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Abstract
Many sample surveys gather information on the accuracy of the data collection process. For ex-

ample, for questions related to salary in face–to–face interviews, the interviewer may record if the
interviewee consulted the latest payment slip, an early payment slip or did not consulted any other
source. Another example is when the interviewer records if a set of questions were answered very
accurately, fairly accurately, not very accurately or not at all accurately. Although these types of
data can be informative of the presence of measurement error, little is known how to use the ac-
curacy data to produce corrected estimates of the parameters of interest. In this paper, we propose
a methodology that incorporates accuracy variables and allows for adjusting for measurement er-
ror. Statistical properties of the estimators are examined through a simulation study. The results
demonstrate the adjustments outperform the simple estimator that ignores the measurement error.

Key Words: Sample survey, nonsampling bias, cumulative distribution function, pseudo maximum
likelihood

1. Introduction

Measurement error is a potential source of nonsampling bias in many surveys. It occurs
when the information to be obtained on one or more variables in the study is mismea-
sured. This happens, for example, as a result of an imprecise or inaccurate data collection
instrument, complexities inherent to the variable being measured, and difficulties to the re-
spondent inform the true response properly. This source of error is potentially a concern for
the survey users because, if unaccounted for, it could affect the quality of the data collected
and, as a possible consequence, distort the inferences for the parameters of interest.

Basic methods to deal with measurement error usually require auxiliary information
about the measurement error parameters, replication studies, validation data, or when in-
strumental variables (Fuller 1987) are available. Other methods make use of latent variable,
structural equation or mixed models (Buonaccorsi 2010, p. 172). In this article, we discuss
a methodology to adjust for measurement error that is based on variables that collect data
on the accuracy of the responses provided by the observed units in a sample. One exam-
ple of these variables is when the interviewer, after asking questions related to salary or
income, records if the interviewee consulted his last pay slip or not. Another example is
when the interviewer judges the responses being provided are very accurately, accurately,
or not accurately. These variables, which we term as accuracy variables, can be a rich
source of information to evidence the possibility of measurement error and to adjust for its
impact in the survey estimates.

The methodology considered here was introduced by Da Silva and Skinner (2012) to
adjust for measurement error an estimator of the cumulative distribution of a gross pay
variable measured in the British Household Panel Survey. The accuracy variable adopted
corresponds to the indicator that the respondent latest pay slip was not seen by the in-
terviewer. The results obtained in that application illustrate the potential of the adjusted
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estimator to reduce the upward bias of unadjusted based estimates of the cumulative distri-
bution of weekly pay earnings regarding low paid individuals.

The aim of this paper is to investigate empirically statistical properties of the adjusted
estimator of the cumulative distribution function considered by Da Silva and Skinner (2012)
and to compare those properties to the ones of an estimator that ignores measurement error.
The article is organized as follows: in Section 2, we present a measurement error model
for the observed data that incorporates an accuracy indicator variable. In Section 3, we
demonstrate how the parameters of the model and the cumulative distribution function of
the unobserved variable of interest could be estimated in the sample survey setting using
pseudo maximum likelihood estimation. Section 4 shows the results of a simulation ex-
periment that demonstrates the finite-sample properties of the proposed methodology in
comparison to the unadjusted estimator. Finally, in Section 5, we summarize the main
results of the article.

2. Model and sampling setting

Consider a population ofN units, denoted byU = {1, 2, ..., N}, and letA be a sample from
U . Let yi denote the true value of a variable of interest y for i-th unit, y∗i be its observed
value and xi a k dimensional vector of auxiliary variables for the i–th unit. We assume
the survey contains an accuracy variable indicator ai, where ai has the value one, if y∗i is
observed with error, and the value zero, if the y∗i is observed accurately. This definition of
the accuracy variable suggests the basic model for y∗i given yi

y∗i =


yi + εi, ai = 1,

yi, ai = 0,
(1)

