and τ̂C
2 =

R2

1 − π
(2)
0

(p̂C
2 , ψ̂

C
2 )
.

A conditional MLE ofτ is τ̂C = τ̂C
1 + τ̂C

2 .
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Table 1: Characteristics of the four artificial populations used in the Monte Carlo study.

Population I Population II
N = 200 N = 200

Mi ∼ Poisson Mi ∼ Zero-truncated negative binomial
E(Mi) = 8.0 V (Mi) = 8.0 E(Mi) = 8.0 V (Mi) = 24.0
τ1 = 1600 τ2 = 800 τ = 2400 τ1 = 1701 τ2 = 800 τ = 2501

Link probabilities: Latent class model Link probabilities: Latent class model
C = 2 classes C = 2 classes

p
(k)
1 = 0.3 p

(k)
2 = 0.7, k = 1, 2 p

(k)
1 = 0.3 p

(k)
2 = 0.7, k = 1, 2

θ
(k)
ic =

exp[µ(k)+α
(k)
i +η

(k)
c +(αη)

(k)
ic ]

1+exp[µ(k)+α
(k)
i +η

(k)
c +(αη)

(k)
ic ]

θ
(k)
ic =

exp[µ(k)+α
(k)
i +η

(k)
c +(αη)

(k)
ic ]

1+exp[µ(k)+α
(k)
i +η

(k)
c +(αη)

(k)
ic ]

µ(k) = −1.3 α
(k)
i = −12/(0.001 +

√
mi) µ(k) = −1.3 α

(k)
i = −12/(0.001 +

√
mi)

η
(k)
1 = 1.5 η

(k)
2 = 0.0 η

(k)
1 = 1.5 η

(k)
2 = 0.0

Population III Population IV
N = 200 N = 200

Mi ∼ Poisson Mi ∼ Poisson
E(Mi) = 8.0 V (Mi) = 8.0 E(Mi) = 8.0 V (Mi) = 8.0

τ1 = 1600 τ2 = 800 τ = 2400 τ1 = 1600 τ2 = 800 τ = 2400
Link probabilities: Latent class model Link probabilities: Mixed logit model

C = 3 classes with scaled Student’s T random effects

p
(k)
1 = 0.5 p

(k)
2 = 0.3 p

(k)
3 = 0.2, k = 1, 2 θ

(k)
ij =

exp[α
(k)
i +β

(k)
j ]

1+exp[α
(k)
i +β

(k)
j ]

θ
(k)
ic =

exp[µ(k)+α
(k)
i +η

(k)
c +(αη)

(k)
ic ]

1+exp[µ(k)+α
(k)
i +η

(k)
c +(αη)

(k)
ic ]

α
(k)
i = −6.3/(0.001 + m

1/4
i ) β

(k)
j ∼ T6/

√
1.5

µ(k) = −1.3 α
(k)
i = −12/(0.001 +

√
mi)

η
(k)
1 = 1.5 η

(k)
2 = −1.0 η

(k)
3 = 0.0

6. Monte Carlo Studies

To observe the performance of the proposed estimators and compare themwith other esti-
mators that have been proposed we carried out a simulation study. Thus, we constructed
four artificial populations. A description of each one is presented in Table1. Notice that
in Population I, II and IV theN = 200 values of theMi’s were generated using a Poisson
distribution, whereas in Population II they were generated using a zero-truncated negative
binomial distribution. In Populations I, II and III the link probabilities were generated by
using a latent class model withC = 2 classes in the case of the first two populations and
C = 3 classes in the case of the last one. In Population IV the link probabilities were
generated using a mixed logit model with fixed effects associated with the sampled sites
and random effects associated with the people.

Since in each of the populations the proposed estimators were computing usingC = 2
latent classes, we have that in Population I no misspecification problem was present; in
Population II, the distribution of theMis was misspecified; in Population III, the number
of latent classes was misspecified, and in Population IV, the model of the link probabilities
was misspecified.

The simulation study was carried out by repeatedly selectingr = 5000 samples from
each of the populations by using the sampling design described in Section 2 withinitial
sample sizen = 20. From each sample the following estimators ofτ1, τ2 and τ were
computed: the proposed conditional MLEsτ̂C

1 , τ̂C
2 andτ̂C obtained usingC = 2 classes;
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Table 2: Relative biases and square roots of relative mean square errors of the estimators
of the population sizes. Results based on 5000 samples.