where εi represents the measurement error associated with the observation y∗i .
However, because the accuracy variable can itself be observed with error, then ai be-

comes unobservable. In this case, if we let a∗i denote the observed value of ai, a better
model to account for this situation is: whenever a∗i = 1, means that ai = 1 and, therefore,
there is measurement error in the observation y∗i ; if a∗i = 0, ai can assume the value one
with a certain probability p and the value zero with probability 1 − p. Hence, in this sec-
ond model, a∗i = 0 considers the possibility of cases with measurement error and cases of
accurate responses. This model is illustrated as follows

a∗i =


1 ⇒ ai = 1 ⇒ y∗i = yi + εi

0 ⇒ ai =


1 (with probability p) ⇒ y∗i = yi + εi

0 (with probability 1− p) ⇒ y∗i = yi

(2)

In order to describe a probability model for inference in this setting, we consider a
framework consisting of a superpopulation measurement error model assumed to generate
the finite population data followed by the selection of a probability sample from this popu-
lation. Since the basic model (1) is a particular case of (2) when p = 0, the superpopulation
model will be based on the extended model, for a given p. This parameter shall be provided
from an external source or, more likely, chosen via a sensitivity analysis. More precisely,
we shall assume

(A1) the complete data for the finite population {(yi, y∗i , ai, a∗i ,x>i ) : i = 1, 2..., N}
corresponds to the first N elements in a sequence of independent random vectors by
which
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– yi | xi
indep∼ f(yi | xi;γ)

– y∗i | xi, yi, ai = 1
indep∼ g(y∗i | xi, yi, ai = 1;η)

– yi is conditionally independent of ai given xi

– y∗i and yi are conditionally independent of a∗i given xi and ai

– P (ai = 1 | a∗i = 1, yi,xi) = 1 and P (ai = 1 | a∗i = 0, yi,xi) = p, where p
(0 ≤ p < 1) is a fixed value

for all i = 1, 2, .... The unknown parameter of this model is ψ = (β,η)>.

(A2) the observed data corresponds to {(y∗i , a∗i ,x>i ) : i ∈ A} where A is probability
sample of size n that is selected from U by a sample design that gives first and
second inclusion probabilities πi and πij , respectively. Associated with each i ∈ A,
there is a sampling weight wi taken here to be wi = π−1i . The sampling design is
such that the distribution of yi | y∗i , a∗i ,xi, i ∈ A is the same as the distribution of
yi | y∗i , a∗i ,xi.

Assumption (A1) gives model conditions for the realization of the finite population.
The densities f and g specify, respectively, the conditional distribution of yi given xi and
the conditional distribution of y∗i given xi and yi for the cases that are subject to measure-
ment error. The following two independence assumptions are conditions to identify the
model parameters. In the last part of (A1), the probabilities involving the true and observed
accuracy indicators regards the extended model structure. Assumption (A2) states the ob-
served data relates to a probability sample that is selected by a type of a noninformative
sampling design.

Under the present setting, our goal here is to estimate the cumulative distribution func-
tion of y relative to the population U , that is

FN (c) =
1

N

∑
i∈U

I(yi < c),

based on the observed data {(y∗i , a∗i ,x>i ) : i ∈ A}. In the following section, we describe
a methodology to estimate FN (c), which requires the estimation of ψ. In what follows,
we choose the densities f(yi | xi;γ) and g(y∗i | xi, yi, ai = 1;η) in (A1) to correspond
to the N(x>i β, σ

2) and N(yi, τ
2) distributions, respectively. Hence, the model parameter is

ψ = (γ,η) = (β, σ2, τ2)>.

3. Estimation

One simple approach to estimate the finite population cdf FN (c) is to apply the unadjusted
estimator

F̂u(c) =

[∑
i∈A

wi

]−1∑
i∈A

wiI(y∗i < c). (3)

However, this estimator is usually biased, as it does not account for the measurement error
involved in the observed data {y∗i | i ∈ A}. An adjusted estimator that takes into account
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this measurement error could be constructed by considering an estimator of the model
expectation

E
(
F̂d(c) | y∗U , a∗U ,xU

)
.
=

[∑
i∈A

wi

]−1∑
i∈A

wiE {I(yi < c) | y∗i , a∗i ,xi} ,

where y∗U and a∗U are the population vectors of values of y∗i and a∗i and xU ={x1, x2,...,
xN}. Because

E {I(yi < c) | y∗i , a∗i ,xi}

=


(1− pi(ψ))I(y∗i < c) + pi(ψ)E {I(yi < c) | xi, y∗i , ai = 1;ψ} , a∗i = 0,

E {I(yi < c) | xi, y∗i , ai = 1;ψ} a∗i = 1,

pi(ψ) ≡ Pr
[
ai = 1 | y∗i , a∗i = 0,xi

]
, and, by (A1),

E {I(yi < c) | xi, y∗i , ai = 1;ψ} = Φ

(
c− [(1− ρ)x>i β + ρy∗i ]

σ
√

1− ρ

)
≡ Pc,i(ψ), (4)

the resulting adjusted estimator of FN (c) can be written as

F̂a(c) =

[∑
i∈A

wi

]−1∑
i∈A

wizi(ψ̂) (5)

where zi(ψ̂) = (1−a∗i )
[
(1−pi(ψ̂))I(y∗i < c)+pi(ψ̂)Pc,i(ψ̂)

]
+a∗iPc,i(ψ̂) and ψ̂ denotes

an estimator of ψ.
To estimate the model parameter ψ, one could apply the pseudo maximum likelihood

method. This approach can be described as follows. The pseudo–score function for ψ
based on the observed data {(y∗i , a∗i ,xi) : i ∈ A} can be defined as

Sobs(ψ) =
∑
i∈A

wi
∂

∂ψ
ln f(y∗i | a∗i ,xi;ψ) ≡

∑
i∈A

wiSobs,i(ψ), (6)

where

Sobs,i(ψ) ≡ Sobs(ψ | y∗i , a∗i ,xi) =
∂

∂ψ
ln f(y∗i | a∗i ,xi;ψ).

By assuming the derivative with respect to ψ and the integral sign could be interchanged,
it follows that the i-th (unweighted) component to the score function can be written as

Sobs,i(ψ) =
1

f(y∗i | xi, a∗i ;ψ)

∂

∂ψ

∫ 1∑
ai=0

f(y∗i , yi, ai | a∗i ,xi;ψ)dyi

=

∫ 1∑
ai=0

[
∂
∂ψf(y∗i , yi, ai | a∗i ,xi;ψ)

]
f(y∗i , yi, ai | a∗i ,xi;ψ)

f(y∗i , yi, ai | a∗i ,xi;ψ)

f(y∗i | xi, a∗i ;ψ)
dyi

=

∫ 1∑
ai=0

[
∂

∂ψ
ln f(y∗i , yi, ai | a∗i ,xi;ψ)

]
f(yi, ai | y∗i , a∗i ,xi;ψ)dyi

= E
[
Scom,i(ψ) | y∗i , a∗i ,xi

]
, (7)

where

Scom,i(ψ) ≡ Scom(ψ | y∗i , yi, a∗i , ai,xi) =
∂

∂ψ
ln f(y∗i , yi, ai | a∗i ,xi;ψ)
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is the score function ofψ based on the complete vector of observations, i.e., (y∗i , yi, a∗i , ai,
xi), for the i–th unit. Thus, the pseudo maximum likelihood estimator ofψ can be obtained
as the solution to

Sobs(ψ) =
∑
i∈A

wiSobs,i(ψ) =
∑
i∈A

wiE
[
Scom,i(ψ) | y∗i , a∗i ,xi

]
= 0, (8)

where the expectation is taken with respect to the conditional distribution of yi and ai given
y∗i , a∗i and xi.