Population I Population II Population III Population IV
f1 f2 f1 f2 f1 f2 f1 f2

0.48 0.40 0.46 0.44 0.44 0.41 0.46 0.41
Estimator r-bias

√
r-mse r-bias

√
r-mse r-bias

√
r-mse r-bias

√
r-mse

Latent class τ̂C
1 0.00(2) 0.08(2) 0.00(9) 0.09(9) -0.02(1) 0.10(1) -0.23 0.23

(C = 2) τ̂C
2 0.11(26) 0.54(26) 0.07(32) 0.66(32) -0.07(14) 0.42(14) -0.31(0) 0.32(0)

cond. MLEs τ̂C 0.04(28) 0.19(28) 0.02(37) 0.20(37) -0.04(15) 0.16(15) -0.26(0) 0.26(0)

Mixed logit τ̃C
1 -0.12(0) 0.13(0) -0.15(1) 0.17(1) -0.10(1) 0.11(1) 0.14(1) 0.15(1)

normal τ̃C
2 -0.28(1) 0.29(1) -0.32(0) 0.33(0) -0.22(1) 0.23(1) 0.32(0) 0.37(0)

cond. MLEs τ̃C -0.17(1) 0.18(1) -0.21(1) 0.21(1) -0.14(1) 0.15(1) 0.20(1) 0.21(1)

Homogeneoušτ1 -0.19 0.20 -0.17(0) 0.18(0) -0.10 0.11 -0.32 0.32
link-prob. τ̌2 -0.32 0.33 -0.36(0) 0.37(0) -0.23 0.24 -0.45 0.45

MLEs τ̌ -0.23 0.24 -0.23(0) 0.24(0) -0.14 0.15 -0.36 0.37
Notes:fk, sampling fraction inUk. Upper script in parentheses indicates the percentage
of samples in which the estimator was not obtained because of numerical convergence
problems or because its value was greater than 10,000.

the conditional MLEs̃τC
1 , τ̃C

2 andτ̃C proposed by F́elix-Medina et al. (2009) and derived
from a mixed logit model with fixed effects for the sites and random normal effects for the
people and no interaction effects, and the MLEsτ̌1, τ̌2 andτ̌ proposed by F́elix-Medina and
Thompson (2004) and derived under the assumption of homogeneous linkprobabilities.

The performance of an estimatorτ̂ of τ , say, was evaluated by means of its rela-
tive bias (r-bias) and the square root of its relative mean square error (r-mse) defined by
r-bias=

∑r
1(τ̂i − τ)/(rτ) and

√
r-mse=

√

∑r
1(τ̂i − τ)2/(rτ2), whereτ̂i was the value of

τ̂ obtained in thei-th sample.
It is worth noting that in many of the samples the proposed estimatorτ̂C

2 , and conse-
quentlyτ̂C were not computed because of problems of numerical convergence in thealgo-
rithm of maximization or overestimation problems (estimates greater than 10000). There-
fore, the results of the simulation study for each estimator, which are shown inTable 2,
were obtained using only the samples in which the estimator was computed. For each es-
timator the proportion of samples in which the estimator was not computed is shown in
parentheses in Table 2.

From the results we can see that in Populations I, II and III, where the linkprobabilities
were generated using a latent class model, the proposed estimators did not show serious
problems of bias, although the estimatorτ̂C

2 presented problems of instability, which af-
fected the stability of̂τC . The problems of instability, as well as those of convergence and
overestimation were consequence of the not large enough sampling fractions used inU2

(the sampling fractionf2 was between 0.40 and 0.44). In these populations the other types
of estimators showed biases of larger magnitudes than those of the proposed estimators;
however, they were more stable than the proposed ones. In fact, in terms of the r-mse the
best estimator ofτ1 was the proposed estimatorτ̂C

1 , whereas the best estimators ofτ2 and
τ were the ones obtained from the mixed logit normal modelτ̃C

2 andτ̃C .
Finally, in the case of Population IV, every one of the estimators showed serious prob-

lems of biases that deteriorated its performance.
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7. Conclusions and Suggestions for Further Research

Th results of the simulation study show that the proposed estimators ofτ2 andτ present se-
rious problems of numerical stability and variability when the sampling fraction used inU2

is not large enough. In addition, the proposed estimators seem to be not robust to deviations
from the latent class model for the link probabilities. However, more comprehensive stud-
ies than that carried out here need to be implemented to analyze in detail the performance
of the proposed estimators.
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