An analytical expression for the pseudo–score equations in (8) can derived by first
obtaining an expression for Scom,i(ψ), defined in (7). By (A1), it can be shown that

Scom,i(ψ) = ai

[
∂

∂ψ
ln f(yi | xi;γ) +

∂

∂ψ
ln g(y∗i | yi, ai = 1,xi;η)

]
+

(1− a∗i )(1− ai)
∂

∂ψ
ln f(y∗i | xi;γ).

To evaluate the expectation of Scom,i(ψ), we replace the corresponding normal densities
for f and g and use the consequence of (A1) that

yi | y∗i , ai = 1,xi;ψ ∼ N
(
(1− ρ)x>i β + ρy∗i , σ

2(1− ρ)
)
,

where ρ = σ2/(σ2 + τ2). It follows that the solution ψ̂ = (β̂, σ̂2, τ̂2) of the pseudo–score
equations (8) can be expressed as

β̂ =

{∑
i∈A

xiwiŵ
∗
i,1x
>
i

}−1∑
i∈A

xiwiŵ
∗
i,1y
∗
i ,

σ̂2 =

∑
i∈Awi(1− a∗i )(1− pi(ψ̂))(y∗i − x>i β̂)2∑

i∈Awi(1− a∗i )(1− pi(ψ̂))
(9)

τ̂2 =

∑
i∈Awiŵ

∗
i,3(y

∗
i − x>i β̂)2∑

i∈Awiŵ
∗
i,3

− σ̂2 = 0,

where ŵ∗i,1 = w∗i,1(ψ̂) = a∗i + (1 − a∗i )
[
pi(ψ̂) + (1 − pi(ψ̂))/ρ̂

]
, ŵ∗i,3 = w∗i,3(ψ̂) =

a∗i + (1− a∗i )pi(ψ̂),

pi(ψ̂) =

p√
σ̂2+τ̂2

φ

(
y∗i−x>i β̂√
σ̂2+τ̂2

)
f(y∗i | a∗i = 0,xi; ψ̂)

,

f(y∗i | a∗i = 0,xi; ψ̂) =
p√

σ̂2 + τ̂2
φ

(
y∗i − x>i β̂√
σ̂2 + τ̂2

)
+

1− p
σ

φ

(
y∗i − x>i β̂

σ̂

)
and φ(·) denotes the standard normal pdf. As β̂ = g1(β̂, σ̂

2, τ̂2), σ̂2 = g2(β̂, σ̂
2, τ̂2) and

τ̂2 = g3(β̂, σ̂
2, τ̂2), numerical estimates of these model parameters can be obtained by an

iterative procedure given some preliminary estimates. In each iteration, the procedure could
first update the estimates σ̂2 and τ̂2 given the current β̂. Then, these two new estimates
could be used to update the estimate β̂. These update steps should be repeated until a
convergence criterion is achieved.
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4. Simulation experiment

We now present a simulation experiment to evaluate and compare statistical properties
of the adjusted estimator of the cumulative distribution function (5). We also compare
the properties of the pseudo maximum likelihood estimator of the model parameters in
the extended measurement error model. The experiment is based on a population U of
N = 10,000 units by which the set of observations {(xi, yi, a∗i ) : i = 1, ..., N} was

generated by taking xi
i.i.∼ U(0, 1), yi

indep∼ N(β0 + β1xi, σ
2) and a∗i

indep∼ B(1, π(xi)),
with β0 = 50, β1 = 100, σ2 = 9 and π(xi) = 1/[1 + exp(−4.710531 + 9xi)], for all
i = 1, ..., N . Given the population vectors of the values yi and a∗i , a vector of the same size
for the observed y∗i data was generated with p = 0 and p = 0.3 according to the extended
error model. That is, for each fixed p, the realization of the i-th values of the observed
variable of interest is obtained by

y
∗(p)
i = (1− a∗i )(1− a

(p)
i )yi + (1− a∗i )a

(p)
i (yi + ε

(p)
i ) + a∗i a

(p)
i (yi + ε

(p)
i ),

where a(p)i = a∗i + (1 − a∗i )ã
(p)
i , ã(p)i

indep∼ B(1, p), ε(p)i
indep∼ N(0, τ2) and τ2 = 225, for

all i = 1, ..., N .
We selected 5,000 simple random samples without replacement (SRSWOR) of size

n = 200 from the population U . For each sample, the following estimation methods were
applied to estimate the model parameter ψ = (β0, β1, σ

2, τ2)>:

• Weighted Least Squares (WLS): estimates of β0, β1 and σ2 correspond to the es-
timated regression coefficients and residual mean square from the weighted linear
regression of y∗(p)i on xi. The weights taken in the fit of the regression model are
wi = N/n for all observations in each sample.

• Method of moments (MM): based on the theoretical results that under the extended
model

E(y∗i | a∗i , xi) = β0 + β1xi

and

V(y∗i | a∗i , xi) = a∗i (σ
2 + τ2) + (1− a∗i )(σ2 + pτ2),

then a regression of y(∗p)i on xi among the cases with a∗i = 1 provides estimated
coefficients b1 and residual mean square s21 and, similarly, a regression of y(∗b)i on
xi among the cases with a∗i = 0 provides estimated coefficients b0 and residual
mean square s20. By equating the conditional variances to the residual mean squares
and weighting the two regression coefficients by the inverse of variances, the MM
estimates can then be given by

σ̂2 = max

{
s20 − ps21

1− p
, 0

}
and τ̂2 = max

{
s21 − s20
1− p

, 0

}
.

A combined estimate of β = (β0,β1)
> can be given by

β̂ =
s20

s21 + s20
b1 +

s21
s21 + s20

b0.

• PMLE: using the MM estimates as initial values, the MLE estimates solve the pseudo–
score equations (8) with ψ = (β0, β1, σ

2, τ2)>.
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Tables 1 and 2 give the the mean, bias, bias ratio, variance, mean square error and root
mean square error of the model parameters estimates for p = 0 and p = 0.3, respectively.
The bias ratio was taken as 100 times the absolute bias divided by the standard deviation
of the estimator. The results in Tables 1 and 2 show that the WLS estimates of the regres-

Table 1: Monte Carlo Properties of the Estimators for the Model Parameters under the
Basic Measurement Error Model (p = 0) Based on 5,000 Replicates.

Method Parameter Mean Bias Bias ratio Variance MSE
√

MSE
WLS β0 50.24 0.24 11.86 3.93 3.99 2.00

β1 99.69 -0.31 11.21 7.44 7.54 2.75
σ2 131.60 122.60 620.21 390.78 15422.51 124.19

MM β0 50.03 0.03 2.45 1.49 1.49 1.22
β1 100.00 0.00 0.08 2.76 2.76 1.66
σ2 9.04 0.04 2.96 1.72 1.72 1.31
τ2 230.04 5.04 14.83 1156.00 1181.42 34.37

PMLE β0 50.06 0.06 5.89 1.18 1.19 1.09
β1 99.97 -0.03 1.81 2.23 2.23 1.49
σ2 8.87 -0.13 10.14 1.66 1.68 1.29
τ2 229.64 4.64 13.80 1129.04 1150.55 33.92

sion coefficients are not much affected by ignoring the measurement error. However, the
estimates of σ2 are highly biased upwards. The absolute biases by this method represent
about 620% and 749% of the respective standard deviations when p = 0 and 0.3, respec-
tively, demonstrating the danger of not adjusting for the measurement error. The MM and

Table 2: Monte Carlo Properties of the Estimators for the Model Parameters under the
Extended Measurement Error Model (p = 0.3) Based on 5,000 Replicates.

Method Parameter Mean Bias Bias ratio Variance MSE
√

MSE
WLS β0 50.16 0.16 8.00 4.11 4.14 2.03

β1 99.74 -0.26 8.71 9.22 9.29 3.05
σ2 162.34 153.34 749.40 418.66 23930.38 154.69

MM β0 50.03 0.03 1.09 8.51 8.51 2.92
β1 99.91 -0.09 2.23 17.96 17.97 4.24
σ2 20.36 11.36 45.59 621.51 750.67 27.40
τ2 223.14 -1.86 3.39 3022.07 3025.53 55.00

PMLE β0 50.02 0.02 1.30 1.86 1.86 1.36
β1 100.02 0.02 1.27 3.61 3.62 1.90
σ2 8.64 -0.36 16.62 4.71 4.84 2.20
τ2 227.06 2.06 7.25 804.62 808.84 28.44

PMLE methods yield estimates of the regression coefficients with smaller biases than the
WLS method, for both values of p. For the case that p = 0, both MM and PMLE methods
also estimate well the components of variance σ2 and τ2. The MM biases are about 3.0%
and 14.8% of their standard deviations and these figures for the PMLE method are roughly
10.1% and 13.8%, respectively. However, when p = 0.3, the bias ratios in the estimation

Section on Survey Research Methods – JSM 2012

4322



of σ2 and τ2 are approximately 45.6% and 3.4%, for the MM, and 16.6% and 7.2%, for
the PMLE. These analyses for both values of p indicate that the PMLE estimates of σ2 and
τ2 have negligible biases while the MM becomes biased for p = 0.3. This last finding was
also observed with simulated results for p = 0.1 and p = 0.2 (not shown here), suggest-
ing an inferior performance of the MM in relation to the PMLE method to estimate σ2 for
p > 0.

The PMLE method is also more efficient than the other two methods in the estimation
of the four model parameters for both values of p. The square root of the mean square
error of the PMLE estimates are smaller than the figures corresponding to the other two
methods. In the estimation of σ2 and τ2 with p = 0.3 , for example, the square root of the
mean square errors of the MM estimates are 27.4 and 55.0 while, for the PMLE, they are
2.2 and 28.4.

Table 3: Monte Carlo Properties of the Estimators for the Cumulative Distribu-
tion Function under the Basic Measurement Error Model (p = 0) Based on 5,000
Replicates.

100FN (c)
Method 3 5 10 90 95 97
True data Mean 3.01 5.00 9.99 90.04 95.04 97.03

Bias 0.01 0.00 -0.01 0.04 0.04 0.03
Bias ratio 0.76 0.14 0.46 1.90 2.86 2.39
Variance 1.49 2.37 4.39 4.34 2.30 1.39
MSE 1.49 2.37 4.39 4.34 2.30 1.39√

MSE 1.22 1.54 2.10 2.08 1.52 1.18
Observed data Mean 7.27 8.74 12.10 89.55 94.72 96.70

Bias 4.27 3.74 2.10 -0.45 -0.28 -0.30
Bias ratio 232.31 185.48 91.84 21.33 17.91 24.41
Variance 3.37 4.07 5.24 4.51 2.45 1.54
MSE 21.56 18.07 9.66 4.71 2.52 1.64√

MSE 4.64 4.25 3.11 2.17 1.59 1.28
PMLE Mean 3.03 5.01 9.92 90.04 95.04 97.01

Bias 0.03 0.01 -0.08 0.04 0.04 0.01
Bias ratio 2.35 0.54 3.66 1.98 2.35 0.65
Variance 1.49 2.50 4.49 4.32 2.31 1.40
MSE 1.49 2.50 4.49 4.32 2.31 1.40√

MSE 1.22 1.58 2.12 2.08 1.52 1.18
MM Mean 3.07 5.04 9.95 90.04 95.04 97.01

Bias 0.07 0.04 -0.05 0.04 0.04 0.01
Bias ratio 5.39 2.60 2.18 1.98 2.32 0.63
Variance 1.63 2.69 4.68 4.32 2.31 1.40
MSE 1.64 2.69 4.68 4.32 2.31 1.40√

MSE 1.28 1.64 2.16 2.08 1.52 1.18

Tables 3 and 4 show the results for the estimation of the cumulative distribution func-
tion. The properties on these tables are as in Tables 1 and 2. The estimation methods of
FN (c) considered were:

• True Y : uses the unadjusted estimator (3) with the true data yi in the place of y∗i .
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• Observed Y : uses the unadjusted estimator (3) based on the observed data y∗(p)i , for
each p.

• PMLE: uses the adjusted estimator (5) by plugging–in the PMLE estimates β̂0, β̂1,
σ̂2 and τ̂2, for each p

• MM: uses the adjusted estimator (5) by plugging–in the MM estimates β̂0, β̂1, σ̂2

and τ̂2, for each p

To have a better view of the lower and upper parts of the distribution of variable y, six dif-
ferent values of c in FN (c) were chosen as population percentiles. First, note the estimator
based on the true data is unfeasible in practice according to our framework. Its inclusion
in the experiment is for comparison purposes. As expected, it is approximately unbiased
and its precision is not affected by the measurement error. The observed data estimator, on

Table 4: Monte Carlo Properties of the Estimators for the Cumulative Distribution
Function under the Extended Measurement Error Model (p = 0.3) Based on 5,000
Replicates.

100FN (c)
Method 3 5 10 90 95 97
True data Mean 3.00 5.00 9.98 90.03 95.04 97.03

Bias 0.00 -0.00 -0.02 0.03 0.04 0.03
Bias ratio 0.34 0.11 0.74 1.62 2.75 2.17
Variance 1.48 2.37 4.39 4.34 2.30 1.39
MSE 1.48 2.37 4.39 4.34 2.30 1.39√

MSE 1.22 1.54 2.09 2.08 1.52 1.18
Observed data Mean 7.67 9.12 12.39 88.95 93.76 95.39

Bias 4.67 4.12 2.39 -1.05 -1.24 -1.61
Bias ratio 249.77 204.50 105.11 48.54 73.43 109.60
Variance 3.50 4.06 5.19 4.71 2.86 2.16
MSE 25.33 21.02 10.92 5.82 4.40 4.75√

MSE 5.03 4.58 2.77 2.41 2.10 2.18
PMLE Mean 3.06 5.05 9.96 89.89 95.09 96.94

Bias 0.06 0.05 -0.04 -0.11 0.09 -0.06
Bias ratio 4.64 2.96 1.90 5.18 5.82 5.27
Variance 1.87 3.01 5.06 4.30 2.23 1.40
MSE 1.88 3.01 5.07 4.31 2.24 1.40√

MSE 1.37 1.74 2.25 2.08 1.50 1.18
MM Mean 3.61 5.43 10.04 89.94 94.98 96.83

Bias 0.61 0.43 0.04 -0.06 -0.02 -0.17
Bias ratio 25.88 16.05 1.45 2.82 1.29 10.73
Variance 5.49 7.10 9.17 5.19 3.36 2.59
MSE 5.85 7.28 9.18 5.19 3.36 2.62√

MSE 2.42 2.70 3.03 2.28 1.83 1.62

the other hand, is highly biased and inefficient. The means of this estimator regarding the
values of 100FN (c), i.e., 3, 5, 10, 90, 95, 97, are about 7.3%, 8.7%, 12.1%, 89.6%, 94.7%,
96.7% (p = 0) and 7.7%, 9.1%, 12.4%, 89.0%, 93.8% and 95.4% (p = 0.3). Hence, with
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the observed data estimator, the true cumulative percentages of observations less than or
equal to the specified percentiles, c, are overestimated, when c is in the lower tail of the
distribution, and underestimates, for c in the upper tail. The bias ratios of these estimates
vary from 17.9% to 232.3% (p = 0) and from 48.5% to 249.7% (p = 0.3).

The adjusted estimator with PMLE method reduces the bias relative to the unadjusted
estimator at both parts of the distribution for both cases of p. In the lower part, the ad-
justment is downwards and, in the upper part, the PMLE estimates tends to be higher on
average than those for the unadjusted method. The same pattern is observed with the MM
adjusted estimator, although specially when p = 0.3, the MM estimates reflect more bias
than those based on pseudo maximum likelihood. The variation in the PMLE bias ratios is
from 0.5% to 3.7% (p = 0) and from 1.9% to 5.8% (p = 0.3). The variations for the MM
bias ratios are 0.6% to 5.4% (p = 0) and 1.3% to 25.9% (p = 0.3). In terms of efficiency,
the PMLE adjusted estimator is the method with the closest root mean square errors to the
ones obtained by the true data method. The MM method has its better efficiency when
p = 0 than when p = 0.3. However, even the former case, the PMLE is more efficient than
the MM for estimation in the lower tail.

5. Discussion

In this article, we have studied properties of an adjusted estimator for a cumulative distri-
bution function in the presence of measurement error. The formulation of the estimator,
proposed initially by Da Silva and Skinner (2012), depends on the parameters of a model
for the variable of interest that allows for the presence of measurement error through the
use of one accuracy variable. The estimator of the cumulative distribution function is then
defined by replacing the model parameter with a suitable estimate, which was obtained here
by a pseudo maximum likelihood estimation method.

A simulation experiment was carried to evaluate the properties of the estimators with
respect to the variability of the extended model, described in Section 2, and the sampling
design used to select the units to belong to the sample. The parameter p of the extended
model took the values 0 and 0.3. The model parameters consisted of two regression co-
efficients (β0 and β1), the variance of true variable y around the regression line (σ2) and
the variance of the measurement error (τ2). The following three methods of estimation for
these parameters were explored in the experiment: Weighted Least Square method (WLS),
Method of Moments (MM) and Pseudo Maximum Likelihood Estimation (PMLE). The
WLS method was considered as a naive approach to estimate the regression coefficients
β0, β1 and the variance σ2. The results can be summarized as follows:

• WLS is an unreliable method to be considered in in practice, when there is mea-
surement error. This estimator badly overestimates the variance σ2 and is also quite
inefficient under both values of p.

• PMLE and MM outperform the WLS method by yielding smaller bias ratios and
smaller root mean squares errors.

• MM works better under the basic model (p = 0) than when it is applied under the
extended model with p > 0. PMLE works better than MM for both values of p and
the gains of the former are greater when p > 0.

For the estimation of the cumulative distribution function FN (c), we compared the
properties of an adjusted estimator when the true data and when the observed data of the
variable of interest are used. The former was considered for comparison purposes. We also
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considered the adjusted–based estimator (5) formed with the replacement of the PMLE and
MM estimates. In summary,

• the unadjusted estimates with the observed data have greater biases than when the
same estimator is applied for the true (unobserved) values of the variable of interest.

• both adjusted methods (MM and PMLE) decrease, on average, the unadjusted ob-
served data estimates estimates in the lower tail of the distribution. In the upper tail,
the adjustment works as an increment to the unadjusted estimates.

• the PMLE method is more successful in achieving greater bias reductions and more
efficiency than the MM method, specially when p = 0.3.

These findings demonstrate that the pseudo maximum likelihood estimator of the model
parameters and the resulting adjusted estimator of cumulative distribution function can be
successfully employed in reducing the measurement error bias of the unadjusted estimator.
The method of moments, a simple method of estimating variance components, should not
be used for situations where there is the possibility of measurement error among the cases
belonging to the more accurate group of the accuracy variable.
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